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ABSTRACT 
Individuals base decisions on their surroundings and 
change their minds based on the action of others and 
interactions with the environment. Current Cellular 
Automata techniques for modeling pedestrian 
movement predetermine the individual’s goals and do 
not change them throughout the execution of the 
simulation. To allow the individuals to make decisions 
as the simulation progresses a technique has been 
developed to separate the decision making process of 
environmental factors and the static environmental 
effects. Any individual can modify where they are 
going, based on the locations of other individuals, their 
capabilities of movement, current velocity and 
relationships to the environment. This technique will 
allow individuals to pick the best paths based on what is 
actually happening during the simulation. This 
technique can be used to optimize work flow strategies 
and seek the best way to deal with work stoppages and 
other problems which may arise. 
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1. INTRODUCTION 
The purpose of this paper is to provide a ‘proof-of-
concept’ that a cellular automata (CA) model of 
pedestrian motion can be integrated into manufacturing 
job shop production simulations.  The outline of this 
paper is first an introduction to models of pedestrian 
motion, second a description of the CA model that is 
used during this research, and third an argument for 
models of pedestrian motion in job shop production 
models.  Next a brief overview of the modifications we 
have made to the original CA model which allows the 
model to be applied to a broad range of pedestrian 
modeling problems.  Finally, we present a simple 
example of a combined pedestrian-job shop simulation. 
 
2. PEDESTRIAN MODELS 
Recently, a considerable amount of research has been 
done on simulating collective behavior of pedestrians in 
the street or people finding their way inside a building 
or a room. Models of crowd behavior attempt to 
describe collective pedestrian behaviors that result from 
complex interactions among the individuals composing 

a crowd and between these individuals and their 
physical environment.  Reviews of the state of the art 
can be found in a volume containing Schadschneider 
(2002) and Kessel, Klüpfel, Wahle, and Schreckenberg 
(2002). 
 Existing models can be broadly separated into the 
following two categories: (1) discrete-space models and 
(2) continuous-space ones. Discrete-space, or cellular 
automata-based models allow pedestrians to be located 
at nodes of a fixed or adaptive grid, and pedestrian 
coordinates are updated at discrete time intervals.  
Particular models of this category are described in 
Schadschneider (2002); Blue and Adler (2002); 
Dijkstra, Jesurun, and Timmermans (2002); Kessel, 
Klüpfel, Wahle, and Schreckenberg (2002); and Batty, 
DeSyllas, and Duxbury (2002). The models of the 
second category allow pedestrians to move 
continuously in a part of the 2-D surface representing a 
street, a room, and so forth. 
 The continuous space models can further be 
subdivided. Some models, such as the ones considered 
in Helbing, Farkas, and Vicsek, (2000) and AlGadhi, 
Mahmassani, and Herman (2002), are based on a 
similarity between the dynamics of a crowd and that of 
a fluid or gas. Other models of the second category 
allow pedestrians to choose their paths by optimizing a 
certain cost function (Hoogendoorn, Bovy, and Daamen 
2002). An interesting model combining the fluid 
dynamics approach with that of a cost function is 
considered in Hughes (2002); there the role of the cost 
function is played by the pedestrian’s estimated travel 
time. Finally, the model considered in other sources 
(Helbing and Molar 1995, Helbing, Farkas, and Vicsek 
2000) introduces social and physical forces among 
pedestrians and then treats each pedestrian as a particle 
abiding the laws of Newtonian mechanics. 
 Generally all the models mentioned above are 
microscopic and rooted in the ‘generalized behavior 
concept’ that is, for a model of crowd movement to be 
reliable it need not model any certain individual 
correctly - just the average behavior of a group of 
individuals responding to certain situations. It is 
assumed that since pedestrians face similar movement 
and route choices everyday their response become in 
effect automatic and can therefore be predicted. In order 
to mathematically model pedestrian movement one 
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must suppose that an individual’s behavior will exhibit 
certain regularities.  With the acceptance of the premise 
that pedestrians exhibit regular behaviors general 
mathematical models of crowd dynamics can be 
formed. 

