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ABSTRACT 
The definition of a generic algorithm model for 
representing arbitrary heuristic optimization algorithms 
is one of the most challenging tasks when developing 
heuristic optimization software systems. As a high 
degree of flexibility and a large amount of reusable 
code are requirements that are hard to fulfill together, 
existing frameworks often lack of either of them to a 
certain extent. To overcome these difficulties the 
authors present a generic algorithm model not only 
capable of representing heuristic optimization but that 
can be used for modeling arbitrary algorithms. This 
model can be used as a meta-model for heuristic 
optimization algorithms, enabling users to represent 
custom algorithms in a flexible way by still providing a 
broad spectrum of reusable algorithm building blocks. 
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1. INTRODUCTION 
In the last decades a steady increase of computational 
resources and concurrently an impressive drop of 
hardware prices could be observed. Nowadays, very 
powerful computer systems are found in almost every 
company or research institution revealing a processing 
power one could only dream of a few years ago. This 
trend opens the door for attacking complex optimization 
problems from various domains that were not solvable 
in the past. Concerning problem solving methodologies 
especially heuristic algorithms are very successful in 
that sense, as they provide a reasonable compromise 
between solution quality and required runtime. 

In the research area of heuristic algorithms a broad 
spectrum of optimization techniques has been 
developed. In addition to problem-specific heuristics, 
particularly the development of meta-heuristics is a very 
active field of research as these algorithms represent 
generic methods that can be used for solving many 
different optimization problems. Thereby a huge variety 
of often nature inspired archetypes has been used as a 
basis for developing new optimization paradigms like 
evolutionary algorithms, ant systems, particle swarm 

optimization, tabu search, or simulated annealing. 
Several publications show successful applications of 
such meta-heuristics in various problem domains. A 
recent overview is for example given in (Doerner, 
Gendreau, Greistorfer, Gutjahr, Hartl, and Reimann 
2007). 

Today, this broad spectrum of different algorithmic 
concepts makes it more and more difficult for 
researchers to compare new algorithms with existing 
ones to show advantageous properties of some new 
approach. As most research puts a focus on one 
particular heuristic optimization paradigm, comparisons 
with other algorithms are often not quite fair and 
objective. In many cases a thoroughly optimized 
algorithm containing cutting-edge concepts is compared 
with standard and non-optimized algorithms of other 
paradigms representing research know-how that is 
several years old. 

One of the reasons for these difficulties is that 
there is no common model for heuristic optimization 
algorithms in general that can be used to represent, 
execute and compare arbitrary algorithms. Many 
existing software frameworks focus on one or a few 
particular optimization paradigms and miss the goal of 
providing an infrastructure generic enough to represent 
all different kinds of algorithms. 

In this paper the authors try to overcome this 
problem by shifting the layer of abstraction one level 
up. Instead of trying to incorporate different heuristic 
optimization algorithms into a common model, a 
generic algorithm (meta-)model is presented that is 
capable of representing not only heuristic optimization 
but arbitrary algorithms. By this means the model can 
be used for developing custom algorithm models for 
various optimization paradigms. Furthermore, by 
considering aspects like parallelism or user interaction 
on different layers of abstraction the presented 
algorithm model can serve as a basis for development of 
a next generation heuristic optimization environment 
that can be used by many researchers to rapidly develop 
and fairly compare their algorithms. 
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2. EXISTING SOFTWARE SYSTEMS FOR 
HEURISTIC OPTIMIZATION 

Today, modern concepts of software engineering like 
object-oriented or component-oriented programming 
represent the state of the art for creating complex 
software systems by providing a high level of code 
reuse, good maintainability and a high degree of 
flexibility and extensibility (Johnson and Foote 1988). 
However, such approaches are not yet established on a 
broad basis in the area of heuristic optimization, as this 
field is much younger than classical domains of 
software systems (like word processing, spread sheets, 
image processing, or integrated development 
environments). Most systems for heuristic optimization 
are one man projects and are developed by researchers 
or students to realize one or a few algorithms for 
attacking a specific problem. Naturally, when a 
software system is developed mainly for personal use or 
a very small, well known and personally connected user 
group, software quality aspects like reusability, 
flexibility, genericity, documentation and a clean design 
are not the primer concern of developers. As a 
consequence, these applications still suffer from a quite 
low level of maturity seen from a software engineering 
point of view. 

