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ABSTRACT 
The possibility of renewable energy systems to store 
energy facilitates their participation in the electricity 
market as well as to control the forecast errors in the 
renewable source and then to increase the reliability of 
the system as provider of energy. This paper optimizes 
the management of this energy system considering 
simultaneously both goals, an economic goal and a 
reliability goal. Policies to provide the electricity 
dispatch schedule for the day ahead (tactical decisions) 
and to control the energy storage each hour (operational 
decisions) are obtained from a sequence of 
mathematical problems. A simulation model is 
developed to assess the performance of these policies in 
a stochastic framework that considers the variability and 
uncertainty in the renewable source.  

 
Keywords: Energy Storage System (ESS), Renewable 
Energy Management, Tactical and Operational 
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1. INTRODUCTION 

The aim of electricity companies is to get as much 
profit as they can by selling the product they 
commercialize: the electricity. However, as any other 
company in every economic sector, they are also 
obliged to provide a service of quality (by contractual 
enforcement or simply because it is a strategic 
requirement to survive in a competitive environment). 
An important part of the service quality provided by a 
company in the energy sector is to supply energy 
whenever it is demanded. However, a handicap for 
renewable energy companies is that the sun does not 
always shine and the wind does not always blow when 
they are required. Cost-effective energy storage 
technologies help to overcome this problem enabling 
the management of the generated renewable energy.  

The stored energy can be used to improve 
achievements in the two above mentioned objectives: 
the economic one by storing the energy when prices are 
low and selling it when prices are higher, and the 
reliability one by supplying the demanded energy when 
the renewable sources are not available. Furthermore, 
the storage facilitates the participation of the electricity 
companies in the day-ahead electricity market. The grid 

operator receives the electricity dispatch schedule from 
the wind farm managers in advance. When the power 
output of the wind farm differs from the schedule 
submitted the wind farm owner is financially punished. 

This paper simultaneously deals with the problem 
of determining the number of kWh that should be 
committed by an electricity company in the day-ahead 
electricity market and the operational management of 
the energy storage system (ESS), with the aim of 
simultaneously achieving a maximum economic return 
as well as a maximum reliability. Thus this bi-objective 
optimization problem is simultaneously of tactical and 
operational nature. Furthermore, decisions about how 
much electricity to commit each hour of the day-ahead 
is based on available forecasts for the renewable energy 
resource. That is, our analysis incorporates both 
forecasting and uncertainty in resource availability into 
the analysis which allows a more realistic assessment of 
the reliability of the energy system. However, the 
inclusion of the stochastic environment in which the 
energy system evolves also leads to the formulation of 
more complex mathematical models. 

Many papers have studied the management of 
renewable energy systems with ESS, (see Connolly et 
al., 2010, the reviews Luo et al., 2015, and Zhao et al., 
2015, and the references therein) some focused on the 
tactical problem and optimizing the economic problem 
as for example Aguado et al. (2009), where a mixed 
integer linear programming model was used embedded 
in a simulation model. This model was improved in 
Azcarate et al (2012) to incorporate a probabilistic wind 
speed forecast (PWSF). Operational decisions were not 
optimized in either of these two articles, which consider 
only simple strategies oriented towards fitting the 
committed energy as much as possible. A type of 
parametric operational strategies for the ESS was 
studied in Mallor et al (2015), but the commitments 
were obtained independently of the implemented 
operational management. In Kou, Gao, and (2015) an 
operational strategy for the management of a set of 
batteries connected to a wind-farm is proposed to 
control the deviations from a dispatch curve, and then 
paying more attention to the reliability goal. 

