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ABSTRACT 
The paper presents design and simulation results of 
nonlinear adaptive control of a tubular chemical reactor. 
The control strategy is based on factorization of the 
controller on an adaptive dynamic linear part and a 
static nonlinear part. The static nonlinear part is derived 
using simulated steady-state characteristics of the 
process and its subsequent inversion and approximation. 
The linear part consisting of two linear feedback 
controllers results from an approximation of nonlinear 
elements in the control system by an external linear 
model with recursively estimated parameters. The 
control law is derived via the polynomial approach and 
the pole placement method. 

 
Keywords: tubular chemical reactor, nonlinear model, 
external linear model, parameter estimation, pole 
assignment 

 
1. INTRODUCTION 
From the system theory point of view, tubular chemical 
reactors (TCRs) belong to a class of nonlinear 
distributed parameter systems. Their mathematical 
models are described by sets of nonlinear partial 
differential equations (PDRs). The methods of 
modelling and simulation of such processes are 
described eg.  in (Luyben 1989; Ingham et al. 1994).   

It is well known that the control of chemical 
reactors, and, TCRs especially, often represents very 
complex problem. The control problems are due to the 
process nonlinearity, its distributed nature, and, high 
sensitivity of the state and output variables to input 
changes. In addition, the dynamic characteristics may 
exhibit a varying sign of the gain in various operating 
points, the time delay as well as non-minimum phase 
behaviour. Evidently, the process with such properties 
is hardly controllable by conventional control methods, 
and, its effective control requires application some of 
advanced methods. 

An effective approach to the control of nonlinear 
processes utilizes methods of the nonlinear control (NC) 
in conjunction with linear adaptive control Several 
modifications of the NC theory are described  in e.g. 

(Astolfi et al. 2008; Vincent and Graham 1997). 
Especially, a large class of the NC methods exploits 
linearization of nonlinear plants, e.g. (Huba and Ondera 
2009), application of PID controllers, e.g. (Tan et al. 
2002; Bányász and Keviczky 2002) or  factorization of 
nonlinear models of the plants on linear and nonlinear 
parts, e.g. (Chyi-Tsong Chen1 et al. 2006; Vörös 2008; 
Sung and Lee 2004).  

In this paper, the TCR control strategy is based on 
application of the controller consisting of a static 
nonlinear part (SNP) and dynamic linear part (DLP). 
With respect to practical possibilities of a measurement 
and control, the mean reactant temperature is chosen as 
the controlled output, and, the coolant flow rate as the 
control input. The static nonlinear part is obtained from 
simulated steady-state characteristic of the TCR, its 
inversion, approximation and, subsequently, its 
differentiation. On behalf of development of the linear 
part, the SNP including the nonlinear model of the TCR 
is approximated by a continuous-time external linear 
model (CT ELM), e.g. (Dostál et al. 2009) with 
parameters estimated via corresponding delta model, 
see, e.g. (Middleton and Goodwin 1990; 
Mukhopadhyay et al. 1992; Stericker and Sinha 1993). 
The control system with two feedback controllers is 
used according to (Dostál et al. 2007). Resulting CT 
controllers are derived using the polynomial approach 
and the pole assignment method, e.g. (Kučera 1993). 
The simulations are performed on a nonlinear model of 
the TCR with a consecutive exothermic reaction. 

 
2. MODEL OF THE REACTOR 
An ideal plug-flow tubular chemical reactor with a 
simple exothermic consecutive reaction   in the liquid 
phase and with the countercurrent cooling is considered. 
Heat losses and heat conduction along the metal walls 
of tubes are assumed to be negligible, but dynamics of 
the metal walls of tubes is significant. All densities, heat 
capacities, and heat transfer coefficients are assumed to 
be constant. Under above assumptions, the reactor 
model can be described by five PDRs in the form 
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with initial conditions  
( ,0) ( )s

A Ac z c z= ,  ( ,0) ( )s
B Bc z c z= ,  ( ,0) ( )s

r rT z T z= ,  

( ,0) ( )s
w wT z T z= ,  ( ,0) ( )s

c cT z T z=  
and boundary conditions 

0(0, ) ( )A Ac t c t= (kmol/m3),  0(0, ) ( )B Bc t c t= (kmol/m3), 

0(0, ) ( )r rT t T t= (K),  ( , ) ( )c c LT L t T t= (K). 

Here, t is the time, z is the axial space variable, c 
are concentrations, T are temperatures, v are fluid 
velocities, d are diameters, ρ are densities, cp are 
specific heat capacities, U are heat transfer coefficients, 
n1 is the number of tubes and L is the length of tubes. 
The subscript (⋅)r stands for the reactant mixture, (⋅)w for 
the metal walls of tubes, (⋅)c for the coolant, and the 
superscript (⋅)s for steady-state values. 