In the last years and with the ongoing success of 
heuristic algorithms also in commercial areas, the 
heuristic optimization community started to be aware of 
this situation. Advantages of well designed, powerful, 
flexible and ready-to-use heuristic optimization 
frameworks were identified and discussed in several 
publications like (Voß and Woodruff 2002; Jones, 
McKeown, and Rayward-Smith 2002; Gagne and 
Parizeau 2006). Furthermore, some research groups 
started to head for these goals and began redesigning 
existing or developing new heuristic optimization 
software systems which were promoted as flexible and 
powerful black or white box frameworks available and 
useable for a broad group of users in the scientific as 
well as in the commercial domain. In comparison to the 
systems available before, main advantages of these 
frameworks are on the one hand a wide range of ready-
to-use classical algorithms, solution representations, 
manipulation operators and benchmark problems which 
make it easy to jump into the area of heuristic 
optimization and to start experimenting and comparing 
various concepts. On the other hand a high degree of 
flexibility due to a clean object-oriented design makes it 
easy for users to implement custom extensions like 
specific optimization problems or algorithmic ideas. 

One of the most challenging tasks in the 
development of such a general purpose heuristic 
optimization framework is the definition of an object 
model representing arbitrary heuristic optimization 
paradigms. On the one hand this model has to be 
flexible and extensible to a very high degree so that 
users can integrate non-standard algorithms that often 
do not fit into existing paradigms exactly. On the other 
hand this model should be very fine granular so that a 
broad spectrum of existing classical algorithms can be 

represented in form of algorithm modules. These 
modules can then serve as building blocks to realize 
different algorithm variations or completely new 
algorithms with a high amount of reusable code. 

One main question is on which level of abstraction 
such a model should be defined. A high level of 
abstraction leads to large building blocks and a very 
flexible system. A lower level of abstraction supports 
reusability by providing many small building blocks, 
but the structure of algorithms has to be predefined 
more strictly in that case which reduces flexibility. 

Taking a look at several existing frameworks for 
heuristic optimization, it can be seen that this question 
has been answered in quite different ways. For example, 
in the Templar framework developed by Martin Jones 
and his colleagues at the University of East Anglia 
(Jones, McKeown, and Rayward-Smith 2002) a very 
high level of abstraction has been realized. In Templar 
each algorithm is represented as so-called engines. 
Although, the framework supports distribution, 
hybridization and cooperation of engines, no more fine 
granular representation of algorithms is considered. 
Therefore, when a new algorithm with just a slight 
modification of an existing one is required, the engine 
of the existing algorithm has to be copied and modified 
leading to code duplication and less maintainability. 

As another example the HotFrame framework 
developed by Andreas Fink and his colleagues at the 
University of Hamburg (Fink and Voß 2002) provides a 
very low level of abstraction. HotFrame contains a large 
amount of generic C++ classes that can be put together 
to represent an algorithm. However, in that way the 
basic algorithm model is more strictly predefined 
forcing users to fit their custom algorithms into that 
class structure. Furthermore, due to the complexity of 
the model the framework also suffers from a quite steep 
learning curve. 

Obviously neither a high nor a low level of 
abstraction is able to fulfill both, a high degree of 
flexibility and reusability of code, as these two 
requirements can be considered as mutually exclusive. 

 
3. GENERIC ALGORITHM MODEL 
In order to overcome this problem the authors decided 
to use a different approach. Instead of trying to develop 
an algorithm model representing all different kinds of 
heuristic optimization algorithms, a generic algorithm 
(meta-)model inspired by classical programming 
languages is presented in this paper. This model is 
generic enough to represent not only heuristic 
optimization techniques but all different kinds of 
algorithms in general. 

