
BUSINESS PROCESS SIMULATION WITH IYOPRO AND DESMO-J

Philip Joschko, Johannes Haan, Tim Janz, Bernd Page

Department of Informatics, University of Hamburg, Germany

joschko@informatik.uni-hamburg.de, 6haan@informatik.uni-hamburg.de,

6janz@ informatik.uni-hamburg.de, page@informatik.uni-hamburg.de,

ABSTRACT

This paper describes how a BPMN model editor can be

extended with simulation capabilities. In cooperation

with Intellivate GmbH, which is the developer of the

editor IYOPRO, our working group has developed a

DESMO-J simulation library extension for simulating

business processes notated in Business Process Model

and Notation 2.0 (BPMN). We summarize our general

approach of extending BPMN models with simulation

properties and present, in more detail, problems and

best practices while integrating the simulation library.

Furthermore, we describe which information is needed

to enhance models for simulation purposes and which

experiment result can be expected.

Keywords: business process simulation, discrete event

simulation, modelling tools, BPMN 2.0

1. INTRODUCTION

1.1. Motivation
The documentation, analysis and optimization of

business processes are becoming increasingly important

for large and medium-size enterprises (see Komus

2011). Business Process Modelling (BPM) provides a

basis for communication on the processes within a

company. Building upon this, Business Process

Analysis enables improvement of efficiency, like

reducing costs or processing time. One applicable

method for optimizing processes is discrete event

simulation.

 For successful simulation experiments adequate

modelling and well-defined system boundaries are just

as necessary, as an entire data basis and knowledge

about the modelled system. Additionally, for efficient

modelling, a suitable tool is required that supports the

modeller in his work to create models. In a best-case

scenario, the business process modelling tool brings

along exhaustive simulation features.

 In a joint project with Intellivate Gmbh, which is a

business consultancy in Hamburg, Germany, we

integrated our simulation library DESMO-J (“Discrete-

Event Simulation and Modelling in Java”) into

Intellivate’s BPMN model editor IYOPRO (“Improve

your Processes”, www.iyopro.de). For this, we had to

enhance DESMO-J with the capability of simulating

business processes. This included the integration of the

code into the IYOPRO editor. Moreover, we developed

a model converter for generating DESMO-J models out

of IYOPRO BPMN models. In addition, we enhanced

the graphical user interface of IYOPRO for simulation

purposes, e.g. there are user controls for experiment

planning. Subsequently, the experiment results are

presented as diagrams like charts and histograms, in

order to provide an adequate communication base for

process analysis and decision making.

1.2. BPMN
In Business Process Modelling, a graphical modelling

notation is used to visualize production processes and

information flows. Some of the established and popular

notations for this purpose are BPMN, Event Process

Chains, or Unified Modeling Language (List et al. 2006,

Komus 2011). All these languages are based on a flow

chart representation, where activities are mapped as

nodes and the process flow is modelled by means of

edges. They differ in the number of given elements and

higher level modelling constructs as well as in degree of

formalization.

Figure 1: BPMN 2.0 example process

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 125

 BPMN 2.0 was standardized by the Object

Management Group in 2011 (White et al. 2011). BPMN

is characterized by a particularly high number of

elements (Allweyer 2009). Figure 1 shows a BPMN

model with two pools, four activities, two start and two

end events, an attached intermediate event, gateways,

sequence flows and a message flow. Apart from

different activities there are many specialized events for

sending and receiving messages, signals, errors,

compensations, termination and other functionalities.

Especially for cancelation events, the possibility of

attaching events to activities is a unique feature, which

is most practical for cancelation events. Different edge

types are distinguishing sequence, association and

message flows. While sequence flow describes the

processing order within an organizational unit, message

flows describe the interaction between different

processes (see Freund 2011, Wohed et al. 2006).

 BPMN does not offer any simulation characteristic

at all. Since in BPMN version 2.0, special attention has

been paid to feasibility, in order to run models in

Business process engines, it is generally possible, to

transform BPMN models into simulation models.

1.3. Simulation
Simulation is a modelling methodology for

investigating the dynamic runtime-behavior of a system.

