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ABSTRACT 

This paper proposes a Direct Adaptive Model 

Predictive Controller (DAMPC) with constraints that 

employs subspace identification techniques to directly 

identify and implement the controller. The direct 

identification of controller parameters is desired to 

reduce the design effort and computational load. The 

DAMPC method requires a single QR-decomposition 

for obtaining the controller parameters and uses a 

receding horizon approach to collect input-output data 

needed for the controller identification. The paper 

studies the effect of different horizon schemes, the 

stability robustness and compares the performance of 

the proposed control scheme when applied to a 

nonlinear process with that of a linear model 

predictive control scheme.  

 

Keywords: Subspace identification, Model predictive 

control, Adaptive control, Activated sludge process 

 

1. INTRODUCTION 

Adaptive controllers are traditionally derived from 

polynomial transfer function models. This paper 

demonstrates the use of subspace techniques to provide 

a state space based adaptive control technique for 

Model Based Predictive Control (MBPC) design.  

Subspace identification techniques have emerged as 

one of the more popular identification methods for the 

estimation of state space models from measurement 

data. Using these techniques, subspace matrices can be 

constructed and used to obtain prediction of the process 

outputs. These predictions can subsequently serve as a 

basis for model predictive controller design. By 

continuously updating these predictions models an 

adaptive predictive control method can be obtained.  

As an alternative to the two-step adaptive predictive 

control method that results when a model is explicitly 

estimated as shown in Fig.1, it is also possible to 

estimate the control parameters directly from the 

measurements. This direct adaptive control method was 

introduced by the adaptive control community in the 

early 70s (Åström and Wittenmark 1995) and has been 

widely deployed. Such algorithm combines system 

identification and control design simultaneously (see 

Fig.2).  

Some previous work has been reported on the design 

of MPC using subspace matrices such as model-free 

LQG and subspace predictive controller (Favoreel et al. 

1998; Favoreel et al. 1999; Kadali et al. 2003; H.Yang 

et al. 2005), or using the state space model identified 

through subspace approach (Ruscio 1997b, c;  X.Wang 

et al. 2007). The main result of (Favoreel et al. 1998, 

1999) is that the system identification and the 

calculation of controller parameters are replaced by a 

single QR decomposition. Although the idea of 

combination of subspace methods and MPC has been 

around for few years, designing an adaptive subspace 

MPC is still open to discussion. Previous development 

in subspace based constrained model predictive 

controllers (Kadali et al. 2002). In H.Yang et al. 2005, 

for example, considers an adaptive predictive control 

with sliding window, but does not include the 

constraints.   

 

 

 

 

 

 

 

 

 

Figure 1: Indirect Adaptive  Control 

 

  

 

 

 

 

 

 

 

Figure 2: Direct Adaptive Control 

 

Therefore, the objective of this paper is to develop 

subspace-based adaptive MPC with inclusion of 

constraint that can cope with mildly nonlinear 

processes. Other approaches for dealing with these 
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and neural network based MPC approaches. In practice, 
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however, linear MPC approaches tend to be favoured. 

Linear MPC approaches include linearization 

approaches, where a nonlinear model is linearized at 

each sampling instance (e.g. Krishnan and Kosanovich 

1998), and multiple model based approaches (for 

example see Narenda and Xiang 2000). Previous efforts 

in the area of adaptive predictive control have also seen 

the application of neural networks (Wang and J.Huang 

2002), however, due to the complexity and 

computational load typically associated with these 

methods they have made few inroads in practice.  

The proposed adaptive linear MPC method can offer 

an attractive alternative to existing predictive control 

methods for mildly nonlinear systems. The proposed 

method combines the simplicity of linear model 

predictive control with the power of a self-tuning. The 

main advantages of the proposed approach are that the 

usually tedious and time-consuming modelling task can 

be eliminated and that the controller can adapt to 

changing process conditions while the physical 

constraints are satisfied. 

The paper is organized as follows: In Section 2 we 

briefly recapitulate the main concepts of subspace 

identification and QR-decomposition. The proposed 

constrained subspace-based MPC approach is 

developed in Section 3. Section 4 introduces the 

adaptive MPC. Section 5 describes the application to a 

wastewater system. The comparison of different control 

strategies are also presented. The report ends with some 

conclusion. 

 

2. THE IDENTIFICATION METHOD 
A linear discrete time-invariant state space system can 

be represented as,  

 

)()()()1( kKekuBkAxkx +∆+=+    (1) 

)()()()( kekuDkCxky +∆+=    (2) 

 

where ∆u(k), y(k) and x(k) are the incremental inputs, 
outputs and states respectively and where e(k) is a white 

noise sequence with variance pq
T
qp SeeE δ=][ . The 

following matrix input-output equations (De Moor 

1988) play an important role in the problem treated in 

linear subspace identification: 
 

fifif UHXY +Γ=     (3) 

where data block Hankel matrices for u(k) 

represented as Up and Uf  are defined as: 
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where the subscripts p and f represent ‘past’ and 

‘future’ time. The same way, the outputs block Hankel 
matrices Yp and Yf can be defined.  i is the prediction 

(i=Hp) and j is receding window size, n respectively. 

