
A DEMAND RESPONSE SYSTEM FOR

HIERARCHICALLY ORGANIZED AGGREGATORS IN SMART GRIDS

Sergios Soursos
(a)

, Vassilis Kapsalis
(b)

, George Petropoulos
(a)

, Yiannis Karras
(c)

 and Loukas Hadellis
(b)

(a)
Intracom S.A. Telecom Solutions, R&D Unit, Telco Software Business Division, 19002 Peania, Athens, Greece

(b)
Technological Educational Institute of Patras, 26334 Patras, Greece

(c)
inAccess S.A., 15125 Maroussi, Athens, Greece

(a)

{souse, geopet}@intracom.com,
 (b)

{kapsalis, loukas}@teipat.gr,
(c)

jkarras@inaccess.com

ABSTRACT

Current advances in Smart Grids have reshaped the

business ecosystem of the energy market, allowing for

the role of an aggregator to emerge. At the same time,

the need to deal with power shortages and blackouts has

rendered the participation of consumers to the

management of energy quite necessary. Demand

Response practices are becoming more popular and

relative standards like the Open Automated Demand

Response (OpenADR) have emerged as very promising

technologies for the Smart Grid. In this context, we

present an architecture that introduces the demand

response functionality in an environment of multi-level

hierarchically organized aggregators. We adopt and

extend the OpenADR standard and provide the required

functionality to support such a system. We describe the

comprising components and interfaces and present the

technologies used for the implementation of the system.

Keywords: demand response, automation, aggregator,

multi-level hierarchy

1. INTRODUCTION

The Smart Grid concept and its supporting technologies

were introduced in an attempt for society to decrease

the consumption of energy resources, especially during

periods of critical consumption levels and/or reduced

energy production. The need for detailed monitoring of

the consumption and for prediction of the future

demand have led to the update of the infrastructure of

the Distribution System with smart meters, comprising

the Advanced Metering Infrastructure (AMI). With the

placement of smart meters, the Independent System

Operator (ISO) will be able to foresee demand peaks

and take the appropriate measures so as to avoid

overloading the Distribution System.

With the introduction of Smart Grids, Demand

Side Management (DSM) has emerged as a new field of

energy management that aims at controlling/shaping the

demand for energy, while considering the status of the

transmission and distribution networks and the available

energy resources. Demand Response (DR) is a DSM

approach that manages electricity demand by sending

economic or incentive-based signals to the consumers

who react by altering their consumption behavior based

on terms of the DR program(s) they have subscribed to.

In this context, a new business role is emerging in

the Smart Grids ecosystem; that of the aggregator, a

business entity that acts as a mediator/broker between

consumers and the Utility Operator or the ISO

(Gkatzikis, Koutsopoulos and Salonidis 2013).

Representing a large number of consumers provides the

aggregator the bargaining power to negotiate with the

ISO on prices. On the other hand, the aggregator

receives DR signals from the Utility/ISO, which has to

process and re-distribute them down to its customers so

as to achieve the requested power cuts, considering the

customers’ constraints and comfort levels as well as

trying to attain monetary gains for itself and its

customers by minimizing also the aggregation risks that

may result in penalties.

In this paper, we envision the presence of more

than one aggregators per district, organized in a multi-

level hierarchical structure that compete (same level)

and interact (adjunct levels) with each other, so as to

achieve optimal and dynamic DSM, with monetary

gains both for the consumers as well as for the

aggregators. It becomes obvious that an aggregator with

such a rich portfolio of offered services requires an

advanced system that allows for all the interactions to

take place and has built-in intelligence to support the

automatic handling of DR events, programs,

subscriptions and constraints. Hence, in this

environment, we propose an ICT system, named

DAMAZO, which enables the materialization of the

aforementioned concept, enabling the communication

between aggregators, as well as allowing for different

DR programs to be supported and different DR policies

to be implemented.

The remainder of this paper is organized as

follows: Section 2 overviews the existing works in the

area of DR automation; Section 3 provides the core

concept of the DAMAZO system, the programs and the

mechanisms that it currently supports; Section 4

describes the architecture of the DAMAZO system;

Section 5 provides an insight on the algorithms

designed and deployed while Section 6 provides the

concluding remarks and the future work.

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2013,
ISBN 978-88-97999-27-0; Bossomaier, Bruzzone, Cunha, Janosy, Longo, Eds.

