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ABSTRACT 

Many buildings with varying traffic flow (i.e. 

occupancy), such as public buildings and hotels, do not 

have a quantitative strategy to manage energy use. 

Although seasonal, energy use is difficult to predict. A 

problem is to know the risk of failure of a postulated 

energy strategy used for cooling of the building interior 

air to an auto-set value (customarily 22 
O
C). A new 

probabilistic assessment of the proposed on-only 

cooling strategy of Chu et al. (2015) has shown that 

some 12 unexpected, or Fr 13, failures can occur each 

summer, averaged over a prolonged period. Simulations 

highlight the cooling strategy is actually highly 

dependent on traffic flow (as occupancy) in the 

buildings, and not on ambient summer temperatures. 

Because all occupancy scenarios that could practically 

exist have been simulated the Fr 13 risk assessment is 

an advance over more traditional assessments. 

 

Keywords: cooling of large buildings; cooling strategy; 

varying traffic impact on cooling; probabilistic risk 

modelling; Friday 13
th

 risk modelling 

 

1. INTRODUCTION 

Modern buildings, including commercial hotels and 

public structures, commonly have a massive concrete-

and-steel frame to provide strength, together with a 

façade(s) of glass panes to provide internal light and 

vista during the day. These panes however permit heat 

transfer to the interior from ambient. As a consequence, 

during summer months, large air conditioning systems 

are installed to cool-down and maintain an auto-set 

room interior air temperature (customarily 22 
O
C). 

In an attempt to limit operating costs, an energy strategy 

that is widely used, particularly in hotels, is that cooling 

to the room is switched on only when the room is 

occupied and switched off immediately when the room 

is unoccupied (this is the on-off strategy); this is 

especially true of hotels and government office 

buildings. An alternative however is to leave the 

cooling continuously on (the on-only strategy). Oddly, 

research has generally focused on the design and 

calibration and measurement of energy parameters, 

using discrete and deterministic assessments (Coakley 

et al., 2012; Eisenhower et al., 2012) and not on which 

of these strategies to adopt under given circumstances. 

Recently, Chu et al. (2015) synthesised a cooling unit-

operations model (Foust et al., 1980; Wankat, 2007) and 

established, using simulations for a range of room 

traffic flows (occupancy) and ambient temperatures, 

that the on-only strategy would be more energy efficient 

long-term than the on-off in the hot summer months in 

areas of South Eastern Australia. A major reason 

identified was that the thermal ‘sink’ (i.e. mass) that the 

building’s concrete-and-steel affords, has to be cooled 

repeatedly with the on-off strategy; however with the 

on-only strategy however this heat is removed from the 

sink only once.  

They concluded that the on-only strategy should be 

adopted. 

A drawback with this formative study, however, is that 

occupancy and ambient temperature will be impacted 

by naturally occurring fluctuations about their likely 

(mode) value and will not be either fixed or evolve 

predictably as assumed by Chu et al. (2015). 

A problem is to recognize these naturally occurring 

fluctuations in occupancy (traffic arrival and departure) 

and ambient temperature and to determine 

quantitatively whether these will have a significant 

impact on which strategy is better. 

To quantify the impact of these naturally occurring 

fluctuations in key parameters in otherwise well-

designed and well-operated systems, Davey and co-

workers (Davey 2015; Abdul-Halim and Davey, 2015; 

Davey et al., 2015) have developed a new, quantitative 

probabilistic methodology. Their thesis is predicated on 

the fact that random change in values can sometimes 

accumulate unexpectedly in one direction and leverage 

significant change in process or product. They titled this 

underlying risk of vulnerability to surprise failure due to 

random affects as Fr 13. They have demonstrated this 

work with a number of case studies including surprise 

shifts from: sterile to non-sterile milk (Davey and Cerf, 

2003); stable to unstable (washout) operation of a 

fermenter (Patil et al., 2005); removal of protein 

deposits in Clean-In-Place (CIP) processing to failure to 

clean (Davey et al., 2013; Davey et al., 2015); potable 

to non-potable water using ultraviolet (UV) irradiation 

(Abdul-Halim and Davey, 2015); efficient to inefficient 
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fuel-to-steam conversion in a coal fired boiler (Davey, 

2015), and; failure of raw milk pasteurization 

(Chandrakash, et al.; 2015). 

