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ABSTRACT 
The paper uses modelling and simulation means to 
design a convenient control system for an exothermic 
semi-batch reactor used for tanning waste recovery. It is 
shown that this highly nonlinear system can be 
successfully controlled by a relatively simple fixed 
controller designed in a robust way. The systematic 
polynomial approach with some results from the robust 
control theory are fruitfully exploited for the goal in this 
paper. First, a simplified mathematical model of the 
process with all physical parameters and technological 
limits is presented. Further, a complete procedure of 
control system design including system identification, 
controller design, robustness analysis and simulation 
verification are described in detail. 

 
Keywords: semi-batch reactor, modelling, robust 
control, simulation 

 
1. INTRODUCTION 
Modelling and simulation tools play an important role 
in many fields of our lives nowadays and their 
significance grows with the accessibility and potential 
of computer technology. As it is often simpler, cheaper, 
safer and less time consuming than real-time 
experiments the modelling and simulation 
methodologies are widely used also in industry. The 
exploitation can range from, e.g. analyses of system 
behaviour in the pre-production and production phase, 
examination of different (often dangerous) conditions of 
the process to e.g. operators training. The basics of 
process modelling and simulation can be found in e.g. 
books (Wellstead 1979; Ljung and Torkel 1994; 
Ogunnaike and Ray 1994 Severance 2001). Chemical 
reactors are essential parts of many industrial processes 
and their analysis and design is therefore of special 
interest, e.g. (Froment, Bischoff, and Wilde 2010). As 
experiments with chemical reactors are expensive, time-
consuming and even dangerous the modelling and 
simulation tools are widely used also in this field 
(Ingham et al. 2000; Dimian 2003). 

In this paper modelling and simulation tools are 
fruitfully utilised to design a suitable control system for 
a semi-batch reactor used for the tanning waste recovery 
(Macků 2004). The waste comes from the tannery 
industry where the process of leather-to-hide conversion 

takes place. It contains chromium chemicals with 
negative impact on the environment problematic to 
recycle. One approach to deal with this tanning waste is 
the enzymatic hydrolysis which separates the chrome 
from protein in the form of the chromium filter cake 
(Kolomazník et al. 1996). Control oriented simulation 
analysis of the semi-batch reactor used for this process 
can be found in e.g. (Gazdoš and Macků 2009). This 
reactor is successfully controlled by means of predictive 
and adaptive control in works (Sámek and Macků 2008; 
Novosad and Macků 2011). In this contribution it is 
shown that the process can be controlled by a relatively 
simple fixed-parameters controller designed in a robust 
way. The controller is designed using the polynomial 
approach, e.g. (Kučera 1993; Hunt 1993; Grimble and 
Kučera 1996) and some results form the robust control 
theory (Zhou et al. 1995; Bhattacharyya, Chapellat, and 
Keel 1995; Morari and Zafirou 1989; Grimble 2006). 
Most of the steps are performed with the help of 
modelling and simulation tools, namely the 
MATLAB/Simulink environment. 
 
2. PROCESS DESCRIPTION 
The chromium sludge from the tannery industry is 
processed in a semi-batch chemical reactor sketched in 
Fig.1 by an exothermic chemical reaction with chrome 
sulphate acid. All the variables and symbols appearing 
in this figure and further in the paper are clearly defined 
in Table 1. 
 

 
Figure 1: Chemical Reactor Scheme 

 
During the reaction a considerable quantity of heat 

is developing so that reaction control is necessary. 
In the beginning the reactor contains initial filling 
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pm [kg] given by the solution of chemicals without the 
chromium sludge (filter cake). This is fed into the 
reactor by [kg/s] to control the developing heat 
since the temperature has to stay under a certain critical 
level ( ) otherwise the reactor could be 
destroyed. The reaction is cooled by the water flow  
inside the reactor jacket. The goal is to utilise the 
maximum capacity of the reactor to process the 
maximum amount of waste in the shortest possible time 
(higher temperature is desirable). Therefore an optimal 
control strategy has to find a reasonable trade-off 
between these opposite requirements on the operation 
temperature. 