In this paper we propose a bi-objective stochastic 
linear problem to model the operational and tactical 
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problems which incorporate a PWSF. They are solved 
by using a rolling horizon strategy, which allows the 
assessment of the reliability of the ESS achieved in the 
recent past for building the subsequent optimization 
problems that drive the tactical and operational policies. 
The sequence of stochastic linear problems is solved by 
a method inspired by the Stochastic Approximation 
Average (SAA) technique (see Kim, Pasupathy, and 
Henderson, 2015, for an explanation of this 
mathematical method to solve stochastic optimization 
problems). We particularize the mathematical model to 
a wind energy system with ESS based on hydrogen 
(H2) technologies. A discrete event simulation model is 
developed to mimic the operation of such wind energy 
system with storage. Using this simulation model we 
can assess, under different stochastic scenarios, the 
performance of the management policies obtained from 
the solution of the optimization problems. Nevertheless, 
the models can be easily adapted to other intermittent 
renewable energies and ways of energy storage. 
The paper is organized as follows. In Section 2, the 
management problem of an energy system with storage, 
regarding economic and reliability goals, is defined. In 
section 3 we present the two stochastic mathematical 
linear problems that model the tactical and operational 
problems, respectively. In Section 4 a simulation 
framework is built to assess and to calibrate the 
management policies obtained as outcome of the 
optimization problems. Simulation results are included 
in Section 5 to illustrate the capability of our 
mathematical approach to get optimal operational and 
tactical management policies. The paper ends with some 
remarks and conclusions. 
 
2. PROBLEM DEFINITION 
In this Section the economic and stochastic environment 
context of the wind farm with ESS is described, 
particularly, the economic rules that govern the grid 
connected electricity market, the variability and 
uncertainty of the wind resource and related reliability 
issues. All these factors strongly influence the 
performance of the adopted operation and control 
strategies for the ESS. Next subsections describe their 
mathematical modelling. 

2.1. Electricity Market and Economic Assessment 
We consider an electricity company owning a wind 
energy system grid-connected with ESS based on the 
production of H2. The electricity dispatch schedule of 
the wind farm has to be submitted in advance to the grid 
operator. In this way, the company participates in the 
electricity market through committing energy to be sold 
for the day ahead. These commitments are made once 
per day by declaring the amount of energy that they are 
selling in each one of the 24 hours of the following day. 
Specifically, let Yi be the amount of kWh committed for 
selling at hour i. The revenue obtained from the selling 
of Yi kWh at hour i is CciYi, where Cci is the unit price 
of a committed kWh at hour i. Let Zi be the amount of 
kWh ultimately sold at hour i. Deviations of the 

dumped energy Zi  from the committed energy Yi have a 
penalty: when the sold energy Zi  is less than Yi, an 
amount Cpi should be paid for each kWh committed and 
not supplied (furthermore, the renewable energy system 
becomes a non-reliable energy supplier). For the case in 
which the dispatched energy Zi exceeds the committed 
energy Yi, the selling price of each kWh in excess, Csi, 
is less than the committed kWh price, Cci. Thus, the 
total economic revenue at hour i with Yi committed 
KWh and Zi kWh sold is: 
 

𝐶𝐶𝑐𝑐𝑖𝑖𝑌𝑌𝑖𝑖 + 𝐶𝐶𝑠𝑠𝑖𝑖𝑑𝑑𝑖𝑖
+ − �𝐶𝐶𝑐𝑐𝑖𝑖 + 𝐶𝐶𝑝𝑝𝑖𝑖�𝑑𝑑𝑖𝑖

−    (1) 
 

where    
 

Zi + di− − di+ = Yi,    with   di−, di+ ≥ 0 
 
Here, the deviational variables di− and di+express the 
negative and positive deviations of the supplied energy 
with regard to the commitments. Clearly, from an 
economic point of view the greatest revenue are 
obtained when variables Yi take values as highest as 
possible and the deviation variables take value zero. 
The quotient  di− Yi⁄  measures the lack of reliability of 
the system at time i.  
The dispatched energy Zi is the result of adding the XiO 
kWh obtained from the ESS to the Gi kWh generated 
from the renewable source at hour i and subtracting the 
amount XiI of kWh stored in the ESS.  
That is, 
 

Zi = Gi − XiI + XiO 
 
Determining the values for XiO and XiI are the decisions 
that constitute the operational decision making. 
Determining the values of Yi (once per day, in the day-
ahead electricity market), for each one of the 24 hours 
of the day ahead are the decisions that constitute the 
tactical decision making.  