Mostly, the stochastic state variation in time is recorded

and statistically evaluated. Simulation makes the

comparison of alternative system configurations

possible, without having to experiment with the actual

system and thus endangering the ongoing enterprise

scope.

 Not all potential influences on a system can be

detected nor modeled deterministically, e.g. the

execution time of an operation exported by a human

being is always subject to random fluctuations. This

affects all variables of a system. Typical examples are

order sizes, processing times or success probabilities.

Nevertheless, the realistic variability of such

characteristic factors can be indicated by means of

stochastic distributions. However, the use of stochastics

requires a sufficiently large number of simulation

experiments. Thus, only the aggregation of results of

several experiments will provide reliable information

about a system (Page and Kreutzer 2005).

 Simulating business process models provides

empirically founded comparisons of alternative possible

decisions, e.g. resource allocation or strategy

optimization. Regardless of the chosen modelling

notation, a business process model can be transformed

into a simulation model, if the model is enhanced with

some simulation specific properties. Particularly,

stochastic properties affect the duration of activities and

the interarrival time of events. The total cost of

activities, the number of concurrently running

processes, the duration of (sub-) processes, the length of

waiting queues and the probability for the occurrence of

specified events are also relevant topics. See section 4

for the entire result output of our simulation tool.

2. TOOLS

This section introduces the simulation library

DESMO-J and the BPMN 2.0 model editor IYOPRO.

2.1. Simulation Library DESMO-J

Simulation software can be distinguished into two main

types. On the one hand, there are integrated simulation

development environments, which support the

simulation study as a whole, including graphical model

editors, tools for data collection, experimentation

interfaces and support for statistical analysis and

evaluation. These are typically commercial software

tools that often focus on a specified domain. On the

other hand, there are simulation libraries that

concentrate on model implementation. They offer

maximum flexibility to the modeler but in the same

time require higher modelling skills. He/she needs

substantiated knowledge in simulation technology as

well as in pragramming, e.g. in object oriented

programming languages. Simulation libraries can act as

the core of an integrated simulation development

environment.

 DESMO-J (Discrete-Event Simulation and

Modelling in Java) is a simulation library for

developing discrete event simulation models (Banks

2010; Page and Kreutzer 2005) in the object-oriented

programming language Java. DESMO-J offers a

comprehensive simulation framework.

 There are several ready-to-use black box classes,

like a simulation clock, a scheduler or an experiment

class, encapsulating the experimentation infrastructure.

Further black box classes can be directly integrated into

the model. E.g. there are statistic classes for collecting

statistical data including counting, uniform or time-

weighted aggregated samples, determining confidence

intervals and generating histograms. A large set of

random number distributions can be used to describe

stochastic influences (see section 1.3). This set includes

Normal, Continuous Uniform, Triangular, Exponential,

Erlang, Discrete Uniform, Poisson and Geo

Distribution. Queue classes can be used to queue

entities, which are waiting for events like customer’s

arrivals.

 Apart from the black box components, there are

white box components, which have to be used to

implement the system’s behavior. These are abstract

Java classes, which have to be supplemented to describe

the system entities, i.e. there are events, processes,

entities and the model container itself. DESMO-J offers

mainly two simulation world views. In the process

oriented world view, the modeller describes the life

cycle of entities from a worm’s eye perspective. Within

this life cycle a process can be render existing processes

passive or reactivate them. In contrast, in the event

oriented world view, he/she describes the effect of

events from a bird’s eye perspective. This can mean the

manipulation of global model states or scheduling of

further events. DESMO-J does not enforce a decision

for either event or process modelling. The user is free to

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 126

combine both modelling styles. Beyond that DESMO-J

can also deal with transactions as well as activities.

 The expandability is an important aspect in using

DESMO-J. It is possible to extend it by additional class

libraries and the integration into software frameworks

or applications. Domain-specific extensions, which

provide objects for the particular domain, are developed

for DESMO-J to ease modelling and simulation in these

special application domains.

 Several commercial business process modelling

tools use DESMO-J as simulation engine, in order to

support such analysis. Unfortunately, we cannot provide

a complete list of software products including

DESMO-J, since institutions do not necessarily get in

touch with us if they use DESMO-J. Mostly, we find

out by coincidence that DESMO-J has been integrated

into a simulation suite. From our knowledge, DESMO-J

is a part of Tibco Business Studio, Borland Together,

eClarus Business Process Modeler for SOA Architects

and recently IYOPRO, our favorite in user friendliness.