 
2.1. Cellular Automata and Pedestrian Simulation 
This paper focuses on modification to the 
implementation of Schadschneider’s (Schadschneider 
2002) cellular automata model of pedestrian dynamics.  
Cellular Automata (CA) models use logical rules and 
stochastic processes to define pedestrian motion. CA 
models divide a pedestrian‘s movement space into a 
defined number of identically sized cells, usually in a 
rectangular grid. Each grid cell has a finite number of 
states; with pedestrian models this is generally occupied 
or unoccupied. At a specified time step (generation) the 
state of the each cell is determined by some function 
using inputs from a neighborhood of surrounding cells. 
 Pedestrian movement over the grid is represented 
by either by sizing the lattice to allow for only one 
individual per cell or by tracking cell density. 
Movement between cells is based on a matrix of 
preferences (transition rules) that determines the state of 
individual grid cells at each generation. The matrix of 
preferences and neighborhood of cells are processed by 
a global transition function that defines cell state, the 
same function applies to all cells in the lattice. CA 
models have the advantage of being able to simulate the 
dynamics of large crowds in less than real time due to 
their discrete nature.  

 
2.2. Floor Field Approach to CA 
Schadschneider (2002) proposed a CA floor field 
approach that models pedestrians as elementary 
particles, fermions.  They react to their immediate 
neighborhood with long-range interactions modeled 
through the use of mediating particles called bosons. In 
particle physics all elementary particles are composed 
of either bosons or fermions - fermions (pedestrians) 
resist being placed near each other and bosons (virtual 
traces) do not. Pedestrians are fermions thus unable to 
occupy the same cell (hard-core exclusion principle) 
and bosons model the virtual traces left behind by the 
pedestrians as they move over the grid. More than one 
boson is able to occupy the same cell, so the virtual 
trace and pedestrians are handled separately. 
 Pedestrian ‘intelligence’, by which we mean their 
choice of movement direction, is modeled through the 
use of floor fields. Each grid cell has attributes 
associated with either a dynamic or static floor field. 
The dynamic floor field changes with each time step as 
a function of the density and diffusion of bosons. The 
static floor field remains constant and represents and 
defines the attraction to exits and the location of 
obstacles.  
 
The general formula for this CA model is 
 

exp( ) exp( )(1 )k kd sp NM D S nij ij ij ij ij= −  (1) 

 
In this formula 

1. pij is the probability the pedestrian will move 

to a neighboring cell. 
2. N is a normalization factor ensuring that 

pij∑  = 1. 

3. Mij is the pedestrian’s matrix of preferences. 

4. Dij is the dynamic floor field value. 

5. Sij  is the static floor field value. 

6. ijn  = 1 if the cell is occupied. 

7. sk and dk  are coupling factors for the floor 
field. 

 
The sequence of updates for this model is as follows: 
 

1. Update the dynamic floor field based on 
diffusion and decay rules. 

2. Calculate transitional probabilities ( ijp ) for 

each pedestrian. 
3. Choose pedestrian‘s target cell. 
4. Resolve conflicts if two pedestrians target the 

same cell. 
5. Execute pedestrian movement. 
6. Alter dynamic floor field based on rules (i.e. 

dropping bosons). 
 
3. CURRENT RESEARCH 
Though designed to simulate crowd dynamics we 
believe models of pedestrian motion can be applied as 
valuable additions to simulations of other processes.  In 
particular we feel that inclusion of explicit models of 
pedestrian motion may be beneficial in simulations of 
manufacturing processes such as walking worker 
production lines.  Simulating worker movement may 
result in more realistic production output estimates and 
provide greater insights into human factors that affect 
the production process. 
 