FKm�

( ) 100T t C°≺

vm�

 
Table 1: Reactor Variables 

Symbol Meaning Value [unit] 

A  Pre-exponential 
factor 219.6 [s-1] 

FKa  Chromium sludge 
mass concentration [-] 

FKc  Chromium sludge 
specific heat capacity 4400 [J.kg-1.K-1] 

Rc  
Specific heat 

capacity of the 
reactor content 

4500 [J.kg-1.K-1] 

vc  Coolant specific heat 
capacity 4118 [J.kg-1.K-1] 

E  Activation energy 29968 [J.mol-1] 
rHΔ  Reaction heat 1392350 [J.kg-1] 

k  Reaction rate 
constant [s-1] 

K  Conduction 
coefficient 200 [J.m-2. K-1.s-1] 

m  Total mass in the 
reactor [kg] 

Pm  Initial filling 1810 [kg] 

vm�  Coolant mass flow 1 [kg.s-1] 

FKm�  Chromium sludge 
mass flow 0÷3 [kg.s-1] 

vRm  Coolant mass 220 [kg] 
R  Gas constant 8.314 [J.mol-1.K-1] 
S  Heat transfer surface 7.36 [m2] 

T  Temperature in the 
reactor [K] 

vT  Coolant temperature [K] 

FKT  Chromium sludge 
temperature 

293.15 [K] = 20 
[°C] 

vpT  Input coolant 
temperature 

288.15 [K] = 15 
[°C] 

 
Constants presented in the table were obtained 

analytically, experimentally, estimated or taken from 
the literature; for details see (Macků 2004). 

 

2.1. Mathematical Model 
A simplified mathematical model of the reactor was 
suggested in (Macků 2004). It was further refined and 
analysed for control purposes in e.g. (Gazdoš and 
Macků 2009). The model is described by the following 
four nonlinear ordinary differential equations:  

 

 ( )FK
dm m
dt

=� t  (1) 

 ( ) ( ) ( ) ( )FK FK FK
dm k m t a t m t a t
dt

= + ⎡⎣ ⎦� ⎤  

 
( ) ( )

( ) ( ) ( ) ( )

FK FK FK r FK

v R

m c T H k m t a t
dK S T t T t m t c T t
dt

+ Δ =

= − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣

�

( ) ( ) ( )

⎦

( )v v vp v v v v vR v v
dm c T K S T t T t m c T t m c T t
dt

+ − = +⎡ ⎤⎣ ⎦� �  

 
where all the used variables and symbols are clearly 
defined in Table 1. 

The first equation in the model expresses the total 
mass balance of the chemical solution in the reactor. 

The second equation represents the chromium 
sludge mass balance where the expression 

( ) ( )FKk m t a t  defines the chromium sludge extinction 
by the chemical reaction. Here,  is the reaction rate 
constant expressed by the Arrhenius equation (2):  

k

 

 ( )
E

RT tk Ae
−

=  (2) 
 

The third equation describes the enthalpy balance. 
The input heat entering the reactor in the form of the 
chromium sludge is expressed by the term , 
the heat arising from the chemical reaction is given by 
the expression 

FK FK FKm c T�

( ) ( )r FKH k m t a tΔ  and the heat 
transmission through the reactor wall is expressed by 
the formula ( ) ( )vK S T t T t−⎡ ⎤⎣ ⎦ . 

The last equation describes coolant heat balance. 
The input heat is given by , the heat entering 
the coolant by the reactor wall is expressed by 

v v vpm c T�

( ) ( )vK S T t T t−⎡ ⎤⎣ ⎦ , the heat going out with the coolant 

is described as ( )v v vm c T t�  and the heat accumulated in 

the double wall describes the last term ( )vR v vm c T t′ . 
Variables  are manipulated 

signals, however, practically only  and  are 
usable. The temperature change of  or  is 
inconvenient due to the economic reasons (great energy 
demands). 