2.2. IYOPRO
IYOPRO (Improve Your Process) is a BPM Suite for

modelling business processes, managing tasks and

human workflows. It supports the design and the

execution of business processes in a single application

with an ergonomic user interface. The BPMN 2.0

standard is used as modelling language for this purposes

and completely covered by IYOPRO. A validation

engine gives feedback on modelling errors, as non-

standard-conform combination of elements or missing

modelling information. IYOPRO includes a business

process execution engine, which enables the integrated

execution of well-defined processes. These processes

can interact with several tools, like user-forms for

entering data, or automated data import from external

systems. Process models are grouped with the help of a

solution explorer. IOYPRO can handle collaboration

diagrams, choreography diagrams, conversation

diagrams (these three diagram types are part of the

BPMN 2.0), process maps, organization diagrams, user

form definitions, and database schema definitions.

Solutions and projects can be stored in an online

repository, which supports collaboration capabilities as

version controlling and team access rules. Alternatively,

projects can be saved as XML-files on local hard drives.

As Silverlight application, IYOPRO is usable in

browsers but also as stand-alone application. It is also

available as Software as a Service application. There is

a free base version available online and professional

licenses are provided for advanced purposes.

3. EXTENDING BPMN 2.0 FOR SIMULATION

EXPERIMENTS
In this section we describe in detail what additional

information is required for a simulation of BPMN

models. None of these properties are part of BPMN 2.0

specification.

3.1. Duration of Activities

The most crucial components regarding the lead time of

business processes are the activities. Due to its nature,

an activity consumes time while being executed. We

call this the duration of an activity. This circumstance is

represented by applying a DESMO-J stochastic

distribution to an activity. Considering his needs the

user can parameterize one of the well-known

distributions to determine the duration of every activity.

Furthermore, it is also possible to apply definite points

in simulation time. This can be useful when modelling a

work schedule for human performers in an office.

3.2. Interarrival Time of Events

Similar to activities events have a high impact on the

lead time of business processes, due to waiting times

between receiving and sending events in particular.

Every time a start event is triggered a new process

instance will be created. Some start events are triggered

by the receiving of messages, signals, etc. They do not

need any further information to be set, because their

occurrence just depends on the corresponding sending

events and the interarrival time can be calculated

automatically. In contrast, general and timer start events

do not have corresponding sending events. Their

interarrival time results from stochastic distributions

that have to be set by the modeler just like the duration

of an activity described above. E.g. you have a process

that describes customer’s behavior in your online shop.

You can then describe customer’s arrival with the help

of a normal distribution (or any other of DESMO-J’s

distributions). You need at least one general or timer

start event in your simulation models. Most of the

processes that require general or timer start events

involve the receipt of an order.

3.3. Evaluation of Process Properties
Decisions within a process depend on conditions that

result from the input into the process, from global states

or from calculations during process run time.

Additionally, in simulation experiments, process

properties can depend on stochastic influences for

mapping non-deterministic influences. Examples for

such kind of additional information are order sizes,

priority ratings of customer’s inquiries or calculated

costs of optional activities. Which path is followed at

exclusive and inclusive gateways mostly depends on

such properties.

 Properties are represented by process variables,

which are composed of a name and a value. Only the

process instance itself has access to its variables, unless

the instance transported these values explicitly to the

outside.

These variables can be assigned or manipulated by

activities or by data objects attached to events. New

values can be recomputed by means of Python scripts,

which offers complex mathematical calculations and

program instructions like loops and if-conditions.

If a process instance needs information from

another, e.g. the warehousing needs information from

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 127

the sales section, local variables can be transferred in

messages between pools / process instances. They also

form the data basis for decision-making at conditional

(inclusive and exclusive) gateways. This is done by

evaluating the expressions on the outbound links of the

gateways (e. g. link_1: x==1; link_2: x>1).

Regarding the BPMN model in Figure 1 we have

got an exclusive gateway, which makes its decision

based on the simulation time (quitting time or not) and

on the accumulated time of pauses for a specific

employee.