A major practical advantage claimed for Fr 13 analyses 

is that all operational scenarios that could exist, 

including energy strategy failures, would be evaluated 

and quantified. 

 

1.1.  This research 

Here we simulate for the first time the on-off and on-

only cooling strategies using the emerging methodology 

of Davey and co-workers to investigate the impact of 

fluctuations in occupancy (traffic arrival and departure) 

and ambient temperature on the validity of the on-only 

cooling energy strategy advocated by Chu et al. (2015). 

The approach is to extend the unit-operations cooling 

model of Chu et al. (2015) to incorporate realistic 

values for large-scale commercial parameters, and adapt 

the probabilistic method of Davey and co-workers in 

which a new dimensionless risk factor for the energy 

strategy (p) is defined. This risk factor is convenient as 

all p > 0 can be used to characterize the on-only energy 

strategy as a ‘fail’. 

The probabilistic simulations are based on a refined 

Monte Carlo (with Latin Hypercube) sampling (r-MC) 

of parameters (Vose, 2008). An advantage is that all 

practical scenarios that could exist operationally, 

including energy strategy failures, are evaluated and 

quantified. 

Practical benefits and new insights gained through this 

probabilistic approach are discussed. It is envisaged that 

findings can be generalized. 

The research will be of interest to operators and 

managers responsible for cooling of large public and 

commercial buildings. 

 

2. MATERIALS AND METHODS 

The model developed by Chu et al. (2015) is well-suited 

both in terms of its formative nature and underlying 

unit-operations mathematical synthesis. A single room 

is considered to have of width W, vertical length L, and 

interior depth D, Figure 1. 

All symbols used are defined carefully in the 

Nomenclature. 

 

2.1.  Cooling model 

A single glass pane (10 mm thick), comprised each of 

two external walls of the room was exposed to ambient. 

Because of the massive nature of materials of 

construction, the room ceiling and floor were assumed 

to be thermally insulated. The two opposing internal 

walls were assumed to be made from commercial clay 

bricks (110 mm thick), laid in a standard double-brick 

on-flat with an air gap. The air gap provided was, 

reasonably, assumed to provide a thermal barrier to 

ambient (or adjoining room in a multiple-room 

building). 

It was assumed all heat transfer to and from the 

structure was by natural convection i.e. radiation and 

forced convection were ignored.  

 

Figure 1: Simplified schematic of cooling unit- 

operations for a room during summer 

 

Radiative heat transfer is ignored because it is 

widespread industry practice that curtains will be drawn 

closed, to mitigate radiative heat transfer. 

The rate of heat energy transferred from ambient 

through both the glass and brick wall to the room 

interior, q, was given by (Holman, 2010; Perry and 

Green, 1997; Anon., 2013) 

 

TAoUq   (1) 

 

such that for the glass 

 

TglassAglass,oUglassq   (2) 

 

and for the brick 

 

TbrickAbrick,oUbrickq   (3) 

 

The overall heat transfer coefficient (Uo) was given by 

(Holman, 2010; Perry and Green, 1997; Anon., 2013) 
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Because it was assumed that the wall had an air gap 

(cavity), there is no outside convective heat transfer 

coefficient shown in Eq. (6). 

The total area for heat transfer for the glass panes was 

 

WLglassA  2  (7) 

 

and, that for the brick walls was 

 

DLbrickA  2  (8) 

 

For cooling, To must be greater than Ti, and gave a 

temperature gradient such that 

 

iToTT   (9) 

 

The temperature of the glass and air film on the glass 

was given by 

 

)iToT(glass,airT 
2

1
 (10) 

 

The temperature of the air film on the brick wall was, 

similarly, given by 

 

)iTbrick(Tair,brickT 
2

1
 (11) 

 

in which Tbrick = To i.e. it was assumed the temperature 

of the brick walls reached equilibrium with ambient in a 

short time once air cooling was switched off. Chu et al. 

(2015) argued this assumption was justified for example 

in hotels, where common practice is that this would 

occur mid-morning when the housekeeping staff finish 

cleaning and leave the room. 