The reaction rates and heat of reactions are 
nonlinear functions expressed as 

0 exp j
j j

r

E
k k

RT
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,   j = 1, 2 (6) 

1 1 2 2( ) ( )r r A r BQ H k c H k c= −Δ + −Δ  (7) 

where k0 are pre-exponential factors, E are activation 
energies, ( - ΔHr) are in the negative considered reaction 
entalpies, and R is the gas constant. 

The fluid velocities are calculated via the reactant 
and coolant flow rates as 
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The parameter values with correspondent units 
used for simulations are given in Table 1. 

From the system engineering point of view, 
out( , )A Ac L t c= , out( , )B Bc L t c= , out( , )r rT L t T=  and 

out(0, )c cT t T=  are the output variables, and, ( )rq t , 

( )cq t , 0 ( )Ac t , 0 ( )rT t and ( )c LT t  are the input 
variables. Among them, for the control purposes, the 
coolant flow rate can be taken into account as the 
control variable, whereas other inputs can be accepted 
as disturbances. The mean reactant temperature given 
by 

0

1( ) ( , )
L

m rT t T z t d z
L

= ∫  (9) 

is considered as the controlled output. 
The values of parameters and steady-state inputs 

used in simulations are in Table 1. 
 
Table 1: Parameters and Steady-State Inputs 

L = 8 m n1 = 1200 
d1 = 0.02 m d2 = 0.024 m 

d3 = 1 m 
ρr = 985 kg/m3 cpr = 4.05 kJ/kg K 
ρw = 7800 kg/m3 cpw = 0.71 kJ/kg K 
ρc = 998 kg/m3 cpc = 4.18 kJ/kg K 
U1 = 2.8 kJ/m2s K U2 = 2.56 kJ/m2s K 
k10 = 5.61⋅1016 1/s k20 = 1.128⋅1018 1/s 
E1/R = 13477 K E2/R = 15290 K 
(-ΔHr1) = 5.8⋅104 kJ/kmol (-ΔHr2) = 1.8⋅104 kJ/kmol

0 2.85s
Ac =  kmol/m3 

0 0s
Bc =  kmol/m3 

0 323s
rT = K 0 293s

cT = K 

0.15s
rq = m3/s 

 
3. COMPUTATION MODELS AND STEADY-

STATE CHARACTERISTICS 
For computation of  both steady-state and dynamic 
characteristics, the finite diferences method is 
employed. The procedure is based on substitution of the 
space interval  0,z L∈< >  by a set of discrete node 

points { }iz for i = 1, … , n, and, subsequently, by 
approximation of derivatives with respect to the space 
variable in each node point by finite differences. The 
procedure is in detail described in (Dostál et al. 2008).   

The dependence of the mean reactant temperature 
on the coolant flow rate in the steady-state is in Figure 
1.  In subsequent control simulations, the operating 
interval for qc has been determined as 

min max( )c c cq q t q≤ ≤  (10) 

With regard to the purposes of a latter steady-state 
characteristic approximation, the values cLq  and cUq   
are established that denote the lower and upper bound 
of s

cq  used for the approximation. Their values together  
with values in (10), and, to them corresponding 
temperatures are in Table 2. 
 
Table 2: Variables Used in Control and Approximation 

0.18c Lq =  min 0.2cq =  

346.66mUT =  
max 344.57mT =  

max 0.4cq =  0.42cUq =  

min 320.30mT =  319.80mLT =  
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Figure 1: Dependence of the Reactant Temperature on 
the Coolant Flow Rate in the Steady-State 

 
4. CONTROLLER DESIGN 
As previously introduced,  the controller consist of a 
static nonlinear part and a dynamic linear part as shown 
in Fig. 2. 
 

 y 
 w CONTROLLER 

u0 u
SNP DLP 

 
Figure 2: The Controller Scheme 

 
Here, the control input and the controlled output 
variables are considered in the form 

( ) ( ) s
c cu t q t q= − ,  ( ) ( ) s

m my t T t T= −  (11) 

The DLP creates a linear dynamic relation  
0 ( ) ( )mwu t T t= Δ  which represents a difference of the 

mean reactant temperature adequate to its desired value. 
Then, the SNP generates a static nonlinear relation 
betveen u0 and a corresponding increment (decrement) 
of the coolant flow rate.  
 
