
DISCRETE EVENT SIMULATION WITH UNIVERSAL PROGRAMMING LANGUAGES
ON MULTICORE PROCESSORS

Thomas Wiedemann

University of Applied Science Dresden

 wiedem@informatik.htw-dresden.de

ABSTRACT
The current hardware development is characterized by a
in-creasing number of multi-core processors. The
performance advantages of dual and quad core
processors are already applied in high speed
calculations of video streams and other multimedia
tasks. This paper discusses possible applications of
multi-core processors in discrete simulation. The
implementation of parallel threads on more than one
core requires massive changes in the software structure
and software module interaction. Such changes are only
possible inside the source code and can not be realized
in COTS-simulation systems. The paper presents a
special approach by using an assembler based, very fast
multitasking routine combined with an additional multi-
core runtime system. The basic system approach is
realized with Standard C/C++ and Delphi-compilers
and offers an high flexibility and a good runtime
performance.

Keywords: Multicore processors, discret event
simulation with universal languages

1. INTRODUCTION
The main algorithms and mathematical foundations of
simulation systems are well defined and efficient
(Wiedewitsch and Heusmann 1995). Nevertheless, the
real application of simulation systems is still difficult
(Kuljis and Paul 2000). Not more than 10% of all
industrial firms use simulation tools by a number of
reasons:

·The implementation of discrete event simulation
mod-els with standard programming languages like
C++ or Delphi is difficult. The main problem is the
parallel execution of thousand or million small
processes, which represent the simulation objects. The
old concept of co-routine switching is not supported by
modern programming languages.

·Especially in the area of optimization with
simulation models exists a performance problem. It
seems like a paradox, that an older simulation language
like GPSS is significantly faster than modern simulation
systems at run-time.

• In many areas of production planning it takes
hours or days for finding useful solutions. Any
speedup would improve the quality of
simulation and optimization in real use cases.

• Commercial simulation packages like
AutoMOD, Enterprise Dynamics, Arena or
SLX are very complex. In fact of the small
market for simulation, the prices of the systems
are very high. Typical prices of more than
$50,000 are too high for medium-sized firms.

In summary, it seems necessary to use cheap standard
programming languages with fast scheduling algorithms
on multi-core processor systems for much higher
simulation speed and lower investment costs.

2. INSIDE DISCRETE EVENT SIMULATION
The foundations of discrete event simulation are already
30 years old. They are based on the basic principles of
simulation, which are explained in detail in other papers
(see former “How it works” sessions at the WSC, e.g.
(Schriber 2003), (Kilgore 2001)).
In general, modeling and simulation of real world
systems require parallel execution of a large number of
processes in a specific order. This task is solved by all
simulation systems. It is useful to discuss some details.

Process switching is the first task of parallel
execution. The executing processor must switch from
one process to an other process by preserving all states
for future re-switching (see fig. 1). Often there are
thousands of small processes with a high switching rate.
Some operations are also conditionally. Switching
inside basic functions is called co-routine switching.
After a first realization in SIMULA such switching
technologies were not integrated in C / C++ or similar
languages. Other technologies, like pointer based
functions calls and multi-threading are too slow and too
complicated.

Process scheduling is the second task. The
sequence of process switching must be determined by
the simulation control unit. This is uncritical, if the
schedule is simply determined by time or priority. It is
critical, if the scheduling order depends on conditions,
like blocking states in sequential organized queues.

Performance problems with simulation systems
are often based on bad or non adequate switching and
scheduling algorithms. Using standard multitasking
algorithms from C/C++ or Delphi libraries are critical,
because they are designed for switching a small number
of large processes like tasks in operating systems.
Often, the maximum number of threads is limited and
the scheduling order can not be changed by the
developer.

293

Algorithms for switching and scheduling define
different requirements :
• process switching is a quite simple task and defines

the main performance,
• process scheduling is quite complex, and less

critical in performance.
Although it seems possible to develop a very efficient
switching implementation, it is nearly impossible to
develop a optimal scheduling algorithm for all
applications, because there are dozens of scheduling
algorithms on trees, sorted lists etc., which differ in
terms of performance and complexity.

From this view, a main design decision was made:
The switching should be separated from scheduling
by using an open and flexible interface, which allows
the simulation model builder a free choice of possible
switching and scheduling modules.