, , ,FK v FK vpm m T T� �

FKm� vm�

FKT vpT

 
2.2. Initial Conditions and Technological Limits 
Initial conditions for the reactor model are defined as: 
( )0 1810kgpm m= =  (initial reactor filling), 
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( )0 0FKa =  (initial mass concentration of the 

chromium sludge in the reactor), = 
50°C (initial temperature of the reactor filling) and 
initial coolant temperature = 20°C. 

( )0 323.15KT =

( )0 293.15KvT =
Maximum filling of the reactor is limited by its 

volume to the value of  approximately. 
Then the process of feeding by the chromium sludge 

 has to be stopped. The feeding can be practically 
realized in the range 

2450 kgm <

FKm�
0;3FKm ∈� kg.s-1. As stated in the 

process description, the temperature cannot exceed the 
limit  which holds also for the coolant 
(water). 

( ) o100 CT t ≺

 
3. CONTROL SYSTEM DESIGN 
Present control strategy of the introduced semi-batch 
reactor uses only the chromium sludge mass flow  
as the main manipulated variable to control the process 
dynamics. As explained in the process description 
section, the goal is to process the maximum amount of 
the waste in the shortest possible time while 
maintaining the process quantities within the defined 
limits. Main critical variable is the temperature in the 
reactor which has to stay under the limit of 100°C 
during the whole process. Therefore the controlled 
variable is the temperature inside the reactor 

FKm�

( )T t  and 
the manipulated variable is the chromium sludge mass 
flow . Consequently, from the control theory point 
of view the process can be seen as a single input – 
single output (SISO) system. 

FKm�

 
3.1. Approximate Linear Model 
Based on the works (Gazdoš and Macků 2008; Gazdoš 
and Macků 2009) it is possible to approximate the 
nonlinear process by the following linear transfer 
function:  

 

 ( ) ( )
( )( )

1 0
2

1 2 1 0

1
1 1

sk s b s b
G s

T s T s s a s a
τ + +

= =
+ + + +

, (3) 

 
where sk  is the process gain, τ , ,  are time-
constants of the numerator and denominator and “

1T 2T
s ” is 

the complex Laplace variable. Then among the transfer 
function coefficients the following relations hold:  

 

 
( ) ( )

( ) ( ) ( )
1 1 2 0 1 2

1 1 2 1 2 0 1 2

; ;

; 1
s sb k T T b k T T

a T T T T a T T

τ= =

= + = ;
. (4) 

 
This model arises from the linearization of the 

nonlinear model (1) in a general operating point and 
neglecting the minor terms. Parameters sk , τ , ,  
and consequently also coefficients {

1T 2T

} 0,1;i i ib a =
 of this 

model are changing in time and are functions of the 
reactor operating conditions. In the time-domain, the 

approximate model (3) can be expressed using the step-
function as:  

 

 ( ) ( ) ( )1 2
1 2 1 2

1 2

t t
T Tsk

h t T T T e T e
T T

τ τ
− −⎡ ⎤

⎢ ⎥= − + − + −
⎢ ⎥−
⎣ ⎦

. (5) 

 
3.2. Identification of the Approximate Linear Model 
Using the simulation means, as a response to different 
operating conditions of the reactor (changes in the 
manipulated variable ) the following possible 
intervals of the model parameters were obtained:  

FKm�

 

 
[ ] [ ]
[ ] [ ]1 2

82; 540 ; 650; 8293 ;

202; 9536 ; 734; 6601 ;
sk C s kg

T s T s

τ∈ ° ⋅ ∈ −

∈ ∈

s
,(6) 

 
or for the coefficients { } 0,1;i i ib a =

:  

 

 

1

5 4
0

4
1

8 7
0

0.1715; 0.1219

1.069 10 ; 2.637 10

2.937 10 ; 5.10 10

1.980 10 ; 7.499 10 .

b

b

a

a

− −

− −

− −

∈ −

∈ × ×

∈ × ×

∈ × ×

3  (7) 