The correlation for Nusselt number was used to 

determine the convective heat transfer coefficient 

(Holman, 2010; Anon., 2013) for natural convection of 

air along the vertical glass wall (on either outside or 

inside) and the brick wall (inside only) 
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in which the Raleigh (Ra) number was (Holman, 2010) 

 

PrGrRa   (13) 

 

with 

 

2

23



 TgL
Gr   (14) 

and 

 

k

cμ
Pr    (15) 

 

For the glass panes 

 

 )glass,airToT(glass,oT   (16) 

 

 )iTglass,airT(glass,iT   (17) 

 

For the brick 

  

 )iTbrickT(brick,iT   (18) 

 

Eqs. (1) through (18) were used to define the underlying 

unit-operations model for cooling of the room interior 

air to an auto-set temperature in summer. 

 

2.2.  On-off and on-only energy strategies 

The model was applied to investigate two possible (and 

mutually exclusive) energy strategies. 

In the on-off strategy, because the room cooling was 

turned off when unoccupied and turned on when 

occupied, the two brick walls that were assumed by Chu 

et al. (2015) to have reached equilibrium with ambient 

temperature would need to be cooled i.e. 

 

)brickqglassq(offonq   (19)

  

This strategy they titled on-off.  

However, the room was unlikely to be occupied every 

day. They defined traffic flow with an overall 

occupancy, η %. This meant that for the on-off strategy, 

energy use was a linear function of η, and Eq. (19) 

could be written as 

)( brickqglassq
η

offonq 
100

 (20) 

 

Chu et al. (2015) reported that the most likely 

occupancy, based on industry-wide (anecdotal) 

historical data for South Eastern Australia (Clarion 

Gateway, Choice Hotels International, Melbourne, 

unpublished data), was η = 75 %. 

Their alternative strategy was to simply leave the room 

with cooling on continuously. This they titled on-only. 

Because the room was continuously cooled, the interior 

walls of the room were assumed to be permanently at 

the room interior auto-set temperature Ti (= 22 
O
C). 

Therefore only the energy transferred from ambient 

through the two glass panes would need to be removed 

in cooling. The overall energy demand for the on-only 

strategy was therefore 

 

glassqonlyonq   (21) 
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2.3.  Traditional deterministic single value 

assessment (SVA) 

A traditional, deterministic and single value assessment 

(SVA) (Sinnott, 2005) of the unit-operations model of 

Chu et al. (2015) for cooling of the air is carried out as 

follows: 

For the (commercial building silica type) glass pane 

wall, each of L = 2.5 m, W = 4.5 m and d = 0.01 m, 

kglass, = 0.78 W m
-1

 K
-1

 and kbrick = 0.69 W m
-1

 K
-1

 is 

specified; the mean thermal properties of air, ρ = 1.1774 

kg m
-3

, g = 9.81 m s
-2

, µ = 1.862 x 10
-5

 kg m
-1

 s
-1

, c = 

1005.7 J kg
-1

 K
-1

, k = 0.0262 W m
-1

 K
-1

 and β = 3.3333 

x 10
-3

 K
-1

 are given at 300 K (Holman, 2010). 

From Eq. (7) the area for heat transfer through the glass 

pane is Aglass = 22.5 m
2
. For an assumed mean ambient 

work-day summer temperature (December through 

February, South East Australia) To = 35 
O
C, the value 

ΔT = (35 – 22) = 13 K, is obtained from Eq. (9). Tair,glass 

= ½(35 + 22) = 28.5 
o
C (301.65 K) is computed from 

Eq. (10). From Eqs. (16) and (17) respectively, δT = 6.5 

K for both the outside, δTo,glass and inside, δTi,glass of the 

glass wall. 

Substituting values for each of L, ρ, g, µ, k, c, β and δT 

into Eqs. (14) and (15), the Grashof and Prandtl number 

are respectively Gr = Grglass = 1.33 x 10
10

 and Pr = 

0.71. From Eq. (13) the Raleigh number, Ra = Raglass = 

9.48 x 10
9
. Since 10

-1
 < Ra < 10

12
 Eq. (12) applies for 

the air outside and inside, yielding the heat transfer 

coefficient, ho,glass = 2.61 W m
-2

 K
-1

 and hi,glass = 2.61 W 

m
-2

 K
-1

 respectively. 