We must pay attention here though: The IT

manager from the bottom pool can finish his or her

work activity either by accomplishing the working time

for the day or by receiving a message from the

employee / upper pool.

Based on the nature of coincidence however, it is

possible that the IT manager quits working for the day

and at the same (discrete simulation) time receives a

message from an employee and the employee’s pause

time is lower than his working time. If this happens,

there will be a DESMO-J error at run time. DESMO-J

will terminate this specific process instance and it will

add an entry in the error log regarding this particular

matter. (See section 4 for more information on the Error

Log.) The modeler will have to find a way to get rid of

this flaw, because his simulation result will not be valid.

3.4. Assignment of Resources
Resources are used to map real life processing entities

in models, especially simulation models. Activities

usually need a resource like an employee or a machine

to perform a certain task.

 Assigning a limited resource to an activity exposes

capacity restrictions (bottlenecks) and can be a critical

indicator to the lead time of a process. Bottlenecks

occur when a resource is working at full capacity.

Process instances that arrive at the activity would have

to wait until the accumulated number of free resource

entities is in accordance with the required value. On the

other hand there can be under-utilized resources, whose

number could be decreased to reduce costs.

3.4.1. Modelling and Mapping of Resources
Figure 2 illustrates the human resources of an enterprise

as organigram. In this case it is the organizational

structure (including the persons’ roles) of the project

described in this paper. Mr. Page is the boss, Mr.

Joschko manages the project and Mr. Janz and Mr.

Haan are the two programmers responsible for the

design and the implementation of the desired features.

 The roles and the number of entities are actually the

most important part in this representation, for they will

be mapped to resources before the simulation starts.

Each resource contains a list of attributes to specify its

characteristics. In our example there are only two

significant properties of a resource: Human and Role.

Mr. Janz and Mr. Haan are two identical resources from

the point of view of the simulation. Mr. Page and Mr.

Joschko on the other hand cannot be compared to each

other nor to the programmers.

After their creation the new resources must be

assigned to a resource pool, which will be responsible

for the provision of resources throughout the

simulation. It has to be considered however that some

resources are only available in a particular scope. This

means a resource is only available at a certain activity,

swimlane or pool. Resources cannot be used beyond the

boundaries of their scopes.

Figure 2: Organigram describing the Human Resources

of an Enterprise

3.4.2. Execution Example
After creating such an organigram, you can add its

resources (in this case: roles) to the tasks of your

BPMN model. In the following we will describe how

this can be done for the model depicted in Figure 1.

 We assign one programmer role to each task from

the upper pool (IT Division). This means that the task

can only be started, when a resource of the role

“programmer” is available. Every process instance

reaching a task that needs a resource, checks whether

the resource pool can deliver it. If the desired resource

is available, the process instance will take it and lock it

for the time of usage, so that it cannot be utilized by

another process instance. If the resource pool is not

capable of providing the designated resource, the

demanding process instance will be inserted into a

waiting queue until its request is met.

 The tasks from the bottom pool are assigned one

project manager each. Additionally the “fire employee”

task has to be allocated with one programmer resource,

which will be unlocked by force, if it is being locked by

another process instance.

4. SIMULATION REPORTS
After running a simulation experiment the simulation

report is generated. This report consists of several key

performance indicators (KPI) like:

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 128

- (Total) lead times for business processes and

activities

- Information to the decision-making at

conditional gateways

- Capacity utilization for resources

- Interarrival times of events

- Maximum, minimum and average values for

the DESMO-J queues and stochastic

distributions

Since sometimes it is more obvious to identify facts by

looking at a compact graphical representation than at

some detailed numerical KPIs, we implemented a

variety of charts:

- Pie charts for decision-making at conditional

gateways

- Bar charts for total lead time of processes

(Figure 3)

- Boxplots (box-and-whisker diagrams) for lead

time of processes and activities (Figure 4)

- Pie charts visualizing the time, resources are

idle, in use or waiting (Figure 5)

Figure 3: Bar chart for the lead time of a process

Which KPIs and charts are important for a conclusion

depends on the particular motivation. Thus many

different statistics are offered for answering ones

questions. Some of them are expensive in memory

usage or computationally intensive. These are not

created automatically but can be switched on a

particular simulation experiment.