92

2. RELATED WORK

The energy crisis of 2002 in California served as the

driving force for the Demand Response Research

Center operated by Lawrence Berkeley National

Laboratory to create the first version of the Open

Automated Demand Response (OpenADR v1.0)

specification, which was released in April 2009 (Piette,

Ghatikar, Kiliccote, Koch, Hennage, Palensky, and

McParland 2009). This specification describes an open

standards-based communications data model designed

to promote common information exchange between the

Utility/ISO and electric customers using demand

response price and reliability signals. The intention of

the data model is to interact with building and industrial

control systems that are pre-programmed to take action

based on a DR signal, enabling a demand response

event to be fully automated, with no manual

intervention. The DR system comprises of a single

server denoted as Demand Response Automation Server

(DRAS), which communicates with the corresponding

DRAS clients, enabling a demand response event to be

fully automated. Although, the specification promoted

interoperability between Utility/ISO and electric

customers, it nevertheless lacked a multi-level hierarchy

between a DRAS and its corresponding clients.

The OpenADR Alliance, a mutual benefit

corporation which was created to foster the

development, adoption, and compliance of the

OpenADR Smart Grid standard, has recently released

the OpenADR 2.0a and 2.0b (draft) profile specification

and schema (OpenADR 2.0a, 2012) (OpenADR 2.0b,

2013), which consist part of OASIS Energy

Interoperation Specification 1.0 (OASIS EI 1.0, 2012).

A feature of the new version is the adoption of a

hierarchical structure between Virtual Terminal Nodes

(VTNs) and Virtual End Nodes (VENs) (see Fig. 1),

according to the concepts introduced in a white paper

by EPRI (EPRI, 2010).

Figure 1: Example of DR interactions under OpenADR

v2.0

In the above figure, certain Parties (B, E, and G)

act as both VTN and VEN. This directed graph with

arrows from VTN to its VENs could model a Reliability

DR Event initiated by the Independent System Operator

A who would invoke an operation on its second level

VTNs B-E, which could be a group of aggregators. The

second level VTN B, in turn invokes the same service

on its VENs FGH, who may represent their customers

or contracted resources. However, OpenADR 2.0 does

not define how the nodes react to the information. In

nodes, which support both the VTN and VEN

interfaces (e.g., aggregators) there are no specifications

or constraints on how messages arriving at the VEN

interface is coupled or translated into any subsequent

messages that may be sent from the VTN interface

and vice versa.

A project dealing with the Demand Response

concept is ADDRESS, a 5-year large-scale R&D project

launched in 2008, that aims to deliver a comprehensive

commercial and technical framework for the

development of “Active Demand” (AD) in the Smart

Grids of the future (Valtorta and Giovanni, 2011).

“Active Demand” is the term used instead of “Demand

Response” to describe the participation of consumers in

the management of energy resources. The project also

identifies the role of the aggregator as a key role in the

energy market ecosystem. Although the work of

ADDRESS is of wider scope, several objectives of

ADDRESS are partly in line with our work. However,

not much information about the project’s proposed

architecture and its implementation is provided, thus not

much can be said about the compatibility of our system

with the approach of ADDRESS. Furthermore, our

objective for a multi-level hierarchical structure of

aggregators is, as far as we know, not supported by

ADDRESS.

Beywatch was a project funded by the European

Commission under FP7, that aimed to design, develop

and evaluate an innovative, energy-aware, flexible and

user-centric solution, able to provide interactive energy

monitoring for white goods, intelligent control and

power demand balancing at home, block and neighbor

level (Beywatch D2.1 Service Requirement

specification, 2009). The BeyWatch concept included a

hierarchical network architecture of interactive metering

and intelligent control devices: a) the Agent at Home /

Office level, b) the Supervisor at building / square /

neighborhood level and c) the Service Centre at the

utility level. The proposed system introduced a two

layers hierarchy: micro-management and medium-

management level. Under the micro-management level,

all the devices in the home or a building were set under

local interactive monitoring and intelligent control, in

order to achieve amortization of loads and peak

suppression of small-scale power consumption. The

local control elements were included in a hierarchical

system that coverer larger geographical regions (e.g.

building blocks or neighborhood) that enabled medium-

level control and coordination of the energy resources.

The SmartHouse/SmartGrid is another EU funded

FP7 research project, which exploited the potential that

is created when homes, offices and commercial

buildings are treated as intelligently networked

collaborations. The project envisioned a system, where

SmartHouses are able to communicate, interact and

negotiate with both customers and energy devices in the

local grid, resulting into a more efficient operation of

the electricity system, because consumption can be

better adapted to the available energy supply, even

when the proportion of variable renewable generation is

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2013,
ISBN 978-88-97999-27-0; Bossomaier, Bruzzone, Cunha, Janosy, Longo, Eds.