Because of the fact, that nearly all existing
computers are based on sequential (non-parallel)
processors, the switching will always change from the
current to the next process. If the scheduler has
determined the next process, the switching will need
only the information of the current and next process by
using the following interface (see fig. 2).

Figure 2 : Separation of switching and scheduling

This simple interface allows a wide spectrum of

different switching and scheduling algorithms. The
following pages will present some first
implementations.

3. SWITCHING BY EXTREME MULTI-
TASKING

3.1. Options for switching processes
The switching algorithm must save all local variables
and the state of the processor of the current process,
then he should load the new program and stack pointer
address and must restore the processors register and
local variables of the new process. Traditionally, the
saving and restoring of the local variables is done by
copying all memory blocks to backup areas, which is
very time consuming.

Because of the fact, that in standard programming
languages like C++ or Delphi all local variables are
located on the stack, it seems possible to switch all
local data and the return address for the new
process by only changing the current stack pointer
address. This simple change of the stack pointer value
reduces the time for process switching significantly and
allows very high rates of process multitasking.
Otherwise there are some critical points of this
approach:

• The change of the stack context is non trivial,
because all local variables of all calling
functions are switched off. In result, this
method requires some special initialization of
the stack during the start of each process.

• In general, the stack must provide memory
space for an unknown number of functions
calls. The size of stack space in standard
implementations is between 16 Kbytes up to
64 Kbytes. The real used space is very
different – efficient simulation functions need
only some Hundred bytes of stack space, but
Windows functions often require dozen
Kilobytes of stack space. If any simulation
process would use 64 Kilobytes of stack space,
there would not be enough memory in the
computer. For this reason the stack space is
limited to 500 … 2000 Bytes per simulation
process. If any simulation function calls an

Parallel execution of simulation processes
(e.g. each process represents one product in a large production scenario)

...

over
1000

processes
...

Program -
pointer P1

Simulation control with process-multitasking and scheduling and
management of all processes in an event list

P2

Main
simulation
program

(starting &
initializing
processes)

P3 P4

Figure 1 : Parallel execution and switching of simulation processes

Simulation Scheduler

Simulation Switcher

switchprocesses (ProcId , NewProcID);

294

expensive Windows function, this call is
mapped to a larger stack space.

• Changing the stack pointer address could be
dangerous for complex programming
environments. The approach must be tested
with each compiler and new version for
avoiding stability problems.

In conclusion, the switching of processes by only
changing the stack pointer is simple and very fast., but
it has also some smaller disadvantages. For this reason,
the attribute “extreme multitasking” is used to inform
potential users about this specific approach.

3.2. Implementation results
The approach was tested by using DELPHI with the
Object Pascal language. The stack pointer addresses are
moved by assembler commands (see lines 7 – 10 of fig.
3) to and from a process address table. The push and
pop commands save and restore the processor registers
to the stack before switching. The number of
POP/PUSH-operations depends on the specific
processor and can change for other versions of
compilers and languages.

Figure 3 : The code of the process switching module

Because of the fact, that there was no secure
information about the possibility of changing the whole
stack context by such a direct way, the author was
impressed by the fact, that this code is also Debugger-
safe. So if any application developer uses this code, he
can still see all steps in step-wise execution: The old
process enters this code sequence and after ending the
switching code with the end; - statement (which is in
practice a RETURN-assembler statement), the high
level code–pointer will continue with the new process.
 The necessary memory for this approach is simply
the size of the stack of each process multiplied by the
maximum number of processes. With a stack size of 2
Kilobytes about 500 processes are possible per Mbyte
memory. If there are 100 Mbytes free memory, it allows
50.000 processes, which is a good value also for large
models. If this size is too small, the simulation user

should spend 100$ for an extra 1 Gigabyte RAM
Memory.
In conclusion, we PAY PERFORMANCE WITH
MEMORY, which is a cheap option today !