 
These intervals were obtained using the identification of 
the step-responses of the nonlinear model (1) to 
different changes of the input signal . For the 
identification the approximate linear model described 
by (3), (5) was employed and standard MATLAB 
functions for nonlinear regression were applied. It is 
necessary to say that all the simulated step-responses 
were well-fitted by this approximate model. Several 
records of the simulated step-responses of the nonlinear 
reactor model (1) are presented in Fig. 2 to show the 
complex dynamics of the process. Here the simulations 
were performed only until the limits of the reactor were 
reached (maximum capacity or temperature, see section 
2.2 for details). 

FKm�

 

 
Figure 2: Limited Step-responses of the Reactor Model 
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From the results it is obvious that the system is 
highly nonlinear changing its dynamics significantly 
with gain from tens to hundreds and time-constants 
from several minutes to several hours. In addition the 
process can behave as a non-minimum phase system in 
some conditions (time-constant τ  and consequently the 
coefficient  can become negative). These properties 
class the process generally as difficult to control by 
conventional fixed parameters controllers (e.g. the 
wide-spread PI or PID regulators). 

1b

A nominal process model used for the further 
control system design is based on the middle values of 
the uncertainty intervals of its parameters (6)-(7). 
Therefore it takes the form:  

 

 
( ) 1 0

2
1 0

2 4

2 3
2.479 10 1.372 10

2.698 10 3.849 10

b s b
G s

s a s a

s
s s

−

− −

+
= =

+ +

− × + ×
=

+ × + × 7

−
. (8) 

 
This model is used for the further controller 

design, however, the resultant control system has to 
work properly for the whole range of the parameters 
uncertainty intervals (6)-(7). This is ensured by useful 
tools from the robust control theory (Morari and Zafirou 
1989; Zhou et al. 1995) presented further in this work.  

 
3.3. Controller Design – Theoretical Framework 
For the control system design the classical control set-
up of Fig. 3 is considered where G  denotes the 
controlled process – the reactor in our case, C  stands 
for the designed controller and the signals , , ,  
describe the reference (set-point), control error, control 
input and controlled variable respectively. Signals  
and  represent general disturbances. 

w e u y

uv

yv
 

 
Figure 3: Control System Configuration 

 
The process can be approximated by the transfer 

function (3) with the nominal values (8) as described in 
the previous section:  

 

 
( ) ( )

( )
1 0

2
1 0

2

2 3
2.479 10 1.372 10

2.698 10 3.849 10

b s b s b
G s

a s s a s a

s
s s

−

− −

+
= = =

+ +

− × + ×
=

+ × + ×

4

7

−
. (9) 

 

Further, the controller  can be also described by 
a transfer function (10) with 

C
( )q s , ( )p s  coprime 

polynomials satisfying (11).  
 

 ( ) ( )
( )

q s
C s

p s
=  (10) 

 ( )deg deg ( )p s q≥ s  (11) 
 

Requirements for the control system are 
formulated as stability, asymptotic tracking of the 
reference signal, disturbances attenuation and inner 
properness. Besides these the system has to be robust in 
order to cope with the real nonlinear plant (not only 
with the adopted nominal linear model) and possible 
disturbances. 

From the scheme of Fig. 3 and assuming (9), (10) 
it is easy to derive following relationships between the 
controlled variable  (  in the complex domain) 

and input signals ,  and  (

y ( )Y s

w uv yv ( )W s , ( )uV s  and 

( )yV s  similarly); the argument “ s ” is in these formulas 
omitted somewhere to keep them more compact and 
readable):  

 

 

( ) ( ) ( )

( )

( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
1 ,

1

,

,

.

u

y

u

y

u y

u u y

G C GY s W s V s
G C G C

V s
G C

b q b pY s W s V s
a p b q a p b q

a p V s
a p b q

b q b p a pY s W s V s V s
d d d

Y s T W s S V s S V s

⋅
= ⋅ + ⋅ +

+ ⋅ + ⋅

+ ⋅
+ ⋅

⋅ ⋅
= ⋅ + ⋅

⋅ + ⋅ ⋅ + ⋅
⋅

+ ⋅
⋅ + ⋅

⋅ ⋅ ⋅
= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

+ (12) 