3.1. Need for Pedestrian Modeling in Industrial 

Manufacturing 
Simulations for job shop performance and layout have 
traditionally been solved mathematically as ‘static’ 
problems.  This allows for optimization techniques to be 
applied to production scheduling and job shop layout 
problems.  In reality job shops operate as dynamic 
systems with complex interactions between workers and 
machines (MacCarthy 2001).  Patterns of worker 
movement, the impact of shop-floor layout (local and 
global configurations) and presence of other workers in 
the manufacturing process have rarely been explored in 
job shop simulations. 
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 Walking worker production designs may 
potentially benefit from explicit simulation of worker 
(pedestrian) movement.  Under this method workers 
build a product completely from start to end.  Walking 
workers production designs provide flexibility in 
capacity as workers may be added or removed from the 
production line in response to the output demand. Two 
common types of walking worker production lines are: 
1) liner production lines where assembly operators 
travel along the line carrying out each assembly task at 
each workstation, and 2) fixed-position assembly lines 
where products are placed at fixed position workstations 
and assembly operators move between workstations. 
 Past simulations of walking worker production 
lines have assumed equal worker efficiency and 
movement times (Wang 2005).  Celano, Costa, Fichera, 
and Perrone (2004) used the critical worker concept and 
parameterized walking speeds to obtain more realistic 
simulation results for linear walking worker production 
line scenarios.  A critical worker is one who does not 
have enough space or time to complete their task within 
a workstation thus bringing production to a halt 
(Celano, Costa, Fichera, and Perrone, 2004).  Workers 
nearby who have free time and the correct skills are able 
to help critical workers and reduce stoppage times; 
however, simulation of this requires knowledge of 
worker location and thus the explicit modeling of 
worker positions. The worker’s position and walking 
speed within their workstation influences the possibility 
of their intervention to help a critical operator during a 
stoppage. 
 Position, movement, and route choices of the 
assembly operators also play a major role in the 
simulation of fixed workstation production lines.  
Figure 1 shows a process diagram for fixed workstation 
walking worker models. 
    

 
Figure 1 – Process Diagram for Assembly Operators 

 
At a minimum two of the process tasks (get tools, move 
to workstation) are significantly impacted by human 
factors of movement and are highly dynamic.  Inclusion 
of pedestrian movement models may also help identify 
bottlenecks caused by human factors association with 
position and movement, test the robustness of the 

production line design to handle the addition and 
subtraction of workers, and assist in the design of the 
production line, for example moving workstations that 
are likely to have critical worker stoppages to highly 
trafficked areas. 
 
3.2. Modifications to Pedestrian Model 
Our implementation of Schadschneider’s (2002) floor 
field CA model modifies the static floor field by 
splitting it into two fields: 1) one static field for 
obstacles and static environmental attraction and 
repulsion forces and 2) a second dynamic field which 
determines individual’s attraction towards a goal or 
point of interest for the individual.  Additionally we 
deviate from their homogeneous approach by allowing 
each agent to store its own representation of the 
dynamic field. This allows each individual pedestrian to 
change desired destinations based on the evolving 
environmental conditions. 
 Through this implementation individuals can be 
seen to adjust their movement and choose a new exit 
when conditions such as their inability to move forward, 
or the density at an exit becoming too large. 
Modifications of our technique to allow individuals to 
dynamically select exits based on environmental 
conditions allows for production line workers to shift 
between tasks and workstations as well as to go to 
workstations which need the most assistance. 
 Cellular automata models as discrete models are 
well suited for the inclusion of hierarchal rules sets that 
provide ‘intelligence’ to the simulated agents.  Using 
multiple static floor fields to describe the job-shop 
environment and use of hierarchal rule sets to determine 
agent (worker) objectives, we demonstrate a ‘proof-of-
concept’ that models of pedestrian motion can be 
integrated into production process simulations.  We do 
this by example using standard linear and fixed position 
job shop layouts for walking worker production lines.  
Our production line simulations are implemented in the 
UCF Crowd Simulation framework (available at 
http://www.simmbios.ist.ucf.edu/Research/DynamicHu
manBehaviors/Repository.aspx) built using the 
MASON library (Luke, Cioffi-Revilla, Panait, Sullivan 
and Balan, 2005). 
 