4. FLEXIBLE SCHEDULING
As defined by the interface (see fig. 2), the scheduler
must select the next process for execution. This
selection should be very fast for large numbers of
processes and without long calculation times for
inserting and deleting processes from the selection
table. The kind of selection of course depends from the
kind of simulation. In result, there will be different
scheduling options for different simulation types.
Simple sequential scheduler
 A simple sequential scheduler selects all processes one
by one in the table and activates them. This kind of
scheduler is only useful, if nearly all processes are
executed in a strong periodical way. Related simulation
models are used in traffic simulations, where all
simulations objects (like cars or humans) are moving
with small steps in every time step of simulation. The
disadvantage of this scheduler is the bad performance in
systems with very different activation rates.
 Together with the switching module this scheduler
allows a first test scenario for building up a simulation
model. The resulting time for one whole cycle,
measured over 1 Million switching / scheduling
sequences was about 13 – 17 Nano-seconds on a 1,3
GHz Centrino PC and less than 10 Nano-seconds on a
2,5 GHz Desktop PC´s. In fact, that this time
corresponds to about 30 basic assembler operations this
cycle time seems to be the lowest possible
multitasking time cycle time. Thread switching has
cycle times from 500 ns up to some micro-seconds.
Future event list schedulers
For complex simulation models the sequential scheduler
is not powerful enough. Better characteristics are
possible with Future event list schedulers. They manage
all processes in a sorted list. New processes are inserted
by using their next activation time as the sort value. In
result, the entry at the start of the list is always the next
process for execution.
 A simple list is critical for large amounts of
processes, because the time for finding the place for
insertion is linear growing with the number of
processes. The current implementation task consists in
finding algorithms with a better performance
characteristic.
 One option is an array-based tree with only 4
levels. In this scenario the time value is represented as a
32 bit long integer value. Each byte of this time is used
as an index in one of the four levels (see fig. 5). With
this approach, the insert time does not increase with a
growing number of processes. The disadvantage is the
same as before with the switcher – a high memory
consumption. A test implementation shows, that about 3
Mbytes of RAM is necessary for running a typical
production scenario.

procedure switchprocesses(OldProcId: integer;
NewProcID:integer);
begin asm push eax // save calling environment
 push ebx
 push ecx
 push edi
 mov stackold,esp; end; // store old STACKP
 stacknew := cal[NewProcID];
 cal[OldProcId]:= stackold;
 asm mov esp,stacknew; // get new STACKP
 pop edi
 pop ecx
 pop ebx
 pop eax // get old environment
 end;
end; //AT THIS POINT THE SWITCHING HAPPENS !

295

Figure 4 : An improved Future event scheduler

The main difference to existing simulation systems is
the freedom of choice in the area of schedulers. While
switching is assembler based and not very comfortable
for High-level programmers, the development of new
and much more improved scheduling algorithms is quite
simple for experienced simulation kernel developers.
After an initial time of building up different schedulers,
the simulation user can select one of already existing
schedulers. It is also possible to use different schedulers
for different areas of a simulation model.

5. MULTI-CORE SUPPORT
The increasing number of multi-core processors in
personal computers is very interesting also for
simulation of large models, although it is not a new
theme for the simulation community. Since many years
distributed simulation is a well discussed topic in the
simulation –community (see Perumalla 2006, PADS).
The main difference between the traditional distributed
simulation and new opportunities of multi-core
 processors is defined by the wide availability of multi-
core systems in the future :

• Instead of using specialized and very
expensive hardware systems, nearly all future
standard personal computers are equipped with
2,4 or more processor cores. So there is no cost
overhead in hardware, when distributed
simulation is used.

• Otherwise, standard computers are equipped
only with standard operating system like
Windows or Linux. In result, the
implementation of distributed simulation must
be realized with the methods of the existing
operating system.

Implementation of distributed simulations on multi-
core processors
 The major number of multi-core systems will have two
or four cores in the next few years. So the basic
architecture of a distributed simulation should divide
the algorithms on 2 or 4 or multiples of 2 cores.
 The main experience from PADS-simulations
shows, that a distributed execution of the simulation

model itself is very complicated and the resulting
speedup depends very heavily on the necessary
communication between the distributed simulation
modules. In bad cases, the speedup is below 1, which
makes distributed simulation useless.
 In the current situation with “only” 2 or 4 cores it
seems more useful, not to divide the model, but to
distribute the model and the simulation infrastructure. If
there are more cores in the future, the cores should be
used for a pair based Hyper computing, where one
core is used for the simulation control and the other for
the model. Of course also the traditional Hyper
computing is possible and should be used if faster.
Beside the model execution the simulation system must
realize the following tasks:

• Scheduling of simulation processes with
Future and Current event lists,

• Generation of a wide spectrum of random
numbers (some random number types are quite
expensive in terms of mathematical
calculations)

• Storage of simulation results with basic
statistical calculations (mean, standard
deviation etc.) and compression of time series
values.