 
Here, the symbol  defines the characteristic 

polynomial of the closed-loop given generally as:  
d

 
 a p b q d⋅ + ⋅ = . (13) 
 

Symbols , ,  denote important transfer 
functions of the loop known as the sensitivity function, 
complementary sensitivity function, and input 
sensitivity function respectively. The sensitivity 
function  further helps to make the designed control 
system robust. 

S T uS

S

Similarly, it is straightforward to derive the 
formula (14) for the control error:  

 

 ( ) ( ) ( ) ( )u y
pE s a W s b V s a V s
d
⎡ ⎤= ⋅ − ⋅ − ⋅⎣ ⎦ . (14) 
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3.3.1. Control System Stability 
From (12) it is clear that the control system of Fig. 3 
will be stable if the characteristic polynomial ( )d s  
given by (13) is stable. This Diophantine equation, after 
a proper choice of the stable polynomial , is used 

to compute unknown controller polynomials 
( )d s

( )q s , 

( )p s . Sometimes it is useful to require also so called 
strong stability which guarantees also stability of the 
designed controller, i.e. stability of the polynomial 
( )p s  in (10). As the controlled process is nonlinear 

with possible non-minimum phase behaviour and the 
suggested design methodology relies on the 
approximate linear model only, the strong stability 
condition is also considered in this work for safety 
reasons. 

 
3.3.2. Asymptotic Tracking of the Reference Signal 

and Disturbances Attenuation 
Let us assume that the reference signal  is a step 
function, defined in the complex domain as:  

( )w t

 

 ( ) 0w
W s

s
= , (15) 

 
and, further suppose that disturbances , ( )uv t ( )yv t  can 
be also approximated by step-functions:  

 

 ( ) 0u
u

v
V s

s
= , ( ) 0y

y

v
V s

s
= . (16) 

 
Then substituting (15)-(16) into (14) yields:  
 

 ( ) 00 0 yu vw vpE s a b a
d s s s
⎛ ⎞

= ⋅ − ⋅ − ⋅⎜ ⎟
⎝ ⎠

, (17) 

 
which shows that in order to guarantee zero-control 
error in the steady-state, the denominator polynomial of 
the controller ( )p s  needs to be divisible by the “ s ”-
term. This will be fulfilled for this polynomial in the 
form:  

 
 ( ) ( )p s s p s= ⋅ � . (18) 
 

Then the controller (10) can be written as:  
 

 ( ) ( )
( )

q s
C s

s p s
=

⋅ �
, (19) 

 
and the Diophantine equation (13) defining stability will 
be:  

 
 . (20) a s p b q d⋅ ⋅ + ⋅ =�
 

3.3.3. Control System Inner Properness 
Inner properness of the control system is satisfied if all 
its parts (transfer functions) are proper. With regard to 
the proper approximate transfer function of the process 
(9), condition (11) and taking into account solvability of 
(13) it is possible to derive following formulae for 
degrees of the unknown polynomials ,  and :  q p� d

 
 ( )deg degq s a s= ( ) ,  

 ( ) ( )deg deg 1p s a s≥� − , (21) 

 ( ) (deg 2 degd s a s≥ ⋅ ) . 
 

Equalities are chosen in the formulas above in 
order to obtain the simplest controller structure 
satisfying the given requirements.  
 
3.3.4. Robust Setting of the Designed Loop 
In this work the control system design is based on the 
nominal linear model of the system in the form (8) with 
uncertainty intervals of its coefficients (7). These 
uncertainty intervals describe nonlinearities of the 
original nonlinear process model (1). In order to fulfill 
the requirements introduced in the previous sections not 
only for the nominal model but for the whole family of 
models given by the uncertainty intervals the robust 
control approach is fruitfully utilized, e.g. (Zhou et al. 
1995; Bhattacharyya, Chapellat, and Keel 1995; Morari 
and Zafirou 1989; Grimble 2006). 