Figure 4: Boxplot for the lead times of activities

Besides the simulation report, an error log and a trace

are generated. The trace contains the step-by-step

process of the simulation run, e.g. which activity was

started at which point of simulation time. It is useful to

comprehend how statistics in the report result from

certain events.

The generated reports are only valuable and applicable,

if the simulation model was designed validly and with

the appropriate level of detail. Therefore we cannot

stress enough, how important it is to construct a model

that adequately represents the real life situation.

Figure 5: Idle, Waiting and In Use times of resources

5. IMPLEMENTATION
In this section we will describe the software technical

aspects of integrating DESMO-J into IYOPRO.

Furthermore this chapter will cover the problems

encountered during this process.

5.1. C# Port of DESMO-J
Since IYOPRO is a Silverlight web application, we

ported our Java-based DESMO-J into C# programming

language. C# language is very similar to Java - both

languages use the C++-Syntax. The main task is to map

classes (e.g. containers like lists) from the Java Standard

Library to classes from the .NET framework. Problems

arise because some programming concepts in Java work

differently than in C# (e.g. the concept of generic

classes). Since DESMO-J is constantly improved and

enhanced, maintaining two branches of DESMO, one in

Java and on in C#, would be too costly to be feasible.

Nevertheless, having a .NET version of DESMO-J

which is always aligned with the maturity level of the

Java version is desirable. We implemented an Ant-script

that automatically ports the high level language Java

into high level language C#. Of course, this script is

adapted to our needs, and not in a position to transform

arbitrary code. As a result, we are now able to generate

C# source code that is nearly equivalent to our Java-

based DESMO-J.

5.2. BPMN Extension – General Approach

We took advantage of DESMO-J’s extensibility, to

implement a BPMN extension incorporating the

semantics of BPMN elements in order to make them

executable. Each individual BPMN element is derived

from appropriate DESMO-J white box classes. E.g.

there is a special BPMN-process derived from

DESMO-J's SimProcess class while most of BPMN

flow elements, like activities, several event types and

sequence flows are derived from DESMO-J’s Entity

class. Furthermore, the library includes message flows,

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 129

pools, swimlanes and data-objects, which are also

derived from DESMO-J's Entity class.

 The BPMNProcess class represents process

instances. A new process instance will be created each

time, when a start event is triggered. Within the life

cycle, there is a loop, which works through the elements

of the sequence flow. Every sequence element has a

method “Execute”, which is called by the

BPMNProcess instance. The Execute-method of the

BPMNActivity class takes a value from the stochastic

distribution for the duration and renders the process

passive for the given time. The Execute-method of

receiving BPMNEvents checks whether the event has

already been triggered. Otherwise, the process is queued

(depending on the type of the event), and rendered

passive until the event occurs. The Execute-method of

sending BPMNEvents checks whether there are

processes waiting for the specified events. If so, the

corresponding processes are then reactivated and their

sequence flow will be continued.

 When a simulation experiment is started, the

graphical model is converted into a simulation model

and for each BPMN element (pools, edges, nodes) the

corresponding DESMO-J object will be instantiated.

The created element structure cannot be changed at

runtime. All process instances work on the same BPMN

object instances. Only dynamic objects such as process

instances or messages are created at simulation run-

time. When modelling errors are detected at this point

(e.g. missing start events), the simulation run is stopped

and the user gets a corresponding notification.

5.3. Gateways
Gateways are used to split or join sequence flows. In

parallel splits each outgoing path is followed. For this,

new child processes are created that execute

concurrently. Since the parent process is associated, it

terminates only if every child process has terminated.

The implementation of parallel, exclusive and inclusive

splits was very easy with this approach. Also the

parallel and exclusive join is very simple. The incoming

processes are terminated and a new child process is

created. This happens when each child process has

arrived at the gateway (parallel join) or each time when

a child process reaches the gateways (exclusive join).