2.2. Variability and uncertainty 
The decision-making is performed in a stochastic 
environment, which has to be taken into account to 
obtain meaningful results. The value Gi is not known 
with certainty in advance. Decisions are made based on 
a forecast of the renewable resource, which is subject to 
errors. Specifically, we assume that a Probabilistic 
Wind Speed Forecast (PWSF) at each time t is 
available: a set of m predicted wind speed trajectories 
for the near future. These m different forecasts for the 
wind speed are used as inputs of the power curve, which 
converts wind speed to power generation. After this 
transformation, we obtain a probabilistic forecast of the 
amount of electricity produced for each of the next n 
hours: Gm = �Gij, i = 1, … , n�

j=1

m
, where Gij is the KWh 

generated at hour i associated with the j-th predicted 
wind speed curve.  
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2.3. Reliability Assessment 
In regions with high penetration of renewable energy it 
is necessary to measure the capacity of the generation 
system to cover the load without unexpected imports.  
In the literature two main measures are used to assess 
the reliability of any energy generator system (see 
Callaway, 2010): the expected time that the system does 
not supply the demanded energy (the Loss of Load 
Probability - LOLP) and the expected amount of 
demanded energy not supplied by the energy system 
(the Loss of Load Expectation - LOLE). Both are used 
to assess the performance of the system in the long 
term. In our analysis we need to adapt these measures to 
get a local measure of the energy system reliability 
performance in order to drive tactical and operational 
decisions to meet reliability goals at every moment over 
time.  
We propose the following index Rt

E to measure the local 
reliability at time t: 
 

Rt
E = 1 −

∑ λk(Yt−k − Zt−k)+t−1
k=0

∑ λkYt−kt−1
k=0

 

 
where, 
0 < 𝜆𝜆 ≤ 1, and (Yt−k − Zt−k)+ = max{Yt−k − Zt−k, 0} 
When λ is 1, this index calculates the ratio of 
committed energy not supplied by the energy system, 
and then it corresponds with an estimation of the long 
term reliability measure LOLE. When λ < 1, a 
geometric moving average is defined where the 
reliability behavior of the system in the far away past 
contributes to the index result less than its reliability 
behavior in the recent past and present. The greater the 
value of λ the greater the influence of the reliability in 
the past in the present value of the reliability index. 
That is, λ represents a memory-size parameter. 
Similarly, we define a local version Rt

P of the LOLP 
 

Rt
P = 1 −

∑ λk1{Yt−k>Zt−k}
t−1
k=0

∑ λkt−1
k=0

 

 
If RE denotes the reliability goal for the amount of 
committed energy supplied by the renewable system 
(that is, for the LOLE value) then, 
 

φt
E = �

Rt
E

RE   when Rt
E < RE 

1   when Rt
E ≥ RE

 

 
is a reliability ratio that measures at time t the deviation 
of the system from the general reliability goal. This 
index can be calculated at every time t, and it is 
introduced in the mathematical optimization problem to 
induce outcomes providing management policies 
supporting the increase of the reliability goal. 
 
 

3. MATHEMATICAL OPTIMIZATION 
PROBLEM 

In this section we propose a mathematical optimization 
problem whose solution provides the tactical (Yi values) 
and operational (XiI, XiO values) management of the 
energy system. The mathematical model deals with the 
uncertainty in the wind speed forecast by considering 
that a PWSF is available, and includes both objectives 
the economic and the reliability one. 
 
3.1. Formulation of the Optimization Problem for 

the Energy System Operational Management 
Let suppose, without loss of generality, that the present 
time is denoted by t, that the commitments of energy Yi 
are known (they are determined by a similar problem 
described in next section concerning the tactical 
problem). A reliability goal RE is fixed and it is know 
the reliability ratio φt

E. The operation of the ESS in the 
next hour (denoted by index 1) is determined by the 
values of the decision variables X1I , X1O obtained as 
solution of the following mathematical problem. 
 
Problem [OP]: 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �𝐶𝐶𝑐𝑐𝑖𝑖𝑌𝑌𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝐶𝐶𝑠𝑠1  
1
𝑚𝑚
�  𝑑𝑑1𝑗𝑗+