On top of this generic algorithm model more 
specific models for representing heuristic optimization 
algorithms can be defined. These specific models do not 
have to be hard-coded in a framework though, but can 
be defined on the user level. A large variety of different 
algorithm models can be realized, opening the door for 
each user to either reuse an existing one or to create an 
own model if necessary. By shifting the model one 
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layer up, users do not need to fit custom algorithms into 
a single fixed model but can fit the model itself to their 
needs in order to be able to represent their algorithms. 

From an abstract point of view an algorithm is a 
sequence of steps (operations, instructions, statements) 
describing manipulation of data (variables) that is 
finally executed by a machine (or human). 
Consequently, these three aspects (data, operators and 
execution) represent the core components that have to 
be represented by the model and are considered in the 
following sections. 

 
3.1. Data Model 
In classical programming languages variables are used 
to represent data values manipulated in an algorithm. 
Variables link a data value with a (human readable) 
name and (optionally) a data type so that they can be 
referenced in the statements and instructions 
manipulating the data. This concept is also taken up in 
the data model. A variable object is a simple key-value-
pair containing a name (represented as a string) and a 
value (an arbitrary object). The data type of a variable's 
value doesn't have to be fixed explicitly but is given by 
the type of the value itself. 

In a typical heuristic optimization algorithm a lot 
of different data values and consequently also variables 
are used. Hence, in addition to data values and variables 
special objects called scopes are needed for variable 
management to keep a clear structure. Each scope can 
hold an arbitrary number of variables. To access a 
variable in a scope the variable name is used as an 
identifier, so each variable has to have a unique name in 
each scope it is contained. 

In the domain of heuristic optimization hierarchical 
structures are very common. For example, in terms of 
evolutionary computation, an environment contains 
several populations, each population contains 
individuals (solutions) and these solutions may consist 
of different solution parts. Furthermore, hierarchical 
structures are not only very suitable in the area of 
heuristic optimization but in general are used to 
assemble complex data structures by combining simple 
ones. As a consequence it is quite reasonable to 
combine scopes in a hierarchical way to represent such 
layers of abstraction. Each scope may contain any 
number of sub-scopes leading to an n-ary tree structure. 
For example one scope representing a set of solutions 
(population) may contain several other (sub-)scopes 
representing the solutions themselves. 

When retrieving a variable from a scope this 
hierarchical structure of scopes is also taken into 
account. If a variable (identified by its name) is not 
found in a scope, the variable lookup mechanism 
continues searching for the variable in the parent scope 
of the current scope. The lookup is continued as long as 
the variable is not found and as long as there is another 
parent scope left (i.e. until the root scope is reached). 
Consequently, each variable in a scope is also "visible" 
in all sub-scopes of that scope. However, if another 
variable with the same name is added in one of the sub-

scopes, it hides the original one (due to the lookup 
procedure). Note that this behavior is very similar to 
scopes in classical programming languages. That is also 
the reason why the name "scope" was chosen. 

Based on this abstract representation of data, the 
next section describes operators which are applied on 
scopes to manipulate data. Therefore, operators 
represent the fundamental building blocks of 
algorithms. Due to the hierarchical nature of scopes 
operators may be applied on different abstraction levels 
leading to several essential benefits concerning 
parallelization discussed later on. 

 
3.2. Operator Model 
Regarding to the definition of an algorithm, the next 
topic to be defined are steps. Each algorithm is a 
sequence of clearly defined, unambiguous and 
executable instructions. These atomic building blocks of 
algorithms are called operators and are of course also 
considered as objects in a generic algorithm model. In 
analogy to classical programming languages these 
operators can be seen as statements that represent 
instructions or procedure calls. 

In general, operators fulfill two major tasks: On the 
one hand an operator can access and manipulate a 
scope's variables or sub-scopes and on the other hand an 
operator may define the further execution flow (i.e. 
which operators are executed next). To support 
genericity of operators and to enable reuse, operators 
have to be decoupled from concrete variables. For that 
reason a mechanism is used that is similar to procedure 
calls. 