A good measure of the control loop robustness is 
the peak gain of the sensitivity function frequency 
response (Skogestad and Postlethwaite 2005). The 
sensitivity function , see (12), is defined as:  S

 

 
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( )

1
1y

Y s
S s

V s G s C s

a s p s a s p s
a s p s b s q s d s

= = =
+ ⋅

⋅ ⋅
= =

⋅ + ⋅

, (22) 

 
and it describes the impact of output disturbance  on 
the process output ; moreover, it gives the relative 
sensitivity of the closed-loop transfer function 

yv
y

( )T s  to 
the relative plant model error. Therefore it can be 
utilized to make the control system robust. In this work 
this is done via tuning some of the closed loop poles – 
roots of the characteristic polynomial  (13). ( )d s

In order to ensure that the control system will be 
stable not only for the nominal model (8) but also for 
the original nonlinear model (1), i.e. the family of linear 
models given by uncertainty intervals (7) the concept of 
robust stabilization is employed. The Kharitonov’s 
theorem, e.g. (Bhattacharyya, Chapellat, and Keel 
1995), is a useful tool for this task. It enables to check 
stability of interval polynomials relatively simply. 
Therefore it is used further to check whether the 
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designed controller stabilizes the whole family of 
models given by the uncertainty intervals.  

 
3.4. Controller Design – Implementation 
Given the nominal model of the process (8) it is easy to 
derive a suitable controller structure using the formulas 
(21). The resultant controller has a form:  

 

 ( ) ( )
( ) ( )

2
2 1

1 0

q s q s q s q
C s

s p s s p s p
0⋅ + ⋅ +

= =
⋅ ⋅ ⋅ +� � �

, (23) 

 
hence, it is a real (filtered) PID controller. Its 
coefficients are obtained by a solution of the polynomial 
equation (13) for some stable characteristic polynomial 

. Therefore, the next task is to choose this 
polynomial which must be, according to (21), of the 4
( )d s

th 
order. Here it is suggested to have it in this simple form:  

 
 ( ) ( )4s+d s α= . (24) 
 

Although this simple choice limits possible 
behaviour of the designed loop it enables to tune the 
control loop simply using one parameter 0α ; . Having 
the prescribed behaviour of the loop given by the 
characteristic polynomial  (24), from (20) it is 
possible to derive following relationships between the 
unknown controller coefficients, known nominal model 
coefficients and the tuning parameter 

( )d s

α :  
 

 

1

01 1
2

20 1 0 1
3

1 10 0
40 0

101 0 0 0
401 0

60
0 0 4
0 0 0 0

p
pa b
qa a b b

b qa b
b q

α

α

α

α

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢⎢ ⎥ ⎢ ⎥ = ⎢⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

⎥
⎥ . (25) 

 
This matrix equation is used to compute the 

unknown controller coefficients for a chosen parameter 
0α ; . 
Dependence of the infinity norm H∞  (peak value) 

of the sensitivity function (22) upon the tuning 
parameter α  is depicted in Fig. 4.From the graph it is 
obvious that smaller values of the parameter α  close to 
zero result in very sensitive control system, i.e. non-
robust. A detail of the graph presented in Fig. 5 reveals 
a minimum point for 0.0008α �  leading to the most 
robust (least sensitive) control loop. Values in the left 
interval , especially those close to the 
zero value, result in very sensitive, i.e. non-robust 
control loop. Values higher than the minimum lead to 
relatively robust control loop, however, higher values of 
the parameter give rise to higher control action of the 
controller. Therefore one has to find a reasonable trade-
off between the robustness of the loop and limitations 

on the control input (manipulated variable  of the 
reactor). 