𝑚𝑚

𝑗𝑗=1
− �𝐶𝐶𝑐𝑐1 + 𝐶𝐶𝑝𝑝1�

1
𝑚𝑚
�  𝑑𝑑1𝑗𝑗−

𝑚𝑚

𝑗𝑗=1

+ ��𝐶𝐶𝑠𝑠𝑖𝑖𝑑𝑑𝑖𝑖
+ − �𝐶𝐶𝑐𝑐𝑖𝑖 + 𝐶𝐶𝑝𝑝𝑖𝑖�𝑑𝑑𝑖𝑖

−�
𝑛𝑛

𝑖𝑖=2

− (1− 𝜑𝜑𝑡𝑡𝐸𝐸)𝐶𝐶𝑅𝑅 �
1
𝑚𝑚
�  𝑑𝑑1𝑗𝑗−

𝑚𝑚

𝑗𝑗=1
+ �𝑑𝑑𝑖𝑖−

𝑛𝑛

𝑖𝑖=2

� 

 
 Subject to 
 
 𝐺𝐺1𝑗𝑗 − 𝑋𝑋1𝐼𝐼 + 𝑋𝑋1𝑂𝑂 + 𝑑𝑑1𝑗𝑗− − 𝑑𝑑1𝑗𝑗+ = 𝑌𝑌1       j = 1, … , m                 (1) 
 𝑇𝑇1 + 𝑒𝑒𝑒𝑒𝑒𝑒  𝑋𝑋1𝐼𝐼 − 𝑒𝑒𝑒𝑒𝑒𝑒−1 𝑋𝑋1𝑂𝑂 = 𝑇𝑇2         j = 1, … , m                   (2)  
 𝐺𝐺𝑖𝑖𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑖𝑖𝐼𝐼 + 𝑋𝑋𝑖𝑖𝑖𝑖𝑂𝑂 = 𝑍𝑍𝑖𝑖𝑖𝑖     i =  2, … , n,   j = 1 … , m                (3)    
 𝑇𝑇𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑒𝑒𝑒𝑒  𝑋𝑋𝑖𝑖𝑖𝑖𝐼𝐼 − 𝑒𝑒𝑒𝑒𝑒𝑒−1 𝑋𝑋𝑖𝑖𝑖𝑖𝑂𝑂 = 𝑇𝑇𝑖𝑖+1 𝑗𝑗      i =  2, … , n  

                j = 1 … , m                (4) 

 𝑍𝑍𝑖𝑖 =
∑ 𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚
𝑗𝑗=1

𝑚𝑚
     i =  2, … , n,                                                        (5)   

 𝑍𝑍𝑖𝑖 + 𝑑𝑑𝑖𝑖− − 𝑑𝑑𝑖𝑖+ = 𝑌𝑌𝑖𝑖                         i =  2, … , n                          (6)  
 𝑋𝑋1𝐼𝐼,𝑋𝑋𝑖𝑖𝑖𝑖𝐼𝐼 ≤ 𝐶𝐶𝐶𝐶𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒⁄              i =  2, … , n, j = 1 … , m    (7)   
 𝑋𝑋1𝑂𝑂, 𝑋𝑋𝑖𝑖𝑖𝑖𝑂𝑂 ≤ 𝐶𝐶𝐶𝐶𝑝𝑝𝑅𝑅𝑅𝑅𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒   i =  2, … , n, j = 1 … , m     (8) 
 𝑇𝑇𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝐶𝐶𝑝𝑝𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇   i =  2, … , n, j = 1 … , m                                 (9) 
 𝑍𝑍𝑖𝑖 ,𝑍𝑍𝑖𝑖𝑖𝑖 ,  𝑑𝑑1𝑗𝑗+ ,  𝑑𝑑1𝑗𝑗− ,𝑑𝑑𝑖𝑖−,𝑑𝑑𝑖𝑖+,𝑋𝑋1𝑂𝑂,𝑋𝑋1𝐼𝐼,𝑋𝑋𝑖𝑖𝑖𝑖𝐼𝐼 ,𝑋𝑋𝑖𝑖𝑖𝑖𝑂𝑂,𝑇𝑇𝑖𝑖𝑖𝑖 ≥ 0          

 
Observe that constraints (1) determine the deviation 
variables associated to the operational decision 
variables X1I , X1O which will be the only ones that will be 
implemented in practice. The other decision variables, 
XijI , XijO, are only used to evolve the system in the future 
to evaluate the consequences of the present decisions. 
Constraints (2) update the state of the energy storage 
system. Constraints (3) define the amount of kWh to be 
released in the future according to each wind trajectory, 
(4) assures that the employed policies are feasible, (5) 
estimates the expected kWh released into the grid and 
(6) evaluates the deviations of this average with respect 
to the committed kWh. The remaining constraints, (7), 
(8) and (9), are the capacity constraints. 
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3.2. Formulation of the Optimization Problem for 
the Energy System Tactical Management 