The extended observability matrix, Γi and the lower 
block triangular Toeplitz matrix, Hi are defined as: 
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The linear predictor equation can now be defined as: 

 

fupwf ULWLY +=ˆ     (7)

  

where,  given of past inputs and outputs Wp and 

future inputs Uf , the problem of subspace identification 

can be expressed as the solution to the following 

squares minimisation problem: 
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The solution to (8) can be found by applying an 

orthogonal projection of the row space of Yf  into the 

row space spanned by Wp and Uf as: 
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The most efficient way to obtain this projection is 

by applying a QR-decomposition to (9): 
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By posing: 
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  where + denotes the Penrose-Moore pseudo-

inverse, equation (9) can be written as: 
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Then, Lw and Lu can be found from L using 

(written in Matlab notation): 

 

( )( )yuw NNiLL += :1:,             (13) 

( ) ( )( )yuyuu NNiNNiLL +++= *2:1:,         (14) 

 

 where Nu and Ny denote the number of input 
and output, respectively. 

 

3. MODEL PREDICTIVE CONTROL METHOD 

This section describes the combination of subspace 

identification and model predictive control. Note that 

the steps of identification and control design can be 
carried out simultaneously by applying a single QR-

decomposition to the input-output data. This stands in 

contrast to the design of conventional MPC controllers, 

where modelling and control design is usually distinctly 

separated tasks.  

 The model predictive control problem can in 
mathematical terms be expressed as the minimization of 
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 where Hp and Hc denote the prediction and control 
horizons, respectively. The output and input weighting 

matrices Q and R are assumed positive definite. By 

using the linear predictor in equation (7), rewrite the 

output sequence to include integral action in the 

predictor: 
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~
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previous identification of Lw and Lu while 
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Thus, for a k-step ahead predictor as: 

 

fupwtf uLwLyy ∆+∆+=
~~

ˆ               (17) 

and the current output is: 

[ ]T
tttt yyyy �=                            (18) 

  

By substitution of the new integrated linear predictor in 

equation (17) into the cost function J, differentiate it 

with respect to ∆uf and equating it to zero gives the 

control law: 
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Since only the first ∆uf (1) is implemented and the 

calculation is repeated at each time instant t, therefore 

given the input u(t) as: 
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3.1. Constraints  
The following constraints are considered, 
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Let 1−
+∆= kkk uuu , then from eq.(21) gives:  
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where R is a lower triangular unity matrix. Rewrite the 

constraint in the incremental inputs as: 
max
kk uu ∆≤∆  min

kk uu ∆−≤∆−              (23) 

and then combine those constraints into a single linear 

inequality: 
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This solution uses a standard QP optimization problem. 

QP is applied at every instant such that: 
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4. DIRECT ADAPTIVE MODEL PREDICTIVE 

CONTROL 

This section considers the online implementation of the 

subspace based model predictive controller. Two types 

of controllers are considered; one in which the subspace 

identification data is collected over a sliding (receding) 

window and one where the identification data is 

collected in batches. 

 

4.1. Sliding (receding) window  
The procedure of using a sliding window for 

identification is illustrated in Fig.3. The main advantage 

of this approach is that the controller parameters are 

updated each sample, which usually means a quicker 

response to process changes. The main drawback of this 

method is that a QR-decomposition needs to be 

computed each sample instance which increases the 

computation load. 
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Figure 3:  Sliding window for i=4 

 

4.2. Batch window 

In this windowing approach the control parameters are 

updated every n
th

 sample, where n is size of the 

identification window. Since a QR-decomposition is 

only needed every n
th sample the computational load 

requirements is lower for this method. The main 

drawback is that the method generally will respond 

slower to changing process conditions.  

 

5. SIMULATION STUDY 

To benchmark the proposed direct adaptive MPC 

control technique, it has been applied to an activated 

sludge processes. This process is comprised of an 

aerator and a settler as shown in Fig.4. The bioreactor 

includes a secondary clarifier that serves to retain the 

biomass in the system while producing a high quality 

effluent. Part of the settled biomass is recycled to allow 

the right concentration of micro-organisms in the 

aerated tank. A component mass balance that yields the 

following set of nonlinear differential equations was 

previously derived (Takács, I. et al. 1999) 
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Figure 4:  Activated Sludge Reactor 

 

where the state variables, X(t), S(t), C(t) and Xr(t) 

represent the concentrations of biomass, substrate, 

dissolved oxygen (DO) and recycled biomass 

respectively. D(t) is the dilution rate, while Sin and Cin 

correspond to the substrate and DO concentrations of 

influent stream. The parameters r and β represents the 

ratio of recycled and waste flow to the influent flow 

rate, respectively. The kinetics of the cell mass 

production is defined in terms of the specific growth 

rate µ  and the yield of cell mass Y. The term Ko is a 

constant. Cs and KLa denote the maximum dissolved 

oxygen concentration and the oxygen mass transfer 

coefficient, respectively. The Monod equation gives the 

growth rate related to the maximum growth rate, to the 

substrate concentration, and to DO concentration: 
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 where µmax is the maximum specific growth rate, Ks 

is the affinity constant and Kc is the saturation constant. 

