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ABSTRACT 
In nowadays operations research, dynamic optimization 
problems build a central and challenging research topic. 
Especially in real-world systems such as electric power 
grids, dynamic problems occur where robust solutions 
need to be found that enable (near-) optimal control 
over time in volatile as well as uncertain power grid 
operation. The authors of this work identified the 
application of policy function approximation for 
suchlike problems, where an analytic functions needs to 
be found that takes an arbitrary state of the dynamic 
system and outputs appropriate control actions aiming 
at system-wide goals. Such an approach is very fruitful 
for robust optimization over time.  
Applying this approach to two different problem classes 
in power grid research, this work aims at summarizing 
this work and identifying potential future issues. 
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1. INTRODUCTION 
Taking a look at power grid optimization, tasks that 
necessitate fast and robust dynamic control lie on hand. 
Taking exemplarily the general optimal power flow 
(OPF) problem, the aim is to find the optimal 
configuration of all controllable units for satisfying a 
given load situation, using steady-state representation of 
the power grid. Thus, the solution of this problem 
addresses exactly one stationary state Jt, disregarding 
possible states in the near future or eventual uncertain 
conditions in the system. Considering the system one 
time step later (Jt+1) due to changing conditions of 
weather, customer behavior or any other influence, the 
power flow in the system would change, hence, 
requiring a new solution to the optimal power flow 
problem further necessitated by the non-linear behavior 
of an electric power distribution system. Such a new 
computation would require a robust and fast-converging 
solution method, that guarantees quick support with a 
new optimal solution, independent of system 
complexity and starting point, which cannot be 
guaranteed by traditional steady-state OPF methods 
(Wang, 2007). This concern is further complicated by 
the steady increase of the number of control variables in 
smart grid applications (Hutterer, 2013b).  
Thus, electric power systems fundamentally represent 
applications that require dynamic optimization 

techniques, respectively methods that enable 
optimization over time. The general scheme of 
approximate dynamic control with policy function 
approximation builds a fruitful ground for suchlike 
issues (Powell, 2012). 
 
The rest of the paper is organized as follows: Section 2 
proceeds with discussing the principles of simulation-
based policy function approximation using evolutionary 
algorithms. Therefore, genetic programming (GP) can 
be identified as suitable metaheuristic search technique 
for evolving powerful control policies. In order to 
demonstrate the application, Sections 3 and 4 continue 
with illustrating two empirical studies when applying 
GP-based policy evolution to two practical scenarios, 
namely dynamic optimal power flow control for 
generation unit scheduling on the one hand, and a 
demand-side management related scenario for 
controlling distributed electric vehicle charging 
processes on the other side. Section 5 finally concludes 
the work und gives outlook to future issues. 

 
2. SIMULATION-BASED EVOLUTIONARY 

POLICY FUNCTION APPROXIMATION 
Policy function approximation can be understood as the 
general principle of providing an anticipatory policy 
P(Jt), that outputs (near-) optimal control actions at 
runtime. The great advantage of such policy-based 
control schemes is the avoidance of any reoptimization 
during runtime after change of some state variables. 
Thus, instead of computing a static optimal solution, the 
policy function is optimized such that it leads to 
minimal expected costs in each possible state. This 
principle is illustrated in Figure 1.  The authors of this 
work already identified the usage of policy function 
approximation techniques for the sake of optimizing 
power flow related tasks in smart grid engineering. A 
special scheme was applied in (Hutterer, 2013a;  
Hutterer 2013c) that uses evolutionary simulation 
optimization to evolve optimal policies that are trained 
within a dynamic simulation model and minimize some 
expected cost function. The application of simulation 
therefore enables the integration of systems’ 
uncertainties (like uncertain weather or customer 
conditions) into the optimization process. This 
simulation-based policy optimization shall now be 
applied to highly relevant scenarios in power grid 
engineering. 
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2.1. Formulating Simulation-Based Evolutionary 
Policy Function Approximation 
 

As already discussed, policy function approximation is 
a method for dynamic optimization and seeks finding a 
generic function (policy) P(x) that returns a (near-
optimal) action given a state.  Most often, finding this 
function is the crucial step, where this technology 
usually gets applied when the structure of the policy is 
obvious (Powell, 2012). Equation 1 additionally aims at 
illustrating the principle of policy based control: 
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where Jt gives the system state at time t, P is the general 
denotation of a policy, F(P(Jt)) gives the fitness of a 
policy’s action at time t and E() indicates that usually an 
estimate (over uncertain states) needs to be obtained. 
Since the aim is to find the best performing policy P 
(without knowing how this policy shall look like), it has 
to be optimized over the space of potential policies Θ.   
 