Once per day, the managers should decide how much 
energy to commit for each of the 24 hours of the day 
ahead. Suppose that the decision is made every day at 
12 a.m., then i=1 corresponds to the hour from 12 a.m. 
to 1 p.m., i=2 to the hour from 1 p.m. to 2 p.m., and so 
on. The commitments for the 12 hours ranging from 12 
a.m. to 12 p.m. are known because they were fixed the 
day before. This problem is solved by formulating a 
problem similar to the previous one, where the decision 
variables of interest to determine the electricity dispatch 
schedule are Yi, 𝑖𝑖 = 13, … , 36. These values define the 
tactical decisions because they are considered as the 
electricity selling commitments. There are two 
differences respect to the problem [OP]: 
- the Yi are known parameters for the indices i 

corresponding to hours of the current day, 𝑖𝑖 =
1, … , 12, but they are decision variables for each of 
the 24 hours of the day ahead, that is, indices 
𝑖𝑖 = 13, … , 36.  

- the reliability influence on the tactical decisions is 
modeled by modifying the constraint (5) in the 
following way: 

 
𝑍𝑍𝑖𝑖 = �φt

E�
𝑊𝑊𝑡𝑡  

∑ 𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚
𝑗𝑗=1

𝑚𝑚
     i =  2, … , n 

 
where  𝑊𝑊𝑡𝑡 = ∑ λk1{Yt−k>Zt−k}

𝑡𝑡−1
𝑘𝑘=0 .  

When the reliability goal is not being achieved then 
the factor �φt

E�
𝑊𝑊𝑡𝑡 induce a reduction in the amount 

of released electricity and then also in the value of 
the scheduled energy, favoring in this way the 
ultimate supply of the scheduled energy. 

 
Then the mathematical problem to obtain the tactical 
management of the renewable system is: 
 
Problem [TP]: 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �𝐶𝐶𝑐𝑐𝑖𝑖𝑌𝑌𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝐶𝐶𝑠𝑠1  
1
𝑚𝑚
�  𝑑𝑑1𝑗𝑗+

𝑚𝑚

𝑗𝑗=1
− �𝐶𝐶𝑐𝑐1 + 𝐶𝐶𝑝𝑝1�

1
𝑚𝑚
�  𝑑𝑑1𝑗𝑗−

𝑚𝑚

𝑗𝑗=1

+ ��𝐶𝐶𝑠𝑠𝑖𝑖𝑑𝑑𝑖𝑖
+ − �𝐶𝐶𝑐𝑐𝑖𝑖 + 𝐶𝐶𝑝𝑝𝑖𝑖�𝑑𝑑𝑖𝑖

−�
𝑛𝑛

𝑖𝑖=2

 

 
 Subject to 
 
 𝐺𝐺1𝑗𝑗 − 𝑋𝑋1𝐼𝐼 + 𝑋𝑋1𝑂𝑂 + 𝑑𝑑1𝑗𝑗− − 𝑑𝑑1𝑗𝑗+ = 𝑌𝑌1       j = 1, … , m                 (1) 
 𝑇𝑇1 + 𝑒𝑒𝑒𝑒𝑒𝑒  𝑋𝑋1𝐼𝐼 − 𝑒𝑒𝑒𝑒𝑒𝑒−1 𝑋𝑋1𝑂𝑂 = 𝑇𝑇2         j = 1, … , m                   (2)  
 𝐺𝐺𝑖𝑖𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑖𝑖𝐼𝐼 + 𝑋𝑋𝑖𝑖𝑖𝑖𝑂𝑂 = 𝑍𝑍𝑖𝑖𝑖𝑖     i =  2, … , n,   j = 1 … , m                (3)    
 𝑇𝑇𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑒𝑒𝑒𝑒  𝑋𝑋𝑖𝑖𝑖𝑖𝐼𝐼 − 𝑒𝑒𝑒𝑒𝑒𝑒−1 𝑋𝑋𝑖𝑖𝑖𝑖𝑂𝑂 = 𝑇𝑇𝑖𝑖+1 𝑗𝑗      i =  2, … , n  

                j = 1 … , m                (4) 
  