4. PRELIMANRY RESEARCH 
 
4.1. Comparison Job Shop Model 
The manufacturing system design used in this research 
was presented as an example of a Job Shop model in 
Law and Kelton (2000).  The job shop is modeled as a 
network of five-multiserver queues.  The system has 
five workstations with 3,2,4,3 and 1 identical 
machine(s) respectively.  Job inter-arrival times are 
identically individually distributed (IID) exponential 
random variables with a mean of 0.25 hour.  There are 
three job types that arrive with probability 0.3, 0.5, and 
0.2.  The jobs must be completed in a certain route 
order.  Table 1 shows the number of tasks and routing 
for each job type.  

Execute 
Task 

Get  
Tools 

Move to 
 Workstation

Get 
 Task 

Confirm 
 Task  

Competition 
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Table 1: Job tasks 
Job Type Workstation routing 

1 3,1,2,5 
2 4,1,3 
3 2,5,1,4,3 

 
If a job arrives at a workstation and all machines are in 
use the job joins the first-in-first-out queue for that 
workstation.  The time to perform the individual tasks 
that make up the overall job is an independent 2-erlang 
random variable with a mean based on job type and 
station.  Table 2 two defines the mean service times for 
tasks by workstation. 
 

Table 2: Task Service Times (Hours) 
Job Type Mean service times for tasks 

1 0.50, 0.60, 0.85, 0.50 
2 1.10, 0.80, 0.75 
3 1.20, 0.25, 0.70, 0.90, 1.00 

 
Law and Kelton (2000) used discrete-event simulation 
to model the system with arrival, departure, and end of 
simulation comprising the three possible event types.  
The code to run this model was copied from Law and 
Kelton (2000) and is written in C.  A significant feature 
of their implementation is that once a workstation task 
is completed the job is instantaneously transmitted to 
the next workstation to begin work or be added to that 
workstations queue.      
 
4.2. Pedestrian inclusion in Job Shop Model 
Law and Kelton’s (2000) job shop model was 
implemented in our crowd simulation framework so that 
we may explicitly model a walking workers movement 
as part of the job shops manufacturing process.  A 
simplified version of Schadschneider’s (Schadschneider 
2002) floor field model for pedestrian motion 
(described in section 2.2) was used to control worker 
motion.   The matrix of preference and dynamic floor 
field were excluded. 
 The matrix of preference is unnecessary as our 
crowd simulation framework recalculates the static floor 
field as waypoints change and the worker’s preference 
is always to go towards the waypoint.  The matrix of 
preference is generally used to override the static and 
dynamic floor fields when, for example, individuals 
‘get-stuck’ during evacuation simulations.  The 
dynamic floor field is used to model the tendency of 
individuals to follow one another and allows for the 
characteristic lane formation seen in crowd dynamics.  
For this application we felt this tendency to follow your 
predecessor’s footsteps was not needed.  The 
individuals are primarily driven by the location of the 
next workstation (waypoint).  Equation 2 shows the 
general formula for the equation of motion used in the 
pedestrian job shop model. 
   

exp( )(1 )ksp N S nij ij ij= −    (2) 

 

We assume that there are always enough workers to 
associate with arriving jobs and the distributions and 
means for job inter-arrival time and task service time 
are the same as those given in the Law and Kelton 
model (2000).  
 The workflow for our JAVA implementation of the 
model for individuals is shown in Figure 2.  
 

 
Figure 2: Flowchart for Worker Process 
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We do not queue workers by having them stand in line. 
Getting agents to self organize and maintain a formation 
is a problem not currently addressed in our crowd 
simulation framework.  Workers entering the queue are 
relocated to a cell just below the workstation (the 
queues are labeled in Fig. 3).  This is the only time that 
more than one individual is able to share the same cell.  
When a worker is removed from the queue they are 
placed at the original location they occupied before 
entering the queue.  Figure 3 shows workers moving 
between workstations. The workers that are touching 
workstations are engaged in the task.    
 