(0;0.0008α ∈ )

FKm�

 

 
Figure 4: Sensitivity Function Infinity-norm with α  

 

 
Figure 5: Sensitivity Function Detail 

 
Further computations using the Kharitonov’s 

theorem provide this interval 0.0005;0.0017α ∈  for 
the tuning parameter α  in which robust stabilization is 
ensured. In this interval, stabilization of the whole 
family of models given by the uncertainty intervals (7) 
is guaranteed, i.e. the designed controller will stabilize 
not only the nominal model (8) but all the models 
represented by the uncertainty intervals of its 
coefficients (7). Consequently it can be supposed that 
the controller will stabilize also the nonlinear process 
model (1) and the real plant. 

When checking the strong stability condition, i.e. 
also the controller stability, see section 3.3.1, one has to 
ensure that the controller coefficient 0p  in (23) is 
positive (since from (25) ). Further computations 
show that this condition is fulfilled for 

1 1p =
0.0006α ≥ . As 

a result, a “safe” interval for the tuning parameter is:  
 

 0.0006;0.0017α ∈ , (26) 
 
where both, robust stabilization and controller stability 
is ensured. 
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4. SIMULATION EXPERIMENTS 
Simulation experiments with the nonlinear model of the 
reactor (1) were performed with the help of the 
MATLAB/Simulink environment which offers both 
powerful computations and user-friendly simulation 
interface. 

 
4.1. Open-loop Responses 
Open-loop (without control) step-responses of the 
reactor are presented in the next figures, Fig. 6-9 
(Gazdoš and Macků 2009). They reveal complex 
dynamics of the process for different changes of the 
manipulated variable -  (chromium sludge mass 
flow) in the admissible interval: 

.     

FKm�

[ ] 10.05 0.1 0.5 1 3FKm k −⎡ ⎤= ⋅⎣ ⎦� g s

 

 
Figure 6: Total Mass Response 

 
The first figure shows increase of the total mass in 

the reactor for various input flow rates of the chromium 
sludge. The simulation reveals integrating, astatic 
behaviour limited to the defined max. capacity of the 
reactor, see section 2.2 for details. 

Next response presented in Fig. 7 reveals 
derivative behaviour of the chromium sludge mass 
concentration ( )FKa t  for various values of .     FKm�
 

 
Figure 7: Chromium Sludge Mass Concentration 
Response 

 

The response of Fig. 8 shows the temperature 
increase inside the reactor – it can be seen how the 
temperature rises as a result of the chemical reaction. 
The faster input flow rate of the chromium sludge, the 
faster reaction and temperature increase. Then, the next 
increase is limited by the restriction on the maximum 
possible mass in the reactor followed by gradual 
temperature fall. From the graph it is also clear that for 
the simulated range of  the temperature goes 
beyond the allowed limit  [°C] for higher 
values of , therefore the process needs to be 
controlled properly.     

FKm�

( ) 100T t ≺

FKm�

 

 
Figure 8: Temperature-in-the-Reactor Response 
 
A record of the coolant temperature is presented in 

Fig. 9. As can be seen from the graph, the temperature 
of the media for the whole range of  is not critical 
since water is used for the cooling (provided its defined 
flow rate 

FKm�

1vm =�  [kg/s] is ensured).     
 

 
Figure 9: Coolant Temperature Response 

 
4.2. Closed-loop Responses – Simulation of Control 
For the simulation of the reactor control, the reference 
value of the temperature was set as: ( ) 98w t = [°C] for 
safety reasons – the temperature in the reactor cannot 
exceed the limit of 100 [°C] as described in the section 
2.2, however higher temperature is desirable in order to 
process the maximum amount of waste in the shortest 
possible time-interval. 

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 66



A resultant controller for a chosen tuning 
parameter 0.0014α =  from the suggested range of 
robust stability and controller stability (26) has the 
following form: 
  
 ( ) ( )

2 50.0265 7.51 10 2.8 10
0.00356

s sC s
s s

− −+ × + ×
=

+

8

, (27) 

 
and provides the control response presented in Fig. 10-
12.     
 