As an example consider a simple increment 
operator that increases the value of an integer variable 
by one. Inside the operator it is defined that the operator 
is expecting a variable of a specific type (in our case an 
integer) and how this variable is going to be used. When 
implementing an operator, formal names are used to 
identify variables but these formal names do not 
correspond to any real variable name. The concrete 
variable remains unknown until the operator is applied 
on a scope. By this means an increment operator can be 
used to increment any arbitrary integer variable. When 
adding an operator to an algorithm the user has to define 
a mapping between the formal variable names used 
inside the operator and the real variable names that 
should be used when the operator is finally executed. 
When a variable is accessed by the operator the 
variable's formal name is automatically translated into 
the actual name, which is then used to retrieve the 
variable from the scope. As a consequence meta-
information has to be provided by an operator to declare 
on which variables the operator is going to work on. 
This information is represented by objects called 
variable infos that can be added to each operator. 
Additionally, the user can access these variable infos to 
set the actual variable names. In analogy to classical 
procedure calls variable infos can therefore be 
interpreted as parameter lists of operators. 
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In order to build complex algorithms, operators are 
combined to a sequence of operations. Each operator 
contains arbitrary many references to other operators 
(sub-operators) representing the static structure of an 
algorithm. When an operator is executed it can decide 
which operators have to be executed next. In that way 
designated control operators can be built that do not 
manipulate data but dynamically define the execution 
flow. For example, a sequence of operators can be 
specified using an operator that just returns all its sub-
operators as the next operators to be executed. Another 
example would be a branch operator that is choosing 
one of its sub-operators as the next operator depending 
on the value of some variable contained in the scope the 
operator is applied on (cf. an if- or switch-statement in 
classical programming languages). In contrast to scopes, 
operators do not form a hierarchical structure (although 
contained operators are called sub-operators) but are 
combined in a graph. In other words an operator that 
has already been used in some upper level can be added 
as a sub-operator again leading to cycles in operator 
references. In combination with sequences and branches 
this concept can be easily used to build loops or any 
other form of control structures known from classical 
programming languages. For example, a do-while-loop 
can be realized as a sequence operator containing a 
branch operator as its last sub-operator. This branch 
operator can contain a reference back to the sequence 
operator as its sub-operator defining the branch 
executed if the condition holds. 

As a result, it is possible to represent concepts 
known from classical (procedural) programming 
languages in the operator model (sequences, branches, 
loops). It is therefore capable of representing arbitrary 
algorithms and of course especially heuristic 
optimization algorithms. 

 
3.3. Execution Model 
The last aspect to be considered is execution of 
algorithms. Represented as operator graphs algorithms 
are executed step by step by virtual machines called 
engines. In each iteration an engine performs an 
operation which is applying an operator on a scope. 
Therefore, an operation represents a tuple of an operator 
and the scope the operator should be applied on. At the 
beginning of each algorithm execution an engine is 
initialized with a single operation containing the initial 
(root) operator of the algorithm and an empty scope (i.e. 
the global scope). 

As the program flow is dynamically defined by 
operators themselves, each operator may return one or 
more operations after its execution that have to be 
executed next. As a consequence engines have to keep 
track of all operations waiting for execution. These 
pending operations are kept in a stack. In each iteration 
an engines pops the next operation from the top of its 
stack, executes the operator on the scope and pushes the 
returned successor operations in reverse order back on 
the stack again (reversing the order is necessary to 
maintain the execution sequence as a stack is a last-in-

first-out queue). By this means engines perform a 
depth-first expansion of operators. A pseudo-code 
representation of the main loop of engines is shown 
below: 

 
clear global scope 
clear operations stack 
push initial operation 
 
WHILE NOT operations stack is empty DO BEGIN 
  pop next operation 
  apply operator on scope 
  push successor operations 
END WHILE 

 
As a summary of the generic algorithm model 

consisting of the three parts described in the previous 
sections (data model, operator model, execution model), 
figure 1 gives the main identified components and 
shows the corresponding interactions. 