 The implementation of the inclusive join was

complex. This gateway fires when at least one child

process has reached the gateway, and no further child

processes exist that may arrive at the gateway. This

means that the gateway does not fire only when a

process reaches the gateway, but also if a child process

terminates or chooses a sequence path, which makes it

impossible to reach this gateway. Therefore, an

inclusive join has to sign up for each child process,

which is able to reach that inclusive join. The child

process will then notify the gateway, if reaching of this

gateway becomes excluded. The modeller has to note,

that using inclusive joins is extremely susceptible to

deadlocks when it is applied within a sequence loop.

5.4. Message flows

BPMN 2.0 distinguishes between sequence and

message flows. While sequence flows only exist within

a pool, message flows connect activities or events from

different pools. This is used to model the interaction

between process instances. Since multiple process

instances of a pool can exist at the same time, it must be

clarified, for whom the message is destined.

 If there is a pool A and corresponding process

instances A1 and A2, and a pool B with corresponding

process instances B1 and B2, every of this process

instances references an address book, which includes a

reference to one process instance for each pool. When

process A1 was started, its address book only holds one

reference: the process instance itself (A1) and the

corresponding pool A. There is no reference for a

process instance from pool B at this point. If a message

is sent to pool B, the first process instance (B1) arriving

at the receiving event, not having any entry in its

address book for pool A, may take the message. The

address books of A1 and B1 are then merged and thus

the address book of A1 holds a reference of B1 and vice

versa. If another message is transferred from A1 to pool

B, only the process B1 may take the message. If B1

sends a message to pool A, only A1 may take the

message. There is no possibility to send a message from

A1 to B2 anymore.

Figure 6: Potential address book conflict

 This simple set of rules is not sufficient however. If

there are three pools A, B and C (see Figure 6), and

there is an optional message flow between pool A and

C, a message flow between A and B, and a message

flow between B and C, address book conflicts will

occur: The address book of A1 has an entry for pool C

(C1) and no entry for pool B, the address book of B1

also has an entry for pool C (C2). If process B1 receives

a message from A1, there is a reference conflict,

because there are two references for pool C (C1 and

C2). That’s why we implemented a rule, eliminating

this behavior: A process instance may only take a

message if a) the sender is listed in the receivers address

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 130

book, or b) the receivers address book does not contain

any pools which are listed in the sender’s address book.

5.5. Attached events

Another feature of BPMN 2.0 is the ability to attach

receiving events to activities. They exist to describe,

what happens if an event occurs while an activity is

executed. There are interrupting events, which abort the

execution of the activities, and non-interrupting events.

In our implementation, for every attached event a child

process is started. The child process announces itself to

the corresponding sending events and waits for their

occurrence. If the activity has finished before the event

occurs, all child processes are deleted. If the event

occurs before the activity has finished and it is marked

as interrupting, the child process, which executes the

activity, is destroyed and the child process, which is

connected to the attached event, is executed. This works

for all intermediate events that we have implemented,

i.e.: message events, signal events, timer events, error

events, cancel events and escalation events. Just the

compensation event has a deviating behavior. It can also

be executed when the corresponding activity is not alive

anymore.

5.6. Integration into GUI
DESMO-J BPMN extension was designed as a

programming library that was integrated into the

graphical model editor IYOPRO. We had to make this

functionality accessible on the user interface. To run a

simulation experiment, some experiment parameters

have to be set. First, you need a stop time, which

describes the length of a simulation run, e.g. you can

simulate 24 hours or a complete business year.

Additionally, you need to set a seed for stochastic

distributions. Although, you can set a separate seed for

every distribution, you will just set an experiment seed,

which will be used to calculate a seed for each

distribution. If an experiment is repeated with the same

seed, the same random numbers are drawn.

 While the BPMN model editor component was

reused without any changes, we had to enhance the

property editor with the element properties described in

section 4. Also the resource editor and the Python script

editor were used without any changes. All logical

DESMO-J BPMN elements contain a reference to their

corresponding graphical objects. Therefore, the

experiment results can be linked to the corresponding

graphical objects. If the modeller clicks on a result

table, the graphical object is highlighted in the editor. If

a simulation error occurs (e.g. there are no receiving

events for a sending event), the according graphical

element is also highlighted, so that the modeler can

pinpoint and fix this error easily.