𝑍𝑍𝑖𝑖 = (𝜑𝜑𝑡𝑡𝐸𝐸)𝑊𝑊𝑡𝑡  

∑ 𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚
𝑗𝑗=1

𝑚𝑚
     𝑖𝑖 =  2, … ,𝑛𝑛,                                        (5)   

 𝑍𝑍𝑖𝑖 + 𝑑𝑑𝑖𝑖− − 𝑑𝑑𝑖𝑖+ = 𝑌𝑌𝑖𝑖                         i =  2, … , n                          (6)  
 𝑋𝑋1𝐼𝐼,𝑋𝑋𝑖𝑖𝑖𝑖𝐼𝐼 ≤ 𝐶𝐶𝐶𝐶𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒⁄              i =  2, … , n, j = 1 … , m    (7)   
 𝑋𝑋1𝑂𝑂, 𝑋𝑋𝑖𝑖𝑖𝑖𝑂𝑂 ≤ 𝐶𝐶𝐶𝐶𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒   i =  2, … , n, j = 1 … , m     (8) 
 𝑇𝑇𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝐶𝐶𝑝𝑝𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇   i =  2, … , n, j = 1 … , m                                 (9) 
 𝑍𝑍𝑖𝑖 ,𝑍𝑍𝑖𝑖𝑖𝑖 ,  𝑑𝑑1𝑗𝑗+ ,  𝑑𝑑1𝑗𝑗− ,𝑑𝑑𝑖𝑖−,𝑑𝑑𝑖𝑖+,𝑋𝑋1𝑂𝑂,𝑋𝑋1𝐼𝐼,𝑋𝑋𝑖𝑖𝑖𝑖𝐼𝐼 ,𝑋𝑋𝑖𝑖𝑖𝑖𝑂𝑂,𝑇𝑇𝑖𝑖𝑖𝑖 ≥ 0          
 

4. SIMULATION FRAMEWORK 
We develop a discrete time simulation model to test the 
management policies in different environments defined 
by the electricity prices, by the accuracy of the PWSF 
and by different reliability goals.  
The simulation model includes all of the important 
equipment that comprises the wind-H2 energy system 
(wind generators, electrolisers, compressors, H2-tank, 
fuel cells,...). 
The logic of the simulation is described in Figure 1. 
Before beginning the simulation the energy system is 
defined by providing value to the parameters that 
dimension it (transformation curves, efficiencies, 
capacities,…), a goal of reliability is fixed and the 
length of the simulation set. Time is initialized at zero. 

The clock of the simulation is advanced in steps of one 
hour. First, the PWSF is generated by simulation by 
using the method proposed in Mallor et al. (2009): an 
autoregressive time series model generates 
autocorrelated errors that modify the true wind speed 
series. The method uses maximum relative errors that 
vary in the forecast horizon from an initial value to a 
final value following different functional patterns. All 
these parameters can be modified. Following this 
method m wind speed trajectories are generated. From 
them the probabilistic electricity generation forecast for 
the next n hours are obtained.  

First it is check if the current hour is an hour to send the 
electricity dispatch schedule for the day ahead to the 
grid regulator. If it is, then the problem OP is solved to 
get the operational policy, that is, the amount of 
electricity that either has to be stored in the next hour or 
has to be released from the storage. Then, the energy 
system is updated taking into account the electricity 
production simulated at that hour: level of energy in the 
storage, economic profit from the selling of electricity 
and reliability of the energy systems regarding the 
commitments. 

If it is the hour to send the grid operator the electricity 
dispatch schedule then the problem TP is solved to 
obtain the commitments for the 24 hours of the day 
ahead. Then, the OP problem is solved for that hour. 

After updating the statistical counters, the clock of the 
simulation is advanced one hour and the previous 
procedure is repeated again. This simulation framework 
is useful to test different values for the memory 
parameter λ used in the definition of the local indices of 
reliability and the extra penalty parameter CR used to 
favor the reliability goal in the objective function. 

The simulation model has been implemented in Java 
and the optimization problems are solved by using the 
CPLEX solver. The size of the optimization problems 
allows to obtaining the optimal solution very quickly 
and as a consequence the simulation of one year of this 
energy system only takes less than one minute with a 
computer with an i7 processor. 
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Figure 1: Organigram of the simulation framework. 