Assuming that a sufficient description of a state is 
achievable (which serves as input to the aspired policy), 
the issue is now to find this policy. As already discussed 
and being illustrated by (Powell, 2012), policy-function 
approximation is especially attractive when the structure 
of the policy is obvious. However, what if we do not 
know about the structure a policy could take? What if 
we only know that a certain policy takes several input 
variables (that come from Jt) and combines them to a 
more complex analytic function (using manifold 
mathematical operators) in order to derive a control 
action? In this case, genetic programming (GP) provides 
a fruitful method for function approximation that does 
not need for a-priori knowledge on the aspired 
mathematical structure, but only knows about the input 
variables as well as a specific grammar for combining 
them. Applying a metaheuristic search process (genetic 
algorithms), GP finally searches for performant policies 
within Θ. 
 
2.2. Function Approximation with Genetic 

Programming 
 

Extending the principle concept of genetic algorithms, 
GP uses evolutionary-inspired concepts for the heuristic 
search process, but is able to evolve computer 
programs. Within the herein described work, these 
computer programs take the appearance of trees, where 
leafs represent input variables describing the system 
state, that are combined by given mathematical 
operators which are incorporated by inner nodes. This 
kind of solution representation allows the evolution of 
arbitrary analytic functions without knowing their 
structure beforehand. 

This approach has already been applied 
successfully to diverse applications, a general view on 
these works shall be provided herein. 

 
3. APPLICATION TO THE GENERAL 

OPTIMAL POWER FLOW PROBLEM 
The optimal power flow (OPF) problem has been stated 
some decades ago and is still the basic optimization 
problem in power system engineering. In its original 
formulation, the OPF considers steady-state situations, 
i.e. provides a static solution for exactly one considered 
discrete state. Since in volatile as well as uncertain 
power grids this consideration is some kind of “too 
optimistic”, policy function approximation can be 
applied in order to build a general optimal power flow 
controller within simulated dynamic power grid 
environments. These simulations will be built based on 
real-world benchmark models, namely the IEEE 
distribution grid test cases1. For comparison reasons, the 
evolved approximate control policies will be evaluated 
with respect to exact interior point OPF solutions within 
steady-state situations created for testing reasons. 

 
3.1. Policy Formulation 
When striving to obtain a general control policy P(x), it 
needs to be assumed that x gives a sufficient 
representation of the system’s state Jt. In order to derive 
a control action for optimal power flows, x would need 
to consider all dependent variables of a power flow 
model (see definitions of OPF formulations in order to 
get an overview of used dependent variables (Hutterer, 
2013c)). In such a case, especially for real-world 
                                                           
1 Christie, R. D.: Power systems test case archive, 
http://www.ee.washington.edu/research/pstca/ 

Figure 1: Principle of Policy Function Approximation 
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systems a policy P(x) would need to consider many 
hundred or even thousands of input variables. 

Therefore, the authors of this work proposed the 
introduction of abstract information entities, so called 
“abstract rules”, which extract information from a 
system’s dependent variables and provide only the 
necessary data to a decision making unit that is crucial 
for this decision. In the case of handling a traditional 
optimal power flow (OPF) problem, a set of 7 rules (r) 
has been proposed in (Hutterer, 2013a) that is assumed 
to be both necessary as well as sufficient for making 
power flow decisions. Thus, a policy P(r) needs to be 
approximated, where for most systems |r|<<|x| holds. 

 
3.2. Experiments 
In the context of this publication, empirical studies have 
been performed for different models provided by the 
IEEE test case archive. For illustration reasons, two of 
these networks shall be presented herein, namely the 
14-bus (the smallest test case) and the 300-bus (the 
largest test case) problems. Out of these benchmark 
instances, dynamic problems are built according to 
(Hutterer, 2013c) for learning policies for dynamic 
optimization. In order to validate the approximated 
policies, a test-procedure has been created that is based 
on randomly created test states. Therefore, within the 
simulation of the dynamic power grid models, discrete-
time states are expressed that represent one single state 
of the system each. For these states, the deterministic 
OPF solution is computed with interior point method in 
MATPOWER and compared to actions that obtained 
best found policies lead to within these states. This 
allows the definition of an error term (in means of 
fitness), hence the quantitative validation of the 
policies’ performance for approximate dynamic OPF. 