93

high (Warmer et al., 2009). A commercial aggregator

could exercise the task of jointly coordinating the

energy use of the SmartHouses or commercial

consumers that have a contract with him.

3. CONCEPT AND SYSTEM OFFERINGS

As already mentioned, our system follows the

OpenADR v1.0 specification. In the OpenADR, the

core entity expected to materialize the DR policies is

the DRAS. DRAS is expected to be deployed in a three-

level hierarchical topology: on the top level we have the

existing system of the ISO or Utility Operator, which

from now on we refer to as “Back Office”; in the

middle level we have the DRAS (operated either by the

Utility/ISO or by an aggregator) and in the bottom level

we have the consumers.

A brief overview of the standard DR procedure is

described here: initially, the interested consumers are

subscribed to the DR programs they find appealing.

This subscription is made at the DRAS, but the Back

Office is informed as well. At some given point in time

where a need for activation of a program is required

(e.g. due to a critical situation at the distribution

network), the Back Office issues a respective DR event

to the DRAS. The DRAS, in turn, finds the consumers

subscribed to the respective program and forwards the

event. Consumers are informed about the event and

either manually take the necessary actions (as dictated

by the program) or a software agent takes the

responsibility of fulfilling the expected actions.

In our work we introduce the eDRAS (enhanced

DRAS) that implements the core functionality as

specified by the standard, as well as some extensions

that allow it to be used in more complex topologies and

to offer more enriched functionality. Below, we

highlight the offerings of the eDRAS. The innovation of

our work stems from the realization of an end-to-end

multi-hierarchy DR system (DAMAZO) aligned with

the architecture proposed by OpenADR 2.0 (regarding

to the multi-layered client-server VTN-VEV structure),

introducing business and logic rules implemented in

each layer for the end-to-end handling of the DR events.

3.1. Multi-level hierarchical architecture

The standard DRAS offers three types of interactions: i)

with Back Office; ii) with the Smart Client (DR-aware

client) and iii) with the Thin Client (non DR-aware

client). For the eDRAS to support the multi-level

hierarchical architecture, as shown in Figure 2, a new

interface is required; that of the inter-eDRAS

communication.

To support this new type of interaction between

adjacent eDRASes, we re-used the interfaces specified

by the standard between the DRAS and the Smart

Client. Actually, for an eDRAS of level n, the eDRAS

located at level n+1 can be considered as a Smart Client

as well. In this simple way, a multi-level topology is

supported and only modifications in the logic residing

inside an eDRAS are required.

3.2. Types of DR programs

Traditionally, DR supports two categories of programs

which the consumers interested in participating can

subscribe to: the price-based DR programs and the

incentive-based DR programs. The eDRAS supports the

following programs:

• Base Interruptible Programme (BIP): the

participant is asked to decrease its

consumption and, in case he acts accordingly,

receives a compensation (in terms of discounts

or credit) that is specified in the contract.

• Time-of-Use + Critical Peak Pricing

(ToU+CPP): the participant is provided with a

different unit price depending on the time of

day, while during critical situations he receives

a relative update of the price (higher price

typically leads to decreased demand).

• Real Time Pricing (RTP): the participant

receives updates on the price that are valid till

the next update is received. Again, the

consumer is expected to react to increased

prices.

• Direct Load Control (DLC): the participant

grants to the Utility/ISO or to the aggregator

the ability to remotely control his appliances.

Once such an event is received, the respective

appliances are switched off/on, or their

operation is shifted at a later time. Refusal to

adhere to the event is penalized.

Figure 2: eDRAS’ support for multi-level hierarchical

architecture

The existence of multiple eDRASes introduces a

complexity in handling the different programs, since an

eDRAS is at the same time a client for the upper level

eDRAS. And one cannot expect that each eDRAS

operator (i.e., aggregator) offers exact the same

programs to its clients. Assume that an n level eDRAS

is subscribed (as a client) to a BIP program that requests

a decrease of 10 kW between 10 am and 11 am. At the

same time this eDRAS has issued a BIP program to its

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2013,
ISBN 978-88-97999-27-0; Bossomaier, Bruzzone, Cunha, Janosy, Longo, Eds.

94

n+1 level clients that requests a decrease of 2 kW

between 10 am and 11 am. In case of a BIP event from

the n-1 level eDRAS, the n level eDRAS has to map the

upper level BIP program to its own BIP program

(straightforward in this case: issue at least 5 BIP events

to its n+1 level clients in order to meet the requirement

from the upper level).