Substituting ho,glass, hi,glass, dglass and kglass into Eq. (5), 

yields the overall heat transfer coefficient, Uo,glass = 1.28 

W m
-2

 K
-1

. Substituting Uo,glass, Aglass and  ΔT into Eq. 

(2), the rate of heat energy transferred from the outside 

ambient to the interior of the room, qglass = 374.75 W. 

That is for the on-only strategy, following an initial 

start-up of cooling, given a uniform outside ambient 

summer temperature of 35 
O
C, 374.75 W will need to be 

removed to keep the room interior at 22 
O
C. 

For the on-off strategy, the energy use is calculated as 

follows: From Eq. (18) δTi,brick = 13 K.  Substituting 

δTi,brick together with values for each of L, ρ, g, µ, k, c, 

and β into Eqs. (14) and (15), the Grashof and Prandtl 

number are respectively Gr = Grbrick = 2.66 x 10
10

 and 

Pr = 0. 71. From Eq. (13) the Raleigh number, Ra = 

Rabrick = 1.90 x 10
10

. Since 10
-1

 < Ra < 10
12

 Eq. (12) 

applies for the room interior air, yielding the heat 

transfer coefficient hi,brick = 3.24 W m
-2

 K
-1

. 

Substituting hi,brick, dbrick and kbrick into Eq. (6), yields the 

overall heat transfer coefficient, Uo,brick = 2.14 W m
-2

 K
-

1
. From Eq. (8) the area for heat transfer from the brick 

walls is Abrick = 25.0 m
2
. Substituting Uo,brick, Abrick and  

ΔT into Eq. (3), the rate of heat energy transferred from 

the brick wall to the interior of the room, qbrick = 695.05 

W. 

That is, given a uniform outside ambient summer 

temperature of 35 
O
C, the energy transfer from Eq (19) 

is therefore qon-off = 374.75 + 695.05 = 1069.80 W. 

The difference in energy use between the two energy 

strategies can be written as 

 

offonqonlyonqdifferenceq 

)( brickqglassq
η

glassq 
100

 (22) 

 

It is seen that a practical and convenient advantage of 

Eq. (22) is that for all qdifference > 0, the on-off strategy 

should be applied and when qdifference < 0, the on-only 

strategy is better. At qdifference = 0 either strategy will be 

equally effective. 

 

3. FR 13 RISK MODEL 

In contrast to the SVA, in the probabilistic Fr 13 risk 

method of Davey and co-workers, the value of key input 

parameters is defined by a distribution, together with 

the probability (i.e. likelihood) of the value actually 

occurring in practical operation, and not by a single 

value. 

The output is therefore a distribution of values of the 

probability of the particular outcome (Davey, 2015; 

Davey et al., 2015; Abdul-Halim and Davey, 2015) 

including unwanted outcomes i.e. failed strategies. 

Additionally, a fundamental requirement of a rigorous 

application of this risk method is a practical and 

unambiguous definition of failure (Davey, 2011; Davey, 

2015; Zou and Davey, 2015). 

 

3.1.  Defining failure 

The amount of energy used in the two strategies can be 

used to define an energy strategy risk factor such that P 

= [qglass (1 – η/100)]’ – [qbrick (η/100)]’ in which [qglass (1 

– η/100)]’ and [qbrick (η/100)]’ are particular 

(instantaneous) values (or more strictly, mathematically, 

one probabilistic simulation). However a 

computationally more convenient form of the energy 

strategy risk factor (Davey, 2015; Davey et al., 2015; 

Abdul-Halim and Davey, 2015) is 

 

)

]'
η

brick[q

')]
η

(glass[q

(p 1

100

100
1





  (23) 

 

Eq. (23) is computationally convenient because all p > 0 

underscores a ‘failed’ adoption of the on-only strategy 

advocated by Chu et al. (2015). 

 

3.2.  Fr 13 simulations 

Eqs. (1) through (23) define the probabilistic Fr 13 

simulation for a failure in the on-only strategy for 

cooling of the room air. 