4.1. Nonlinear Part of the Controller 
The SNP derivation appears from a simulated or 
measured steady-state charasteristic. There, the 
coordinates on the graph axis are defined as 

10
s
c cL

cL

q q
q
−

γ = ,  s
m mLT Tξ = −  (12) 

where  
s

cL c cUq q q≤ ≤  (13) 

Expressions (12) lead to coordinates with the 
magnitudes in the same order. This property is useful 
for latter approximation. In term of the practice, it can 
be supposed that the measured data will be affected by 
measurement errors. The simulated steady-state 
characteristic that corresponds to reality is shown in 
Figure 3. 
Making the change of coordinates, the inverse of this 
characteristic can be approximated by a function from 
the ring of polynomial, exponential, rational, eventually, 
by other type functions. Here, the 
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Figure 3: Simulated Characteristics ξ = f(γ)  

 
polynomial approximate function has been found using 
the least square method in the form 

2 3

4 4 6 5

12.9516 1.9062 0.2151 0.01244

3.288 10 3.3535 10− −

γ = − ξ + ξ − ξ +

+ ⋅ ξ − ⋅ ξ
 (14) 

The inverse characteristic together with its polynomial 
approximation is in Figure 4. 
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Figure 4: Simulated Inverse Characteristics with 
Polynomial Approximation 

 
Now, a difference of the coolant flow rate 

( ) ( )cu t q t= Δ  in the output of the SNP can be computed 
for each mT  as 

0
( )

( ) ( ) ( )
m

c c L
T

du t q t q u t
d ξ

⎛ ⎞γ= Δ = ⎜ ⎟ξ⎝ ⎠
. (15) 

The derivative of  γ with respect to ξ  takes the form 

2

3 3 5 4

1.9062 0.4302 0.03732

1.3152 10 1.6768 10

d
d

− −

γ = − + ξ − ξ +
ξ

+ ⋅ ξ − ⋅ ξ
. (16) 

Its plot is shown in Figure 5. 
 
4.2. CT and Delta  External Linear Model of  

Nonlinear Elements 
A choice of the CT ELM structure does not stem from 
known structure of the model (1) – (5) but from a 
character of simulated step responses shown in Figure 
6.  

It is well known that in adaptive control a 
controlled process of a higher order can be 
approximated by a linear model of  a  lower order with 
variable parameters.  
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Figure 5: Derivative of γ with Respect to ξ 
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Figure 6: NPC + TCR Step Responses 

 
Taking into account profiles of curves in Fig. 6 with 
zero derivatives in t = 0, the second order CT ELM has 
been chosen in the form of the second order linear 
differential equation 

1 0 0( ) ( ) ( ) ( )y t a y t a y t b u t+ + =  (17) 

and, in the complex domain, as the transfer function 

0
2

1 0
( )

b
G s

s a s a
=

+ +
. (18) 

Establishing the δ operator 

0

1q
T

δ −=  (19) 

where q is the forward shift operator and T0 is the 
sampling period, the delta ELM corresponding to (17) 
takes the form 

2
1 0 0( ) ( ) ( ) ( )y t a y t a y t b u tδ δ′ ′ ′ ′ ′ ′ ′+ + =  (20) 

where t′ is the discrete time. When the sampling period 
is shortened, the delta operator approaches the 
derivative operator, and, the estimated parameters ,a b′ ′  
reach the parameters a, b of the CT model (17), (18). 

 
4.3. Delta Model Parameter Estimation 
Substituting 2t k′ = − , equation (20) can be rewriten to 
the form 

2
1 0 0( 2) ( 2) ( 2) ( 2)y k a y k a y k b u kδ δ′ ′ ′− + − + − = − . (21) 

Establishing the regression vector 

( )( 1) ( 2) ( 2) ( 2)T k y k y k u kδ δ− = − − − − −Φ  (22) 

where   

0

( 1) ( 2)( 2) y k y ky k
T

δ − − −− =  (23)  

the vector of delta model parameters 

( )1 0 0( )T k a a bδ ′ ′ ′=Θ  (24) 

is recursively estimated by the least squares method 
with exponential and directional forgetting (Bobál et al. 
2005) from the ARX model  

2 ( 2) ( ) ( 1) ( )Ty k k k kδ δδ ε− = − +Θ Φ  (25) 

where  

2
2

0

( ) 2 ( 1) ( 2)( 2) y k y k y ky k
T

δ − − + −− = . (26)  

 
4.4. Linear Part of the Controller 
The control system with two feedback controllers is 
depicted in Fig. 7. In the  scheme, w is the reference 
signal, v  denotes the load disturbance, e the tracking 
error, u0 output of controllers,  u   the   control  input  
and  y the  controlled output. The  transfer  function  
G(s) of the CT ELM is given by (18). The reference w 
and the disturbance v are considered as step functions. 
 