6. DISCUSSION
We implemented a BPMN extension for our simulation

engine DESMO-J, which incorporates the semantics of

the most common BPMN elements, like events,

activities, pools, swimlanes, data objects, sequence and

message flows. This allows the calculation of indicators

for process lead times, waiting and interarrival times.

When a resource model is connected to the business

processes, the utilization of resources and waiting times

for resources can also be calculated.

Although the simulation functionality already

works and can be used for simulating business

processes, our work is not completed yet. There are still

some BPMN elements missing in our DESMO-J BPMN

extension, as there are conditional events, event-based

or complex gateways.

Unfortunately, the simulation properties are not

part of the BPMN standard. While BPMN models can

be manipulated, exported and imported with different

editors, all simulation properties get lost, if you open

the BPMN models in another editor. This will not

change in the near future.

 We plan to implement assistant concepts that can

help the user in generating simulation models and in

defining experiment plans. Additionally, there will be

some visualization features for investigating simulation

experiments at runtime. We are also working on

instruction material that documents the simulation

functionality properly and thus supporting the modeller.

 Since the BPMN extension is a class library, we

can reuse it in other software products. E.g. we are

currently working on a simulation suite for the

operation stage of offshore wind parks (www.systop-

wind.de) coupling business process models with domain

specific models of offshore wind parks, like weather or

a maintenance models.

 The current status of our work on IYOPRO can be

tested at www.iyopro.de. If you are interested in the

DESMO-J BPMN extension feel free to contact us or

Intellivate GmbH.

ACKNOWLEDGMENTS
We would like to thank Intellivate GmbH for the

constructive and inspiring cooperation.

REFERENCES
Allweyer, T., 2009. BPMN 2.0 – Business Process

Model and Notation. Norderstedt, Germany:

Books on Demand GmbH.

Banks, J. et al. 2010. Discrete-Event System Simulation.

Upper Saddle River, New Jersey: Prentice Hall.

Freund, J. and B. Ruecker, 2010. Praxishandbuch -

BPMN 2.0. 2nd ed. Munich, Germany: Carl

Hanser Verlag.

Komus, A., 2011. BPM - Best Practice. Berlin,

Germany: Springer.

List, B., Korherr, B.. 2006. An Evaluation of

Conceptual Business Process Modeling

Languages. Proceedings of the 21st ACM

Symposium on Applied Computing (SAC’06), pp.

1532-1539. April 23-27, Dijon (France).

Page, B., and W. Kreutzer. 2005. The Java Simulation

Handbook – Simulating Discrete Event Systems

with UML and Java. Aachen, Germany: Shaker.

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 131

White, S. et. al., 2011. Business Process Model and

Notation. Object Management Group, Available

from: http://www.omg.org/spec/BPMN/2.0/

[accessed 15 May 2012]

Wohed, P., van der Aalst, W. M. P., Dumas, M., ter

Hofstede, A. H. M. and Russell, N. 2006. On the

Usability of BPMN for Business Process

Modelling. Lecture Notes in Computer Science

4102, 161-176.

AUTHORS BIOGRAPHY

BERND PAGE holds degrees in Applied Computer

Science from Technical University of Berlin, Germany,

and from Stanford University, USA. As professor for

Modeling & Simulation at University of Hamburg he

researches and teaches in Discrete Event Simulation and

Environmental Informatics. He is the head of the

working group that developed the simulator DESMO-J

and author of several simulation books.

PHILIP JOSCHKO studied Computer Science at the

University of Hamburg. He works as a scientific

assistant and PhD candidate in the Modelling &

Simulation workingroup of Prof. Dr. Page. His research

interests are business process simulation, simulation

software development, and the application domain of

offshore wind parks. Since 2005 he takes part in

improving DESMO-J. He applied DESMO-J in several

simulation projects.

JOHANNES HAAN studies Information Systems at

University of Hamburg. After receiving a Bachelor of

Science degree in 2010 he is currently engaged in his

master thesis. He is working in the project presented

above on a part-time basis.

TIM JANZ studies Computer Science at University of

Hamburg where he received a Bachelor of Science

degree in 2010. He worked in the presented project with

simulation using DESMO-J for his bachelor thesis and

additional projects. Alongside his studies he is working

in this project on a part-time basis.

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 132