What happens however when the n level eDRAS

has subscribed to a BIP program but has not issued any

BIP program for its clients? How the eDRAS should

react upon the reception of a BIP event in this case? It

becomes obvious that the mapping between different

types of programs is not straightforward. To deal with

this situation we have come up with the following

relationships between types of programs.

Table 1: Relationships between DR programs

Received

Event’s Program

Compatible

Program

Complementary

Program

BIP BIP, DLC ToU+CPP

ToU+CPP ToU+CPP, RTP BIP

RTP RTP, ToU+CPP BIP

DLC DLC BIP

When an event is received, the eDRAS tries to

resolve the request by issuing an event of the same

program type (differences in the parameters with

respect to amount and time are resolved). If not such a

program exists, clients subscribed to compatible

programs are addressed. In such a case the risk of not

fulfilling the needs of the original event are expected to

be low and depends on the number of clients addressed

and the overlaps in time periods. In the improbable case

where no compatible programs exist, then events

belonging to complementary programs can be issued,

but the risk of not fulfilling the original requirements

increases. It is expected however, that a rational eDRAS

operator will offer to his clients programs that are of the

same type with the ones that he has already subscribed

to, or the other way around.

3.3. Selection of clients, monitoring and statistics

A client that subscribes to a program can also submit

his time constraints. For example, a client subscribed to

a BIP program that runs from 10 am to 12 am, may

have a one-hour constraint. This can be known a priori

and expressed during the subscription or can be

declared dynamically (in this case the client opts-out

from the specific program for a given time). Such time

constraints and others related to the location of the

clients, the groups they belong to, etc., must be

considered by the eDRAS when issuing an event.

Moreover, the eDRAS should be able to estimate,

before issuing an event, whether a client can accept it,

considering the active events he has already accepted,

the current and average consumption levels, available

shed prediction throughout the day, etc. Further criteria

for selection include performance and fairness.

Performance has to do with the reaction of a single

client after the reception of an event; if he had managed

to save some energy and how close to the target value

he performed. Fairness has to do with the fact that not

the same clients should be selected all times; even

though they might be top ranked considering their

performance. Such statistics need to be collected by the

eDRAS through the appropriate monitoring

mechanisms.

From the above, it becomes obvious that the

selection of the appropriate clients to send an event is a

complex procedure that requires lots of information so

as to render the action taken successful or, at least, of

low risk for failure.

4. ARCHITECTURE

Having outlined the core functionality of the eDRAS, in

this section the architecture of the DAMAZO system is

presented. The implementation of the eDRAS and the

required interfaces has been based on the OpenADR

v1.0 specification with proper extensions wherever

required.

Figure 3 depicts the DAMAZO system

architecture. The main entities presented are the

eDRAS, the Smart Client and the Thin Client. The

distinction between the Smart and the Thin Client is that

the former is able to communicate with the eDRAS

using the OpenADR-based messages (DR I/F) and has

some intelligence of its own (Control Logic). It is

usually collocated with a smart meter and is in the form

of a gateway with programmable capabilities. The Thin

Client on the other hand is a simple gateway that can

receive commands in a specific format and has no

additional processing capabilities other than operating

as a simple load interface.

eDRAS

Web GUI

DatabaseFiltering Monitoring

DR Logic Control Logic

Thin Client

GW Logic

Smart Client

Control Logic

GW Logic

DR I/F Control I/F

Loads

Loads

inter-eDRAS I/F

Back Office I/F

Monitoring I/F

Figure 3: The DAMAZO System Architecture

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2013,
ISBN 978-88-97999-27-0; Bossomaier, Bruzzone, Cunha, Janosy, Longo, Eds.

95

The eDRAS is implemented as a Java EE

application deployed in a JBoss Application Server. It

consists of the following components, which are mainly

implemented as Enterprise Java Beans (EJBs):

• Web GUI: Allows the eDRAS operator to

create programs and register clients through

the use of typical HTML pages. For each client

further information for available loads and user

preferences may be recorded, based on the

level that the eDRAS resides. All respective

information is stored at the database.

• Database: Stores all the required information

received by the Web GUI component, as well

as from the Monitoring, Control Logic and DR

Logic components. It is implemented using the

MySQL RDBMS.

• Monitoring: Collects data from the clients

regarding the shed available, shed attempted

(after the reception of a DR event), the current

usage and the future usage. It provides a REST

interface for Smart and Thin Clients to send

their monitored data and saves them to the

database, after performing some aggregation

and normalization.