 

5. RESULTS AND CONCLUSIONS  
In this section in order to illustrate the methodology 

proposed in this research work to obtain both tactical 
and operational management policies of an energy 
system with ESS, we consider a renewable wind-farm 
system with H2-based storage inspired by a real system 
that the authors studied in a previous paper (see Aguado 
et al. (2009)). We present graphically (Figures 2 and 3) 
ten days of simulation results, although the system has 
been simulated for a whole year. Figure 2 shows the 
electricity production during these ten days. We use real 
wind speed data as the true wind speed data during the 
simulation, and from it we simulate the PWSF and its 
associated electricity production.  

 
Figure 2: Electricity production of the wind farm. 

 
The simulation experiments are designed to show 

the effect of introducing the reliability goal in the 
management of the system, in terms of both economic 
cost and reliability improvement. Figure 3 shows these 
results when the objective for the reliability is set to 
0,98. In the top graphic of Figure 3 we see that the 
management including the reliability goal is able to 
improve it when the local reliability measure decays 
below the fixed threshold. Furthermore, the biggest 
differences in the reliability achieved by the two 
management policies are observed at short periods of 
maximum electricity production. The reliability of the 
energy system during the whole year is 92.7% without 
reliability goal, but if this reliability goal is considered 
then the reliability increases over 97%. However this 
improvement has a counterpart in economic terms. The 
down graphic of Figure 3 shows the revenue obtained 
from the electricity selling in both cases, and their 
difference. This difference is not always in favor of one 
of the management policies but in the long term it is 
necessary to pay a price for the reliability improvement. 
Our simulation results provide a decrement of the 
revenue over 7,5%. The improvement of 4,3% in 
reliability and 7,5% of worsening in revenue depend on 
the goal set for the reliability but also of the memory 
and extra-penalty parameters used to model the 
reliability in the optimization problems. These 
parameters could be optimized for a specific application 
(specific energy system in a specific site) by combining 
simulation with optimization. As result a Pareto frontier 
reliability/revenue would be obtained to select from it 
the best management policy according to the wishes of 
the energy system manager.  
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Figure 3: Comparison in terms of reliability and 
economic revenue of managing the energy system with 
and without reliability goal. 
 
ACKNOWLEDGMENTS 
The authors are grateful to the research staff of the 
National Renewable Energy Centre in Spain (CENER) 
for technical support and advice in understanding 
energy storage systems. This paper has been supported 
by grant MTM2012-36025. 
 

APPENDIX A. List of Symbols, Abbreviations, 
Parameters and Variables 
Cci: unit price of committed energy at hour i 
Cpi: unit penalty cost of not supplying committed 

energy at hour i 
Csi:  unit price of surplus energy at hour i 
CR: additional unit penalty cost of not supplying 

committed energy to achieve reliability goal 
CapRecovery : maximum capacity of the recovery 
process (H2 → kWh) 
CapTank : maximum storage capacity of the tank 
Captransf: maximum capacity of the transformation 
process (kWh → H2) 
di−: negative deviation of the supplied energy with 

regard to the commitments 
di+: positive deviation of the supplied energy with 

regard to the commitments 
dij−: negative deviation of the supplied energy with 

regard to the commitments associated with the j-th 
predicted wind speed curve 

dij+: positive deviation of the supplied energy with 
regard to the commitments associated with the j-th 
predicted wind speed curve  

EfI :  efficiency rates of the transformation process 
EfO : efficiency rates of the recovery process 
Gi : kWh generated at hour i 
Gij : kWh generated at hour i associated with the j-th 
predicted wind speed curve  
m: number of wind speed trajectories in the PWSF 
n: planning horizon, measured in hours 
PWSF : probabilistic wind speed forecast 
Ti : kWh stored in the tank at hour i 
Tij : kWh stored in the tank at hour i associated with the 
j-th predicted curve  

XiI : kWh transformed into H2 and stored in the tank 
XiI : kWh transformed into H2 and stored in the tank, at 
time i, associated with the j-th predicted wind speed 
curve 
XiO : kWh obtained transforming H2 from the tank, at 
time i, into electricity (recovery process) 
XiO : kWh recovered from the tank, at time i, associated 
with the j-th predicted wind speed curve 
Yi  : kWh committed for selling at hour i 
Zi  : kWh sold at hour i 
Zij : kWh sold at hour i associated with the j-th wind 
speed predicted curve 
φt
E : reliability ratio at time t 
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