 

 
Figure 1: Generic algorithm model 

 
4. PARALLELISM 
In many real world applications of heuristic 
optimization performance is of crucial importance. 
Therefore, concepts of parallel and distributed 
computing have to be used frequently to utilize multiple 
cores or even computers (clusters) and to distribute the 
work load. In the parallel heuristic optimization 
community several models of parallelization have been 
developed reflecting different strategies. In general 
these models can be categorized in two main 
approaches: 

On the one hand quality calculation can be 
considered for parallelization. For many optimization 
problems the computational effort required for 
calculating the quality of a single solution is much 
higher than the effort needed by solution manipulation 
operations. Consider for example heuristic optimization 
in the area of production planning or logistics. In that 
case evaluating a solution is done by building a 
schedule of all jobs or vehicles available whereas 
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manipulation of solutions is usually reduced to twisting 
of permutations (this depends on the solution encoding 
but variations of permutation-based encoding are 
frequently used for combinatorial optimization 
problems and have been successful in many 
applications). As another example heuristic 
optimization of data representation or simulation 
models can be mentioned as in these applications 
solution evaluation means executing the whole model 
(i.e. performing the simulation or checking the quality 
of the model for all training data). In both examples 
(and there are many more) executing the evaluation of 
solutions in parallel is a helpful approach (usually called 
global parallelization) (Alba 2005). However, the 
heuristic algorithm performing the optimization by 
creating new and hopefully better solutions remains a 
sequential one. 

On the other hand parallelization can also be 
considered for heuristic optimization algorithms directly 
(Alba 2005). By splitting solution candidates into 
distinct sets, these sets can be optimized independently 
from each other and therefore in parallel. For example 
parallel multi-start heuristics are simple representatives 
of that concept. In that case multiple optimization runs 
are executed with different initial solutions to achieve a 
broader coverage of the search space. No information is 
exchanged between solution sets until the end of the 
optimization. In more complex approaches exchange of 
information from time to time is additionally used to 
keep the search process alive and to support 
diversification of the search (coarse- or fine-grained 
parallel genetic algorithms, e.g.). In general, population-
based heuristic optimization algorithms are very well 
suited for this kind of parallelization as multiple 
populations can be used as distinct sets and no 
additional splitting of solutions is necessary. 

By separating the definition of parallelism in 
algorithms from the concrete way how a parallel 
algorithm is executed, users of heuristic optimization 
software systems can focus on algorithm development 
without having to rack their brains on how 
parallelization is actually done. If the basic algorithm 
model already supports parallelism, all different kinds 
of parallel algorithms can be modeled enabling also the 
implementation of these different parallelization 
strategies used in heuristic optimization discussed 
above. 

The generic algorithm model discussed in this 
paper follows a strict separation of data, operations and 
algorithm execution. As a consequence introducing 
parallelism can be done quite easily by grouping 
operations into sets that are allowed to be executed in 
parallel. As an operator may return several operations to 
be executed next, it can mark this group of successor 
operations as a parallel group. This signals the engine 
that some operations are independent from each other 
and the engine is now free to decide which kind of 
parallel processing should be used for their execution. 
How parallelization is actually done depends on the 
engine only. For example, one engine can be developed 

that doesn't care about parallelism at all and executes an 
algorithm still in a sequential way (which is especially 
helpful for testing algorithms before they are really 
executed in parallel). Another engine might use multiple 
threads to execute operations of a parallel group 
(exploiting multi-core CPUs) or an even more 
sophisticated engine might distribute parallel operations 
to several nodes in a network following either a client-
server-based or a peer-to-peer based approach (utilizing 
cluster or grid systems). Also meta-engines are possible 
that use other engines for execution which enables 
hybrid parallelization on different levels (for example 
distributing operations to different cluster nodes on a 
higher level and using shared-memory parallelization on 
each node on a lower level). As a consequence the 
parallelization concept used for executing parallel 
algorithms can simply be specified by the user by 
choosing an appropriate engine the algorithm is 
executed on. The algorithm itself doesn't have to be 
modified at all. 