• Filtering: Implements the selection of

candidate clients, given a specific DR event. It

retrieves the client constraints from the

database and compares them to the event

requirements. Finally it provides the resulting

list to the DR Logic component.

• DR Logic: Is the core component of the

eDRAS. It receives a DR event from the Back

Office or the upper level eDRAS, through the

respective interfaces implemented using SOAP

protocol. It queries the Filtering component for

the list of candidate clients and then ranks

them considering the criteria of performance

and fairness. Then it splits the received event

to the appropriate lower level DR events,

running an allocation algorithm. Depending on

the type of the selected clients, it either sends

the resulting events to lower level eDRASes

(through the inter-eDRAS interface), to Smart

Clients (through the respective DR interface)

or to the Control Logic interface (in the case of

thin clients).

• Control Logic: it handles the details of the

registered loads. Given a DR event, it decides

which specific loads to either switch off or

shift in time so as to achieve the requested

target. Through the Control interface

(implement with REST) it sends the load

commands to the Thin Client.

The Smart Client is implemented as a stand-alone

infrastructure on site, mainly due to the vast variety of

equipment that may exist in the installation, storage

needs to avoid data loss, scarce bandwidth and finally

autonomous operation of field applications and logic.

This infrastructure, consisting mainly of an embedded

controller, undertakes the responsibilities of:

• Interfacing with all control and monitoring

equipment present in the installation, in order

to acquire data irrespective of the connection

method and/or protocol.

• Reducing the volume of data required for

transmission to eDRAS to something

representative, yet less bandwidth demanding.

• Conveying events that are generated directly

by the equipment upon their occurrence and

generating events that are necessary yet not

implemented within the equipment in the field.

• Storing all necessary parameters and events in

a cyclical manner in the case of failure of the

communication with the outside world.

• Implementing all necessary control loops that

have to operate locally in an independent

manner, providing a local autonomous

implementation of intelligent DR algorithms.

• Interfacing with eDRAS using the respective

standardized DR protocols.

The control and monitoring equipment as well as

the loads connected are registered in the Smart Client

during an initial provisioning procedure with minimal

database functionality required in the field. The various

components of the Smart Client have been implemented

using C, C++ and Python over an embedded version of

the GNU/Linux adapted for the RSC controller family.

With regard to local control protocols used for

communicating with the equipment, these vary

depending on the technological capabilities of each

component. Implemented interfaces include IEC 62056-

21 over serial for local metering, Zigbee/IEC 802.15.4

for sub-metering and smart plugs control, as well as

Modbus over RS-485 technologies as a common

industrial and building infrastructure technology.

Finally, the Thin Client is implemented as a

standalone embedded controller of lower cost that

provides a subset of the functionality of the Smart

client, mainly without providing local control loops and

intelligent algorithms implementation or standardised

communication to eDRAS. The Thin Client corresponds

to installations with existing automation controllers as

the only means for eDRAS to interface with the DR

site, providing proprietary communication protocols

and interfaces as well as custom information modelling.

Actually, a Thin Client operates as a load interface,

without any intelligence, other than acting as an

interface between the eDRAS and the controlled loads.

It is implemented as a RESTful service, running on

.NET and implemented using C#. The communication

between the eDRAS and any Thin Client may be based

on proprietary protocols (e.g., GSM/GPRS, OPC, etc.).

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2013,
ISBN 978-88-97999-27-0; Bossomaier, Bruzzone, Cunha, Janosy, Longo, Eds.

96

5. DR AND CONTROL LOGIC

Much of the innovation introduced is included in the

DR Logic and Control Logic components, as presented

in the DAMAZO system architecture. They encompass

all the required functionality and algorithms to achieve

the promised offerings. In this section we will focus on

certain mechanisms that are employed by the system.

5.1. Constraint-based Filtering
As mentioned earlier, the OpenADR standard foresees a

number of stakeholders, namely the aggregator, the

participant and the client. Moreover, it offers a variety

of programs. Participants, clients and programs come

with a set of properties accompanied by constraints

mostly related to time duration and occurrence

limitations. Appropriate actions are expected when a

DR event of a specific program arrives at the DRAS for

specific participants and clients.

DR logic is responsible to i) reject those programs,

participants and clients that do not match the event

properties and ii) decide and return the candidate clients

and the available shed levels they can offer. The entire

processing of filtering is summarized in Figure 4.