 
Figure 10: Robust Control Response for 0.0014α =  

 
As can be seen form the first graph the control is 

stable with only a minor overshoot reaching and 
tracking the desired value relatively quickly. Next 
figure shows that the control action (manipulated 
variable ) is within the allowed limit 0÷3 [kg.sFKm� -1] 
during the whole process of control. The last graph, Fig. 
12 displays increase of the reactor total mass before 
reaching the maximum allowed capacity . 
Then the process of feeding by the chromium sludge 

 is stopped and after cooling of the reactor it is 
emptied and the process continues with a next batch.   

2450 kgm <

FKm�

 

 
Figure 11: Control Input Response for 0.0014α =  

 

 
Figure 12: Total Mass Response for 0.0014α =  
 
Next two graphs, Fig. 13-14 show the influence of 

the tuning parameter α  on the control process.  
 

 
Figure 13: Robust Control Response – Influence of the 
Tuning Parameter α  

 
It can be seen that its higher values speed-up the 

control process but result in higher overshoots and 
wider range of the manipulated variable . 
Therefore, in the real application one has to find a 
reasonable trade-off between the speed of the control 
response and particular process limitations. 

FKm�

 

 
Figure 14: Control Input Response – Influence of the 
Tuning Parameter α  
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Last three graphs show non-robust setting of the 

tuning parameter α  – out of the suggested range of the 
robust and controller stability (26). The first picture 
reveals poor control response with unacceptable 
overshoots and tracking. Next figure reveals that limits 
of the manipulated variable are reached very soon and 
therefore the control process does not work properly. 
Last figure shows the total mass increase in the reactor 
– in the first case ( 0.0003α = ) the reactor is soon filled 
up without the expected results of proper control. In the 
second case ( 0.0030α = ) it is not limited so early, 
however, as a result of control input limitation the 
control process also does not work properly. 

 

 
Figure 15: Non-robust Control Response 

 

 
Figure 16: Non-robust Control Input Response 
 

 
Figure 17: Non-robust Control – Total Mass Response 

 

4.3. Discussion of the Results 
Presented results confirm the need for robust control of 
the reactor when the control system design is based on 
the linear nominal model only. Another approach is 
adopted in the works (Sámek and Macků 2008; 
Novosad and Macků 2011) where predictive and 
adaptive control were applied to this reactor 
successfully, however, these control design 
methodologies are more complex and computationally 
demanding. The aim of this contribution was to show 
that this process can be also successfully controlled by a 
relatively simple (PID) fixed-parameters controller 
designed in a robust way. 

It can be expected that more complex choice of the 
characteristic polynomial (24) will provide even better 
responses and more robust control loops, however, for 
the cost of optimising not only one, but more, up to four 
poles of the characteristic polynomial. In this limited 
space it can be just added that two optimised parameters 
provided more robust control loop, however, the 
achieved response was very slow and consequently not 
suitable for the defined limits of this reactor control 
application.  

In this work the classcical control set-up of Fig. 3 
with one feedback controller was employed. Different 
control confugurations, e.g. with also feedworward part 
of the controller filtering the reference signal could help 
to reduce overshoots of the controlled variable and 
decrease the control action in order to stay in its defined 
limits. 

 
5. CONCLUSION 
This paper presents a simulation study of control system 
design for a semi-batch reactor used for tanning waste 
recovery. The complete procedure of control system 
design is shown in detail, including process modelling, 
identification, controller design and simulation 
verification. It is shown that this highly non-linear 
complex process can be successfully controlled by a 
relatively simple fixed-parameters controller designed 
in a robust way. For this purpose the polynomial 
approach and some useful tools from robust control 
theory were exploited. 

In this work, the process was controlled as a single 
input – single output (SISO) system only – the 
temperature in the reactor was controlled by means of 
the chromium sludge mass flow . It would be 
interesting and practically possible to include also the 
coolant mass flow  as the manipulated variable and 
treat this system as multi input – multi output (MIMO). 
It can be supposed that the achieved results could be 
even better. 

FKm�

vm�
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