Based on this parallelization concept the generic 
algorithm model allows development of special control 
operators for parallel algorithms. For example, parallel 
execution of operators can be realized by an operator 
very similar to the sequence operator already discussed 
in the previous section. The only difference is that in the 
parallel case the operator has to mark its successor 
operations containing all its sub-operators and the actual 
scope as a parallel group. Furthermore, the hierarchical 
structure of scopes enables data partitioning in a very 
intuitive way. As an example consider a sub-scopes 
processor which returns a parallel group of operations, 
containing an operation for each of its sub-operators 
being executed on one of the sub-scopes of the current 
scope. By this means parallelization can be applied on 
any level of scopes leading to global, fine- or coarse-
grained parallel heuristic algorithms. 

 
5. LAYERS OF USER INTERACTION 
As the generic algorithm model described in the 
previous sections is not dedicated to heuristic 
optimization but can represent arbitrary algorithms, it 
offers a very high degree of flexibility. Operators 
representing a broad spectrum of actions ranging from 
trivial increments or variable assignments to complex 
selection or manipulation techniques can be used as 
building blocks for algorithm development leading to a 
high degree of code reuse. Furthermore, also custom 
operators can be integrated easily, if the set of 
predefined operators provided by a framework is not 
sufficient. 

However, such a low level of abstraction is not 
reasonable for many users as even the representation of 
simple algorithms results in quite large and complex 
operator graphs. Therefore, several layers of user 
interaction are required that represent different degrees 
of abstraction. 

Such layers can be realized on top of the generic 
algorithm model by using combined operators that 
encapsulate operator graphs (i.e. algorithms) and 
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represent more complex operations. In that case the 
generic algorithm model serves as a meta-model for 
heuristic optimization algorithms. An important aspect 
is that combined operators are not hard-coded in a 
framework but can be developed and shared on the user 
instead of the development level. 

For example, users can provide combined 
operators representing ready-to-use heuristic 
optimization algorithms (like a canonical genetic 
algorithm, simulated annealing, hill climbing, tabu 
search, or particle swarm optimization) that can be used 
as black box solvers. By this means other users can start 
working with specific algorithms right away without 
having to worry about how an algorithm is structured in 
detail. 

In between predefined solvers and the generic 
algorithm model, arbitrary other layers can be realized 
representing various (user-specific) heuristic 
optimization models. For example, generic models of 
specific heuristic optimization algorithm flavors 
(evolutionary algorithms, local search algorithms, etc.) 
can be represented by a set of operators useful to enable 
experimenting with these paradigms without putting the 
burden of the whole complexity and genericity of the 
basic algorithm model on users. 

In figure 2 this layered structure of user interaction 
is shown schematically. As all these layers use the same 
algorithm model as their basis, users are free to decide 
which level of abstraction is adequate for their needs. 

 

 
Figure 2: Layers of iser interaction 

 
6. CONCLUSION 
In this paper the authors presented a generic model for 
heuristic optimization algorithms. Compared to other 
models known from existing heuristic optimization 
software frameworks, the main advantage of the 
proposed solution is a higher level of abstraction. By 
considering the three main aspects of algorithms in 
general (data, operators and execution), a generic model 
was developed that is not only capable of representing 
heuristic optimization techniques but can be used for 
modeling arbitrary algorithms. 

By this means the model can act as a meta-model 
which enables users to incorporate custom heuristic 
optimization paradigms and algorithms in a flexible 
way. As the burden of a single and fixed representation 
trying to cover all different kinds of heuristic 
optimization concepts is removed, users are free to 
realize custom models built on top of the generic 
algorithm model that exactly fit their needs. 

Furthermore, aspects like parallelism or user 
interaction on different layers of abstraction have been 
considered, showing that the described model is suitable 
for developing a new generation of heuristic 
optimization software systems. 
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