- -

v 

ew u u0 y 
 R CT ELM

Q

 
 
Figure 7: Control System with Two Feedback 
Controllers 
 
Both feedback controllers can be derived using the 
polynomial approach. The general requirements on the 
control system are formulated as its internal properness 
and stability, asymptotic tracking of the reference and 
load disturbance attenuation. The procedure to derive 
admissible controllers is presented in detail in e.g. 
(Dostál et al. 2005).  

Main results can  briefly be performed as follows: 
The transfer functions of resulting controllers that fulfil 
above requirements take forms 

2 1

0
2

2 1 0

0

( )( )
( )

( )( )
( ) ( )

q s qq sQ s
p s s p

r s r s rr sR s
s p s s s p

+
= =

+

+ +
= =

+

. (27) 

where polynomials q, r and p are obtained by a solution 
of polynomial equations 

( ) ( ) ( ) ( ) ( )a s s p s b s t s d s+ =  (28) 
( ) ( ) ( )t s r s s q s= +  (29) 
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where 0( )p s s p= +  and 2
2 1 0( )t s t s t s t= + + . 

Relations among coefficients of polynomials t, r and q  
are given as 

0 0r t= , 1 1 1r tβ= , 2 2 2r tβ= ,  

1 1 1(1 )q tβ= − , 2 2 2(1 )q tβ= −  (30) 

where 0,1i ∈β  are selectable coefficients distributing 
a weight between numerators of transfer functions Q 
and R.  
The controller parameters depend upon coefficients of 
the polynomial d. In this paper, the polynomial d with 
roots determining the closed-loop poles is chosen as 

2( ) ( ) ( )d s n s s α= +  (31) 

where 2
1 0( )n s s n s n= + +  is a stable polynomial 

obtained by spectral factorization 

( ) ( ) ( ) ( )a s a s n s n s∗ ∗=  (32) 

and α is the selectable parameter. 
Note that a choice of d in the form (31) provides the 
control of a good quality for aperiodic controlled 
processes.  
The coefficients n then are expressed as  

2
0 0n a= ,  2

1 1 0 02 2n a n a= + −  (33) 

and, the parameters p0 and t are given by a solution of 
the polynomial equation (28). 
Now, it follows from the above introduced procedure 
that tuning of controllers can be performed by a suitable 
choice of selectable parameters β and α. 
The controller parameters r and q can then be obtained 
from (30). 
The complete control system is shown in Figure 8. 
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Figure 8:  Complete Control System.  

 
 

5. SIMULATION RESULTS 
The control simulations were  performed in a 
neighbourhood of the operating point ( s

cq  = 0.27 

m3min-1, s
rT  = 324.8 K). For the start (the adaptation 

phase), the  DLP as a P controller with a small gain was 
used in all simulations. 

The effect of the pole α on the control responses is 

transparent from Figures 9 and 10. Here, on the basis of 
precomputed simulations, three values of α were 
selected. The control results show sensitivity of the 
output and the input signals to α. Obviously, careless 
selection of this parameter can lead to controlled 
outputs with overshoots and oscillations. Moreover, an 
increasing α leads to higher values and changes of the 
input signal. This fact can be important in control of 
some reactors where expressive input changes are 
undesirable.  
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Figure 9: Controlled Output Responses for Various α 
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Figure 10: Coolant Flow Rate Responses for Various α 
 
The controlled output responses documenting an effect 
of the parameter β1 are in Figure 11. There, a higher 
value of β1 speeds the control. 
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Figure 11: Controlled Output Responses: Effect of β1 
(β2 = 0) 

 
A comparison of the nonlinear adaptive control 

with the standard adaptive control without the nonlinear 
part can be seen in Fig. 12. The simulations were 
performed for α = 0.05. The responses document 
priority of the nonlinear control especially for greater 
changes of the reference signal. 
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Figure 12: Comparison of Nonlinear Adaptive Control 
(NA) with Standard Adaptive Control (A). 

 
6. CONCLUSIONS 
In this paper, one approach to the nonlinear continuous-
time adaptive control of the mean reactant temperature 
in a tubular chemical reactor   was  proposed.  The  
control  strategy  is based on a factorization of a 
controller into the linear and the nonlinear parts. A 
design of the controller nonlinear part employs 
simulated or measured steady-state characteristics of the 
process and their additional modifications. Then, the 
system consisting of the controller nonlinear part and a 
nonlinear model of the TCR is approximeted by a 
continuous time external linear model with parameters 
recursively estimated via corresponding delta model. 
The resulting linear part consist of two feedback CT 
controllers. Tuning of their parameters is possible by 
selectable parameters α and β. The presented method 
has been tested by computer simulations on the 
nonlinear model of the TCR.  
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