Program + Event

Apply Program Constraints

Time window

Max duration

Notification window

Max consecutive days

Event has destinations?

Find all registered participants

Apply Participant’s constraints

Time window

Max duration

Notification window

Find registered clients

Apply Client’s constraints

Time window

Max duration

Notification window

Max consecutive days

Find Clients

in Location

Adjust Clients Graph

to Event Timing

Eliminate opt-out periods

Eliminate same client and prog type

scheduled event time spaces.

DLC

or

BIP

BIP

or

DLC

Clients list

Add clent,Timing,Graph

To list

Prog type ?

Prog type?

Prog type ?

TOU_CPP

or

RTP

True

Find participants or

Clients for each

Destination type

Find Clients

In Groups

False

Location Groups Client

Participants

TOU_CPP

or

RTP

DLC

or

BIP

TOU_CPP

or

RTP

START

END

 Figure 4: The filtering algorithm

The OpenADR standard specifies four types of

constraints: ACCEPT (accept the event as it is),

REJECT (reject the event if it does not comply with the

constraint), FORCE (impose the constraint restrictions)

and RESTRICT (find the intersection between the event

and the constraint). Since one event can conflict with

more than one constraint, we have come with the

following rules to resolve the conflict between two

constraints, with the goal to maximize the number of

matched constraints. Note that we have also provided

guidelines in the case of multiple constraints, but they

are not included here due to space limitations.

Table 2: Resolution of an event’s conflict with two

constraints.

Constraint 1 Constraint 2 Result

ACCEPT ACCEPT ACCEPT

REJECT REJECT REJECT

ACCEPT REJECT REJECT

FORCE FORCE Choose the one with the

longest duration.

RESTRICT RESTRICT Choose the one that

provides the longest

intersection.

FORCE RESTRICT FORCE

FORCE REJECT FORCE

ACCEPT FORCE FORCE

ACCEPT RESTRICT RESTRICT

RESTRICT REJECT RESTRICT

5.2. Ranking and Selection of Clients

DR Logic also implements the ranking and selection of

the clients to be notified about the event as well as the

allocation of sheds to each client, in case the event is

not addressed to all clients and/or the shed offerings of

the clients are more than the target of the event. As

already mentioned, the ranking of the clients is based on

fairness and performance criteria. Fairness is calculated

according to the formula in (1):

)Remax(

Re
1

k

i

i
questsssfulTotalSucce

questsssfulTotalSucce
F −=

(1)

where TotalSuccesfulRequests is the number of positive

answers of client i to the allocated shed (either through

feedback or opt-outs). The performance criterion is

calculated as follows:

iii EfficiencyAvgtsPositiveOpB)(⋅= (2)

where PositiveOpts is the percentage of positive

answers from the client and Avg(Efficiency) is the

average shed performed by the client in previous

allocations.

edExpectedSh

dCurrentShe
Efficiency = (3)

Hence, the ranking for client i is calculated as:

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2013,
ISBN 978-88-97999-27-0; Bossomaier, Bruzzone, Cunha, Janosy, Longo, Eds.

97

iii BwFwRank ⋅−+⋅=)1((4)

Figure 5: The selection and allocation algorithm

Once the clients are ranked, the selection and

allocation algorithm comes in play. The selection

considers the ranking as well as the time period in

which the clients can offer the stated shed (as a result of

the filtering process). The entire process of the selection

is very similar to a bin packing algorithm, since we

have a target shed for a given time period (TargetBox)

and a number of shed offerings from the clients

available in different time periods. To achieve the goal,

our solution targets a slightly higher shed target.

Moreover, the selection algorithm considers the

feedback provided by the client on the available shed,

reported periodically, as well as a reliability factor, that

is defined as follows:

)(

)(

geCurrentUsaAvgCapacity

hedAvailableSAvg
Ti

−
=

(5)

where Avg(AvailableShed) is the average available

shed reported in the past through the feedback

mechanism, Capacity is the load capacity of a client

reported at the enrollment and Avg(CurrentUsage) is

the average reported usage, again reported through the

feedback mechanism. The resulting selection algorithm

is depicted in Figure 5.

5.3. Scheduling loads

In order to manage the loads, the eDRAS employs

Control Logic (CL) in collaboration with the DR Logic

(DL), in the case of Thin Clients. In the case where

Smart Clients are present, the functionality described

below is distributed between the eDRAS and the Smart

Client.