On a 2-core system these tasks will be executed on the
first core and the simulation model on the second core
(see fig. 5). On a 4-core system the simulation control
tasks will be executed on cores 1-3 and the simulation
model on the fourth core (see fig. 6).

Figure 5 : 2-Core distributed simulation

Figure 6 : 4-Core distributed simulation

The possible speedup of such an architecture depends
very on the ratio between the model execution and the
simulation control execution. In cases with small model
functions, e.g. only random number based simulation of
machining processes the time of model and simulation
control execution could be nearly the same and the
speedup could reach the number of existing cores 2 or
4, which means 50% or 75% less execution time.

B1 B3 B2 B1

Level 4 - Array (1 x 256 *4)

Time

Level 3 - Array
(2..5 x 256 *4)

Level 2 - Array
(20..100 x 256 *4)

Level 1 - Array
(? x 256 *4 Byte)

Core 2

Simulation
Model

Core 1

Simulation control
 Event calendar
 Random numbers
 Result Statistics

Simulation control

Core 1
Event
calendar

Core 2
Random
numbers

Core 3
Result
Statistics

Core 4
Simulation
Model

296

 In complex models with long running model
functions the ratio between model and simulation
control could be bad, so the speedup will decrease. In
this case the cores should be used for a traditional
Hyper computing, where each core executes one
replication. In the case of Hyper computing the
speedup equals nearly the number of processors. In
applications where the speedup must be guaranteed, the
usage of such parallel running simulations is the best
and safe way. The described split of simulation control
and model control seems only a interesting way of
distributing simulation without dividing the models in
very different and difficult ways.
Some additional measures could increase the speedup in
a case with an oscillating ratio between model and
simulation control:

• The generation of random numbers could be
done in advance. So the next 200 or more
random numbers could be generated and a
model function with a burst usage (e.g. a
Monte Carlo scenario inside a standard model)
could use the numbers without waiting.

• The management of the event calendars is
focused on delivering the next simulation
events to the model. The storage of future
events is of lower priority and is done after
extracting the next future events from the list.
A small secondary future event queue is
possible.

If the simulation model runs always longer than the
simulation control , some time expensive algorithms
from the model (e.g. path-finding algorithms over a
network or interpreting user-defined code) can be
moved toward an free processor core.
 In result of this options the ratio can be fine tuned
towards similar time of model and simulation control
execution , which maximizes the speedup. With some
additional effort, this fine tuning can be automated in
future systems.

First implementation results
The current simulation system is based on two (in the
future also 4 or more) program threads. The first thread
is started on the first processor and manages the
simulation control functions. The second thread is
started by the first thread and executes the simulation
model. The interface between the threads is realized
with shared memory.
The measurement of the speedup is quite simple : a first
run is started with both threads only on one processor –
which gives the single sequential time. The second run
is executed with distributed threads on two cores and
gives the time for distributed simulation. The first
experiments with some simple queuing models with two
lines of 4 machines show speedups between 1.3 and
1.7 without special optimizations. Further work will
analyze the effects of improvements of the interface and
the discussed optimization measures.

6. THE SIMSOLUTION SYSTEM
All described basic routines will generate the kernel for
a larger simulation environment, called
“SIMSOLUTION”. The whole picture of the future
“SIMSOLUTION”-simulation environment shown in
Figure 6 and is based on former development of the
author (Wiedemann 2000, Wiedemann 2002). Above
the Code-level are the GUI-interfaces or interfaces to
other information systems. Possible interfaces could be
traditional desktop forms or web based forms in a
internet browser. The large block in the center of the
system controls all processes. It is also an interfacing
layer between the specific tools at the tool level and the
universal and standardized modules at the Model level.
The communication between all modules is based on
file or network techniques. The communication protocol
uses XML-coded information. In many cases the
content of the XML-databases or XML-encoded
simulation results is only wrapped by an additional
XML-layer and transported over the network. Larger
amount of data, for example simulation results, will be
compressed by well-known compression algorithms for
better transportation speed. For the end user this data
conversions will be transparent. Data and model storage
is realized with data bases, where a universal canonical
data model is used for all simulation model. By using
SQL-statements the elements of the model could be
manipulated also group wise. This option allows quick
and efficient changes of large simulation models.

7. SUMMARY
The application of a universal programming language as
basic language offers new opportunities for the
development of discrete event simulators.