The model is seen to be identical in form to the SVA 

because all mathematical operations that connect the 

parameters are the same. However, unlike the SVA 

where a single input and output value are computed, the 

inputs and outputs from the simulation are a 

distribution. 

To emulate the naturally occurring fluctuations in value 

of the model input parameters with time the probability 
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distributions need to be realistically defined. There are 

some 40 distribution types (Vose, 2008). 

A refined Monte Carlo (with a Latin Hypercube) 

sampling (r-MC) is used to ensure values are sampled 

that cover the entire practical range of the probability 

distributions used to define the key parameters. 

As pointed out by Abdul-Halim and Davey (2015) and 

others (e.g. Davey et al., 2015; Vose, 2008) sampling 

with ‘pure’ MC cannot be relied on to replicate the 

parameter distribution because it can both over- and 

under-sample from various parts of the distribution. 

 

 

Table 1: Summary comparison of the traditional SVA with the new Fr 13 simulation of applying the  

on-only cooling strategy 

 

Cooling parameter 

 

SVA* Fr 13 simulation† 

η (%) 75.0 21.66 RiskTriang(5,75,100) 

To (
OC) 35.0 33.46 RiskNormal(35,5,RiskTruncate(25,45)) 

Ti (
OC) 22.0 22.0 Constant 

  
 

 
L (m) 2.5 2.5 Constant 

W (m) 4.5 4.5 Constant 

dglass (m) 0.01 0.01 Constant 

kglass (W m-1 K-1) 0.78 0.78 Constant 

ρ (kg m-3) 1.1774 1.1774 Constant 

g (m s-2) 9.81 9.81 Constant 

µ (kg m-1 s-1) 0.00001862 0.00001862 Constant 

c (J kg-1 K-1) 1005.7 1005.7 Constant 

k (W m-1 K-1) 0.02624 0.02624 Constant 

β (K-1) 0.0033333 0.0033333 Constant 

  
 

 
L (m) 2.5 2.5 Constant 

D (m) 5.0 5.0 Constant 

dbrick (m) 0.11 0.11 Constant 

kbrick (W m-1 K-1) 0.69 0.69 Constant 

  
 

 
Aglass (m

2) 22.5 22.5 Eq. (7) 

ΔT (K) 13.0 11.46 Eq. (9) 

Tair,glass (K) 28.5 27.73 Eq. (10) 

δTo,glass (K) 6.5 5.73 Eq. (16) 

δTi,glass (K) 6.5 5.73 Eq. (17) 

Grglass (dimensionless) 13279136800 11706069825 Eq. (14) 

Prglass (dimensionless) 0.713648 0.713648 Eq. (15) 

Raglass (dimensionless) 9476634723 8354017994 Eq. (13) 

ho,glass (W m-2 K-1 ) 2.61 2.503538258 Eq. (12) 

hi,glass (W m-2 K-1 ) 2.61 2.503538258 Eq. (12) 

Uo,glass (W m-2 K-1) 1.28 1.231997634 Eq. (5) 

qglass (W) 374.75 317.6705899 Eq. (2) 

  
 

 
Abrick (m

2) 25 25 Eq. (8) 

ΔT (K) 13.0 11.5 Eq. (9) 

Tair,brick (K) 28.5 27.73 Eq. (11) 

δTi,brick (K) 13.0 11.5 Eq. (18) 

Grbrick (dimensionless) 26558273600 23412139651 Eq. (14) 

Prbrick (dimensionless) 0.713648 0.713648 Eq. (15) 

Rabrick (dimensionless) 18953269446 16708035988 Eq. (13) 

hi,brick (W m-2 K-1 ) 3.24 3.12 Eq. (12) 

Uo,brick (W m-2 K-1) 2.14 2.08 Eq. (6) 

qbrick (W) 695.05 596.65 Eq. (3) 

  
 

 
qon-off (W) 802.35 198.04 Eq. (20) 

qon-only (W) 374.75 317.67 Eq. (21) 

p (dimensionless)   92.55 Eq. (23) 

   * Traditional, Single Value Assessment. 

   † One only of 5,000 scenarios. 