As before, DL handles a DR event and uses an

algorithm which, based on static, dynamic and historical

data, selects the candidate users and, for each candidate

user, it selects the candidate loads that may be

controlled. Specifically, the static data consists of the

users’ features that are stored during the configuration

phase (e.g., program that the user has enrolled in,

constraints related to availability for control, etc.). The

dynamic data consists of the features of each specific

DR event (e.g., type) and the parameter values of the

DR event. Finally, the historical data consists of the

number of control commands that have been issued to

each user, the average responsiveness to them, opt-outs,

etc. The analytic procedure followed by the DL is the

following: it creates a sorted list of candidate end users

that may participate in this specific event by applying a

number of criteria (fairness, responsiveness, cost, etc.).

For each candidate user, DL creates a sorted list of

candidate loads (devices) that may participate in this

event by applying the same criteria. For each load, DL

calculates the amount of power (energy) that has to be

curtailed during the DR event (goal), based on the

currently scheduled operation for the specific load. This

amount of curtailed power is sent to the CL, which tries

to meet the required goal by rescheduling the load

operation as will be described next. If the rescheduling

by the CL succeeds, a new operation schedule is stored

at the database and the algorithm proceeds to the next

load. Otherwise, if the rescheduling was not successful,

the current load is characterized as unavailable and the

next load is checked. This procedure continues until all

the loads of each candidate user have been checked. The

same will be applied for each candidate user, until either

the goal has been met or all the users have been

checked.

Control Logic is the component that, in close

cooperation with the DL, tries to meet each goal set by

the DL (e.g., curtailment of 1 kW for 2 hours), by

calculating a new operation schedule for each load,

without violating the constraints that have been imposed

by the user, regarding the preferred quality of service

(e.g., comfort, finishing time). It achieves this by using

static and dynamic data:

• Static data: It consists of data that stored at the

database during the configuration phase, e.g.,

the thermodynamic model of each house, load

types (interruptible, dimmable, shiftable),

operational parameters of each load (e.g.,

consumption profile), restrictions related to the

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2013,
ISBN 978-88-97999-27-0; Bossomaier, Bruzzone, Cunha, Janosy, Longo, Eds.

98

operation (minimum time of operation, etc.),

etc.

• Dynamic data: It consists of the required value

of curtailed power, requested by the BL and

the data that change frequently, either received

by sensors (e.g., current interior and exterior

temperatures), Internet services (e.g., weather

predictions) or by end users (e.g., comfort

level, time of finishing a task), ToU or RTP

prices, DR events, etc.

The algorithm strives to optimize the energy cost of the

end users under a ToU and/or RTP pricing scheme as

well as during a DR (e.g., BIP) event, based on the

user’s preferences related to comfort levels. First, the

loads are modeled based on their operational features

and their control capability: dimmable (e.g., HVAC),

shiftable (e.g., washing machine) and interruptible (e.g.,

water heater). Specifically, the HVAC system is a

continuously operating (dimmable) load, which may be

controlled through a thermostat which sets the desirable

operating temperatures (setpoints). Based on the work

presented in (Ha, Ploix, Zamai and Jacomino, 2006),

the required power consumption in order to reach the

desired temperature (within a time slot of specific

duration, e.g. 15 min) depends on the HVAC’s

electrical characteristics (average power), the heat

capacity and the resistance of the indoor environment

and the indoor and outdoor temperatures:

out

j

RC

t

j

RC

t

j
T

R
eR

TeT
P

1

1

1 −














−

−
=








 ∆
−








 ∆
−

+

(6)

where, P is the average power generated by the HVAC

system during time period ∆t, C is the heat capacity of

the heated (cooled) indoor environment, R is the

thermal resistance of the environment, Tj is the indoor

temperature at time slot j, Tj+1 is the desired indoor

temperature at time slot j+1 (setpoint) and Tj
out

 is the

outdoor temperature at time slot j. Shiftable loads (e.g.,

washing machine) constitute a load type, which may be

shifted in time but not interrupted when started nor

dimmed, since the power demands of any washing

program consist of a number of continuous operational

phases, each one posing specific power demands.

Finally, the interruptible loads (e.g., water heater),

constitute a load type, which may be interrupted but not

dimmed. The control algorithm calculates a) the

setpoints for the dimmable (increasable/reducible) loads

(e.g. HVAC), b) the starting times for the shiftable

(schedulable) loads (e.g., washing machine), and the c)

starting and stop times for the interruptible loads (e.g.,

water heater) within a predetermined time period, taking

into account both the prices per time slot (ToU/RTP)

and the user’s comfort preferences. The setpoints of the

dimmable loads are calculated by an adequately

modified Dijkstra’s shortest path algorithm, while the

operation schedule of both shiftable and interruptible

loads comprises the time slots that maximize the

objective function (energy cost and comfort). A more

extensive description of the load control algorithm can

be found in (Antonopoulos, Kapsalis and Hadellis,

2012). A flow chart of the scheduling operations

performed by the DL and the CL is presented in Figure

6.