In this simulation, two controlled outputs substrate (S) 

and DO and two manipulated inputs dilution rate (D) 

and airflow rate (W) are considered.  

 

5.1. The prediction horizons 
The prediction horizon and control horizons that have 

been employed in the simulations are Hp=35 and Hc=5. 

The prediction horizon weakly related to the length of 

the identification window, which in turn is directly 

related to the computational load of the controller (size 

of the QR decomposition). The computation time for 

batch window is 15 minutes, which is 5 minutes faster 

than sliding window. This is reasonable since that of   

sliding window updates the controller at each sample 

time, whilst batch updates at every n
th

 sample. A trade-

off between the length of the prediction horizon and the 

computational load of the controller must therefore be 

employed.  Moreover, the accuracy of predictor 

depends on the choice of prediction horizon length. In 

this instance the ‘best’ prediction horizon length was 

found by fixing the length of the identification window 

to n=400. Then several different prediction horizons 

where benchmarked and it was eventually found that 

Hp= 35 provided for the best performance. The 

weighting matrices were tuned using a trial and error 

approach, and eventually chosen as { }1000,10diagQ =  

and { }1,1R diag= .  

 Simulations were carried out for three different 

control strategies. The first two methods are those 

proposed in this paper, using a sliding identification 

window and batch identification window. The third 

strategy employs a non-adaptive linear MPC controller.  

 The simulation ran from a steady-state operating 

point at outputs S=41.23mg/l, D=6.11mg/l and inputs 

D=0.08 1/h and W=90m
3
/h. The set point given for the 

outputs were allowed to vary approximately 10% 

around the system’s steady state condition. The 

constraint on the input was given as 10.02 0.15u≤ ≤  

and 20 300u≤ ≤  whilst constraint on the input changes 
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were allowed to 10.01 0.01u− ≤ ∆ ≤  and 25 5u− ≤ ∆ ≤ . 

Fig.5 shows the setpoint tracking for sliding window 

approach under different constraints on the input 

change, u∆ . For the sliding window1 is 

1 20.01; 5u u∆ ≤ ∆ ≤ , whilst sliding window2 is 

1 20.001; 3u u∆ ≤ ∆ ≤ .  It can be seen that smaller the 

magnitude of the maximum allowed input changes, 

more sluggish is the controller response to setpoint 

changes. Fig.6 compares the setpoint tracking 

performance of the three control strategies with the 

input constraints denoted above and constraints on the 

input changes, ( 1 20.01; 5u u∆ ≤ ∆ ≤ ). The sliding 

window approach converges quickly whilst the batch 

approach takes somewhat longer to converge. The 

proposed sliding window algorithm also demonstrates 

less interaction than the other two and good tracking 

properties. The linear MPC shows an overshoot to 

setpoint change.  

 Fig.7 shows the performance of control when the 

measurements of substrate and DO are corrupted with 

step input (Amp=0.001) disturbance at t=1750. It can be 

seen that the performances deteriorate then able to track 

back to the setpoint quickly. The linear MPC shows 

large peak of disturbance on substrate measurement 

compare to the subspace MPC. Though batch window 

present the lowest interaction on substrate output due to 

disturbance, it converge slowly compare to sliding one. 

The measurement of DO given by sliding window and 

linear MPC was slightly same compared to batch 

window which is much slower. The stability test has 

been performed by simulation. The open loop poles are 

0.1360;0.9924;0.8180;0.7727. Table 1 evaluated the 

closed loop poles for different levels of setpoint in 

substrate measurement. (see Fig.7) 

 

Table 1: Closed loop poles for a different setpoint 

SP A 0.1769 0.4898 0.9885 0.8297 

SP B 0.2217 0.3087 0.985 0.8297 

SP C 0.1552 0.5273 0.9884 0.8290 

 

It can be seen that the closed loop system remains stable 

for the setpoint changes. Similar conclusions can be 

obtained as in the second output DO.   
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Figure 5: Different constraint case on input changes 

6. CONCLUSION 

In this paper, the design of model predictive controller 

from subspace matrices in a framework of adaptive 

controller is addressed and successfully applied to an 

activated sludge process. The subspace based model 

predictive controller using sliding window approach is 

shown to be more efficient and robust for both outputs 

than that of batch approach and a linear MPC controller 

when applied to a mildly nonlinear process.  
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Figure 6: The comparison of control performance (set point tracking)
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Figure 7: The comparison of control performance with input disturbance at t=1750 
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