 

When the number of samples is sufficiently large, the 

output mean will be normally distributed (Vose, 2008; 

Davey 2015). Davey and co-workers (e.g. Zou and 

Davey 2015; Abdul-Halim and Davey, 2015; Davey et 

al., 2015, 2013; Davey, 2011) have reported that this 

usually requires some 1,000 to 50,000 samples for a 

typical unit-operation simulation. This number can be 

readily established when a plot of number of failures, all 
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p > 0, versus number of r-MC samples has plateaued to 

a constant value. A random number generator is used 

(Vose, 2008). Importantly, with Fr 13 simulations with 

a sufficiently large number of r-MC samples, all 

possible combinations of input parameter values and 

resulting output process scenarios that could occur in 

the energy strategy for room interior cooling will have 

been simulated, including failure. 

 

4. RESULTS 

Table 1 presents a comparative summary of results from 

the traditional SVA with those of the new Fr 13 

method. 

Computations were carried out using Microsoft Excel™ 

with commercially available add-on @Risk™ (version 

5.5, Palisade Corporation). The use of spread sheeting is 

advantageous as it has nearly universal use and the 

distributions defining naturally occurring fluctuations in 

parameters can be entered, viewed, copied, pasted and 

manipulated as Excel formulae. 

The table permits the simulations to be read 

systematically down each of the columns. The 

parameters that define the unit-operation for cooling of 

the room interior air are given in column 1 of Table 1. 

The SVA computations are given in column 2. For 

example, inspection of column 2 shows the input data 

and resulting values for the intermediate calculations, 

and finally, for each of the two strategies, respectively, 

the value qon-only and qon-off, (W). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Distribution RiskTriang (5, 75, 100) for 

room traffic flow showing a minimum, most likely and 

maximum 5, 75, 100, % occupancy, η 

 

The distributions used for the Fr 13 simulations for 

each of traffic flow (as occupancy) (η %) and ambient 

temperature (To) are defined in column 4 of Table 1. For 

example, occupancy, (row 2 of Table 1) is defined by 

the distribution RiskTriang (5, 75, 100). This produces 

a triangle distribution with a minimum, most likely and 

maximum occupancy of 5, 75 and 100, % respectively. 

This triangle distribution is shown graphically as Figure 

2.  

However, to emulate fluctuations in the ambient 

temperature the distribution used is RiskNormal (35, 5, 

RiskTruncate (25, 45)). This produces a normal 

distribution with a mean of 35, standard deviation 

(stdev) of 5, and which is truncated to a minimum of 25, 

and a maximum of 45, 
O
C. These truncations are used to 

restrict r-MC sampling to realistic temperatures that 

could actually occur. 

5,000 simulations were found sufficient. Each can be 

regarded as a possible next-day scenario. 

 

 
 

Figure 3. Fr 13 simulation of on-only energy cooling 

strategy with 5,000 scenarios. The 670 failure scenarios 

(13.4 %) are shown to the right of the figure (p > 0) 

 

A total of 670 (13.4 %) scenarios were identified with p 

> 0 in the 5,000 simulations, Figure 3. In this figure the 

x-axis is the value of the energy strategy risk factor, p, 

from Eq. (23) and because the @Risk output is a 

discrete histogram, the y-axis is the probability of p 

actually occurring (Vose, 2008). The failures are seen to 

the right of the figure (p > 0) and are therefore readily 

identified. 

Ten (10) of these 670 failures which could occur as a 

result of adopting the on-only energy strategy are 

presented in Table 2.  

It can be seen that in all cases the value p > 0, indicating 

a failure of the on-only energy strategy. The bold text in 

Table 2 (row 6, for failure scenario 4) is the particular 

scenario reported in Table 1. 

 

Table 2: Ten (10) selected failures of the on-only 

strategy from 670 in 5,000 scenarios 

 

Row η 

(%) 

To 

(OC) 

p 

(dimensionless) 

1 5.67 30.16 757.77 

2 15.02 40.08 215.84 

3 18.80 34.38 131.67 

4& 21.66 33.46 92.55 

5 24.94 39.70 67.56 

6 26.45 34.01 48.76 

7 29.35 40.49 34.69 

8 31.24 38.46 21.63 

9 33.00 38.86 12.47 

10 32.95 27.22 0.94 
& Particular scenario of Table 1. 
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5. DISCUSSION 

5.1.  Model confirmation 

An extensive test of model simulations showed them to 

be stable. Because predicted trends agreed closely with 

those of Chu et al. (2015) over a wide range of inputs it 

was concluded the simulations were free of 

programming and computational errors and that the Fr 

13 model was therefore suitable for the present purpose. 