Start

DR event

received?

Select users

Sort users

Select (next) user

Schedule load

Store new load

schedule

Fail

Goal achieved?

(Not any other load of user)

or

(goal achieved) ?

Select (next) load

of user

(Not any other user)

or

(goal achieved) ?

True

False

False

End

Success

False

True

True

False True

Scheduling

succeeded ?

False

True

Performed by

Control Logic (CL)

Figure 6: The load scheduling algorithm

6. CONCLUSIONS

In this paper, we have presented an end-to-end DR-

based system (DAMAZO) that supports a hierarchical

architecture of multiple enhanced DR Automation

Servers, according to the emerging business models for

the organization of aggregators in Smart Grids. We

have based our implementation on the OpenADR v1.0

standard and we have also implemented certain

additional functionalities to support the derived

complexity of this multi-level architecture. The

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2013,
ISBN 978-88-97999-27-0; Bossomaier, Bruzzone, Cunha, Janosy, Longo, Eds.

99

architectural diagram of our system is provided along

with a brief description of the comprising components

and the accompanying interfaces.

Future work includes the study of more complex

strategies regarding the mapping of different DR

programs and the more precise prediction of available

shed by clients. Moreover, we will study the outcomes

of relevant research projects, (e.g., ADDRESS,

SmartHouse/SmartGrid, etc.) to identify similarities and

differences and examine whether we can expand our

implementation to support the outcomes of these

projects. Finally, since the OpenADR v2.0 specification

(still in draft state) also provides the communication

interfaces for supporting a multi-level hierarchical

organization of aggregators, we are going to update our

implementation according to the new specification,

while preserving the old interfaces so as to offer

backward compatibility.

ACKNOWLEDGMENTS

This work has been partially supported by the Greek

General Secretariat for Research and Technology

(GSRT) as part of the research project "DAMAZO –

Automated Demand Response Management System for

the Rational Use of Electrical Energy" 09ΣΥΝ-32-613,

under the "Cooperation 2009" framework.

REFERENCES

Antonopoulos Ch., Kapsalis V., Hadellis L., "Optimal

Scheduling of Smart Homes’ Appliances for the

Minimization of Energy Cost under Dynamic

Pricing", in 17th IEEE International Conference

on Emerging Technologies & Factory Automation

(ETFA 2012), Krakow, Poland, September 2012.
BeyWatch, “Deliverable D2.1: Service Requirement

specification”, Online: http://www.beywatch.eu.

Ha LD, Ploix S., Zamai E., Jacomino M., “A Home

Automation System to Improve Household Energy

Control”, in 12th IFAC Symposium on Information

Control Problems in Manufacturing, 2006.

EPRI. “Concepts to Enable Advancement of Distributed

Energy Resources” White Paper on DER. EPRI,

Palo Alto, CA: 2010. 1020432.

Gkatzikis, L., Koutsopoulos I., and Salonidis, T. "The

role of Aggregators in Smart Grid Demand

Response markets", to appear, IEEE Journal on

Selected Areas in Communications, 2013.
OpenADR Alliance, "OpenADR 2.0 Profile

Specification A Profile", v1.0, 2012.

OpenADR Alliance, "OpenADR 2.0 Profile

Specification B Profile", v.0.9, Final Draft, 3-18-

2013.

Piette, M.A., G. Ghatikar, S. Kiliccote, E. Koch, D.

Hennage, P. Palensky, and C. McParland. 2009.

Open Automated Demand Response

Communications Specification (Version 1.0).

California Energy Commission, PIER Program.

CEC-500-2009-063 and LBNL-1779E.

Valtorta, Giovanni, et al. "Architecture and functional

specifications of distribution and transmission

control systems to enable and exploit active

demand." 21st International Conference on

Electricity Distribution. CIRED, Frankfurt, 2011.

Warmer C., et al., “Web services for integration of

smart houses in the smart grid”, in Grid-Interop

Forum 2009.

OASIS, “Energy Interoperation Version 1.0, 2-18-2012.

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2013,
ISBN 978-88-97999-27-0; Bossomaier, Bruzzone, Cunha, Janosy, Longo, Eds.

100