Especially new hardware options like multi-core
processors could be used without long waiting for new
versions of COTS-simulation systems. The applied
architecture of a distribution between simulation model
and simulation control is not every time the best option,
but it guaranties in opposite to traditional distributed
models in any case a speedup larger than one. But if
possible and useful, also the model could be distributed
on future processors with more than two cores.
 Well-known programming languages like C, C++
or PASCAL will reduce the learning effort and offer
better flexibility than traditional simulation systems.
Adding new functions or interfacing to database system
or new web-based technologies like Web-services is
less expensive.

An additional effect are low investment cost also in
multi core environments, because the run time modules
are free of charge.

297

The usage of some specific Assembler-routines for
switching could be seen as some disadvantage. But the
resulting simulation speed is very high and offers new
solutions especially in the area of optimization and
simulation. For that reason, the current goal of
development is to make the SIMSOLUTION-system
some of the fastest simulation systems, even if there are
some disadvantages or missing functions compared to
other simulation systems.

In order to reduce the efforts for generating
simulation models, the underlying programming
language is managed by a universal modeling system,
which generates universal, language independent XML-
descriptions.

Code parsers and generators convert

SIMSOLUTION-models to programs in C++, Delphi or
.NET-languages.

In the future, with two sequential transformation
processes a simulation model can be transferred
between different platforms without manual changes.

Its future development will provide a universal and
open simulation system. Any interested simulation
expert or user is invited by the author for sharing his
ideas, experience and cooperation inside the
SIMSOLUTION-consortium.

SIMSOLUTION
 Simulation Model

specification

C++ Compiler

SIMSOLUTION
Control Manager

SIMSOLUTION
Simulation Experiment

specification

SIMSOLUTION
Simulation Results

specification

Delphi Compiler + GUI

SIMSO-> DELPHI
Interface

SIMSO -> C++
Interface

Result Analysis
 Tools

Results
Interface

Simulation program
for C++

Simulation program
for DELPHI

SIMSOLUTION
specifications

System specific results

Model
Level

Control
level

Tool Level

The SIMSOLUTION
Project

Figure 5 : The main architecture of the SIMSOLUTION - System

Code Level

298

REFERENCES

Kilgore, R. A. 2001. Open source simulation modeling
language (SML). In Proceedings of the 2001
Winter Simulation Conference, ed., B. Peters, J.
Smith. Piscataway, NJ: 2001

Kuljis, Jasna and Ray J. Paul, 2000: A Review of web
based simulation: whiter we wander?, Proceedings
of the 2000 Winter Simulation Conference,
Orlando Florida, page 1872-1881

Jacobs, Peter, 2004: The DSO Simulation System.
Proceedings of the European Simulation
Symposium, Budapest, Hungary, October 2004

Perumalla K., 2006 “Parallel and Distributed
Simulation: Traditional Techniques and Recent
Advances”. Proceedings of Proceedings of the
2006 Winter Simulation Conference

PADS : Website of the annual workshop for “Principles
of Advanced and Distributed Simulation”
 http://www.pads-workshop.org/

Phillips, Lee Ann 2001. Special Edition using XML.
Que Bestseller Edition, 2000

Schriber, Thomas J.; Brunner , Daniel T. : Inside
Discrete-Event Simulation Software: How It
Works and Why It Matters Proceedings of the
2003 Winter Simulation Conference, December 7-
10, 2003, New Orleans, LA

Wiedemann, T., 2000. VisualSLX – an open user shell
for high-performance modeling and simulation,
Proceedings of the 2000 Winter Simulation
Conference, Orlando Florida, pp. 1865-1871

Wiedemann, T., 2002. Next generation simulation
environments founded on open source software
and XML-based standard interfaces, Proceedings
of the 2002 Winter Simulation Conference

Wiedewitsch J.; and Heusmann J. 1995. "Future
Directions of Modeling and Simulation in the
Department of Defense", Proceedings of the
SCSC'95, Ottawa, Ontario, Canada, July 34-26,
1995

AUTHOR BIOGRAPHY

THOMAS WIEDEMANN is a professor at the
Department of Computer Science at the University of
Applied Science Dresden (HTWD). He has finished a
study at the Technical University Sofia and a Ph.D.
study at the Humboldt-University of Berlin. His
research interests include simulation methodology, tools
and environments in distributed simulation and
manufacturing processes. His teaching areas include
also intranet solutions and database applications.
Email : <wiedem@informatik.htw-dresden.de>

299