 

5.2. Failures of on-only strategy 

The Fr 13 findings, practically interpreted so that each 

simulation is thought of as a possible next operational 

day in any summer (assumed to be 90 days), show that 

adopting the on-only energy strategy could result in 

(670/5,000 x 90 =) 12 failures (13.4 % failure rate) each 

summer. However, these will occur randomly and 

therefore will not be spaced evenly in time. 

This result however is based on the simplified model for 

cooling, but more particularly the distributions chosen 

to emulate the traffic flow and ambient temperature. 

The impact of varying these was therefore investigated. 

It should not be implied by the reader that the numerical 

values given in Tables 1 and 2 would need to be 

measured to these exactly; these values are reproduced 

simply as the exact value sampled randomly in our r-

MC simulations.  

 

5.3. Establishing appropriate probability 

distributions 
It appears reasonable that the ambient temperature 

would be normally distributed as has been assumed. 

The distribution is seen (Table 1) to be defined with a 2 

x stdev about the mean to establish the minimum and 

maximum temperatures probable (25 and 45, 
O
C). This 

ensures that 95.45 % of all r-MC samples will fall in 

this interval (Sullivan, 2004; Vose, 2008). Therefore the 

distribution of values sampled to emulate the naturally 

occurring fluctuations in temperature will cover a 

realistic range.  

However, a potential problem is to accurately reflect the 

traffic flow (as occupancy). 

Historical records are a very good guide to a long term 

mean and seasonal trend, but could not be relied upon to 

accurately predict a next-day event. This is because 

there will be irregular events such as transport strikes 

(rail, air or road), road and freeway closures due to 

accidents, or loss of electrical and other utilities to the 

building. 

Unlike temperature, there could therefore be extremes 

with traffic flow; a very low value of η (possibly not 

zero), but also a large and finite value of η = 100 % 

(ideal for hoteliers and public building use). Given these 

two values and the industry wide knowledge that the 

most likely mean value is η = 75 % a triangle 

distribution was selected. 

In the absence of unconditional data, a reasonable 

alternative however is pert (Vose, 2008). This 

distribution is also defined by a minimum, most likely 

and maximum. Repeat simulations of the Fr 13 model 

with traffic flow as occupancy η defined by RiskPert 

(5, 75, 100) showed the failure rate could reduce to 

about 6 %. However, in the absence of more extensive 

trials, this is not seen at present as a meaningful change 

in the failure rate of the on-only energy strategy for 

cooling during summer.  

The Spearman rank correlation coefficient (Snedecor 

and Cochran, 1989) readily available in @Risk, can be 

used to highlight the highly significant dependency of 

the cooling model on the distribution chosen for traffic 

flow, Table 3. The data of the table underscore a strong 

inverse correlation (coefficient - 1.00) between 

occupancy and the energy strategy risk factor, p. The 

impact of ambient temperature can be seen to be low 

(coefficient = 0.05).  

Applied, this means that it is the change in traffic flow 

that will control the energy use and therefore should be 

used to adopt a particular energy strategy for cooling in 

this cooling model.  

 

Table 3: Spearman rank correlation coefficient 

(Snedecor and Cochran, 1989) for the two input 

parameters to the Fr 13 cooling model for traffic flow 

(as occupancy, η) and ambient temperature (To) on the 

energy strategy risk factor, p. 

 

Input parameter Coefficient 

η - 1.0 

To 0.05 

 

5.4. Results overview 

A key insight is that the on-only energy strategy 

advocated by Chu et al. (2015) is predicted to fail in 

only about 10 % of all cases, averaged over the long 

term. This information is not currently available from 

alternate risk and hazard analyses. 

A crucial reason is that these alternate methods do not 

take into account the possible impact of naturally 

occurring, random, and unpredictable fluctuations in the 

value of occupancy.  

A major benefit with Fr 13 model is that both the facts 

about the process and the effects of random change in 

parameters are separated (Abdul-Halim and Davey, 

2015). This is highly advantages because it permits the 

effect of each parameter to be studied separately.  