 
Figure 3: - Simulation Layout: Color Represents Job 

Type, Circles are Workers, Arrows are Routes 
 

SIMULATION RESULTS 
Law and Kelton’s discrete-event simulation and our 
Java based simulation were both run for 98 continuous 
hours.  Tables 3 and 4 show the summary results for 
Law and Kelton’s discrete-event simulation code using 
the parameter values given in section 4.1. 
 

Table 3: Law and Kelton: By Job Type (hours) 
Job Type Average total delay in queue 

1 10.41 
2 7.79 
3 11.04 

Overall average job total delay  =  9.23 
 

Table 4: Law and Kelton: By Workstation 
Work 
station 

Ave. # in 
queue 

Average 
utilization 

Ave. delay# 
in queue (hr) 

1 21.11 0.96 5.23 
2 8.4 0.96 4.04 
3 0.492 0.68 0.13 
4 6.56 0.92 2.43 
5 0.909 0.75 0.46 

 

Tables 5 and 6 show the summary results for our 
pedestrian and job shop model.  A total of 1397 workers 
completed their jobs during the 98 hour simulation.   

 
Table 5: Simulation 1: Job Type (hours) 

Job Type Average total delay in queue 
1 1.07 
2 1.75 
3 1.09 

Overall average job total delay  =  1.27 
 

Table 6: Simulation 1: By Workstation  
Work 
station 

Ave. # in 
queue 

Average 
utilization 

Ave. delay# 
in queue (hr) 

1 6.41 0.91 1.54 
2 16.42 0.96 1.05 
3 12.81 0.98 1.18 
4 7.49 0.94 2.48 
5 0.11 0.42 0.06 

 
5. ANALYSIS 
The results of the two simulations differ, our pedestrian 
and job shop simulations have lower overall job and 
workstation queuing delays.  The average numbers of 
individuals in the queues are within the same range but 
are ordered differently within the workstations.  While 
one simulation run cannot provide conclusive results the 
difference may be explained by two factors. First the 
variability in inter-arrival times and task service times 
due to the distributions used to obtain there values.  
Second the inclusion of the explicit worker movement.   
 The time it takes workers to move between 
workstations and find an open space so they may be 
next to the workstation (they only attach to workstation 
if they occupy a neighboring cell) is not included in 
their time in queue.  Their delay in queue is only 
calculated as the time workers actually enter the queue 
until the time they leave the queue.  Movement between 
workstations in Law and Kelton’s model is 
instantaneous thus it should be expected that queue 
delay times in their simulation would be somewhat 
higher.  
  Table 6 gives the minimum distances workers 
would have to travel along the different job routes.  The 
movement model is probabilistic so workers would 
rarely if ever take the most direct route.  Avoidance 
maneuvers (avoiding other people and obstacles) also 
increase the actual traveling distances and times for 
workers, who move at a velocity of 1.2m/s.  

 
Table 6: Travel Distance by Job (meters) 

Job Type Center to Center Distance 
1 59.02 
2 51.87 
3 81.6 

 
6. SUMMARY 
Our pedestrian motion model allows individuals to 
choose different paths on the fly. This allows for a 
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Workstation 

Queue 

Queue

Queue 

241



much greater application base wherein the CA models 
of pedestrian motion can be used. Dynamic destination 
choice allows for implementation of greater agent 
intelligence, giving them the ability to address resource 
needs and modifying movement to optimize workflows.  
Job shop workflow models previously done by discrete 
event simulations did not consider the dynamics of the 
assembly operator’s movements. This technique would 
allow workflow analysis to be done by not only 
considering the machinery processes being used, but the 
environment, the individual to individual interactions, 
and individual to workstation interactions which take 
place throughout the process. 
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