 

6. CONCLUSIONS 

A new probabilistic Fr 13 assessment of the proposed 

cooling strategy of on-only of  Chu et al. (2015) for 

major structures such as public building and hotels, has 

predicted that it will fail in some 13.4 % of cases i.e. 12 

unexpected, or Fr 13, failures each summer, averaged 

over a prolonged period. 

Simulations highlight this cooling strategy is highly 

dependent on unplanned traffic flow (as occupancy).  

Because all scenarios that could practically exist have 

been simulated, the Fr 13 assessment is an advance over 

more traditional assessments. 
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Nomenclature  
Numbers in parentheses after description refer to the equation in which the symbol is first used or defined. 

 

A area (m
2
) (1) 

Aglass area of glass panes (m
2
) (2) 

Abrick area of brick walls (m
2
) (3) 

c specific heat at constant pressure = 1005.70 (J kg
-1

 K
-1

) (15) 

d Thickness of medium surface (m) (4) 

dglass thickness of glass pane = 0.01(m) (5) 

dbrick thickness of brick wall = 0.11 (m) (6) 

D depth of room = 5 (m) (8) 

g acceleration constant = 9.81 (m s
-2

) (14) 

Gr Grashof number (dimensionless) (14) 

h heat transfer coefficient for air (W m
-2

 K
-1

) (12) 

ho heat transfer coefficient of outside air (W m
-2

 K
-1

) (4) 

ho,glass heat transfer coefficient of outside air adjacent glass pane (W m
-2

 K
-1

) (5) 

hi heat transfer coefficient of inside air (W m
-2

 K
-1

) (4) 

hi,glass heat transfer coefficient of inside air adjacent glass pane (W m
-2

 K
-1

) (5) 

hi,brick heat transfer coefficient of inside air adjacent brick wall (W m
-2

 K
-1

) (6) 

k thermal conductivity of air = 0.026 (W m
-1

 K
-1

) (4) 

kglass thermal conductivity of glass (W m
-1

 K
-1

) (5) 

kbrick thermal conductivity of glass (W m
-1

 K
-1

) (6) 

L vertical length of room = 2.5 (m) (7) 

Nu Nusselt number (dimensionless) (12) 

Pr Prandtl number (dimensionless) (12) 

p energy strategy risk factor (dimensionless) (%) (23) 

q heat transfer (W) (1) 

qdifference heat difference between on-only and on-off (W) (22) 

qglass heat transfer from glass (W) (2) 

qbrick heat transfer from brick (W) (3) 

qon–off heat transfer for Strategy 1 (W) (19) 

qon–only heat transfer for Strategy 2 (W) (21) 

Ra Raleigh number (dimensionless) (12) 

ΔT temperature (bulk) difference of air between outside and inside of room (K) (1) 

δTo,glass temperature difference between glass wall and air film outside of room (K) (16) 

δTi,glass temperature difference between glass wall and air film inside of room (K) (17) 

δTi,brick temperature difference between brick wall and interior of room (K) (18) 

Tair,glass average film temperature air on glass (K) (10) 

Tair,brick average film temperature of air on brick (K) (11) 

Tbrick equilibrium temperature of brick (
O
C) (11) 

Ti auto-set (desired) bulk temperature of room interior air (K) (9) 

To mean daily bulk ambient temperature (outside air) (K) (9) 

Uo overall heat transfer coefficient (W m
-2

 K
-1

) (1) 

Uo,glass overall heat transfer coefficient from glass (W m
-2

 K
-1

) (2) 

Uo,brick overall heat transfer coefficient from brick (W m
-2

 K
-1

) (3) 

W width of room = 4.5 (m) (7) 

Greek Symbols 

β volumetric coefficient of expansion of air = 3.3333 x10
-3

 (K
-1

) (14) 

ρ density of air = 1.1774 (kg m
-3

) (14) 

µ dynamic viscosity of air = 1.862 x 10
-5

 (N s m
-2

) (14) 

η traffic flow (as occupancy) over the long term (%) (20) 

Subscripts 

i inside 

o outside 

' a particular r-MC scenario (23) 
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