3.3. Results 
Table 1 lists the quality in means of error between the 
OPF fitness function value of the best found policy 
compared to the deterministically computed optimal 
solution within 10 arbitrary and independent test states. 
For both benchmark instances, it can be shown that the 
approximate policy-based control leads to near-optimal 
decisions, that are in mean only 0.6 respectively 0.51 % 
worse than the reference solutions.  
 

Table 1: Performance Validation of OPF Policies 
Time Step 14-Bus 300-Bus 
1 0.0074 0.0160 
2 0.0053 0.0201 
3 0.0105 -0.0151 
4 0.0045 0.0033 
5 0.0041 0.0030 
6 0.0071 0.0046 
7 0.0071 0.0048 
8 0.0064 0.0033 
9 0.0034 0.0030 
10 0.0042 0.0082 
Mean Relative 
Error (MRE) 

0.0060 0.0051 

A more detailed discussion on OPF policy 
approximation can be obtained from (Hutterer, 2013c). 
This illustration shall demonstrate the power of policy 
function approximation for dynamic optimization in the 
context of the OPF-based generation unit scheduling 
and quantitatively shows its validity. 
Further empirical studies applied policy-based control 
to demand side management; more detailed: to the 
control of distributed electric vehicle charging 
processes. 
 
4. APPLICATION TO SMART ELECTRIC 

VEHICLE CHARGING CONTROL 
Various researchers examine the problem of integrating 
plug-in electric vehicles (EV) optimally into power 
grids, where the control of charging power is seen as 
advantageous for reaching optimal power grid operation 
(Clement, 2008; Clement, 2009; Sortomme, 2011). 
Central challenge beside formulation and computation 
of the optimization problem itself is the consideration of 
the individual behavior that mainly characterizes 
electric vehicle charging load.  
 This PEV-charging control problem represents a 
dynamic optimization task that requires optimal control 
actions for high amounts of distributed EV-agents.  
Therefore, building a policy-based approach is the 
fundament of this show case. Here, each agent (EV) 
receives a flexible policy rather than static control 
decisions that makes it react to its environment 
dynamically, but in a globally optimal manner. This 
policy is principally the same for all agents, but using 
individual data from an agent’s environment, it leads to 
agent-specific charging control. The policies will be 
evolved using the presented policy function 
approximation approach. Here, a simulation model is 
built that represents a fleet of EVs within a given power 
grid area, which will be integrated into the simulation-
based evolutionary optimization of PEV charging 
control policies.  

 
4.1. Policy Formulation 
A general policy shall be obtained. Its aim is to output a 
charging decision to an electric vehicle given the state 
of the system at a given time step. This optimized 
policy is derived from input variables that consider 
agent-specific parameters from its environment. Out of 
these parameters, the EV’s power demand as well as the 
state of its environment can be described sufficiently in 
order to derive a valid charging decision. Here, three 
different data classes can be distinguished from each 
other: 

 
 Agent-specific data concern the EV’s driving 

behavior, like its residence time at the actual 
charging station or its likelihood of getting 
parked at another charging spot later on. 

 Local data considers other EVs immediately 
affecting the local situation in the power grid. 
For example, if the power grid is stressed 
locally because of a high amount of EVs 

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2013, 
ISBN 978-88-97999-27-0; Bossomaier, Bruzzone, Cunha, Janosy, Longo, Eds. 

68



charging at the same bus, their charging power 
has to be reduced in the next time step in order 
to avoid critical power flow conditions. 

 Global data considers information describing 
the whole system’s state, like the total load to 
the distribution grid, totally expected supply 
from renewables or financial aspects 
considering costs of electrical power supply. 

 

Out of these classes of input data, in the context of this 
work, the authors defined once more a set of abstract 
rules (r) that gathers all needed information for decision 
making and provides compressed information to control 
units (EVs in this case). Out of these rules, the general 
policy P(r) shall be learned that gives the decision on 
the charging power to a certain EV in the system. 

4.2. Experiments 
All experiments are based on the IEEE 33-bus 
distribution feeder. Within this feeder, 300 EVs are 
simulated to act individually. Additionally, renewable 
sources (wind-power and photovoltaics) are added to 
the system in order to create a dynamic and volatile 
scenario. A finally obtained charging policy has to 
derive robust charging decisions that provide system-
wide near-optimal charging control over time. 

Detailed discussions on this problem scenario as well as 
formal definitions are provided in (Hutterer, 2013b). 
Here, only the main issue of applying policy-function 
approximation to suchlike problems shall be illustrated. 

4.3. Results 
In this scenario, a general policy PEV(r) needs to be 
computed that derives accurate control actions for each 
single EV in the system, while considering both the 
agent’s (EV) needs as well as system-wide goals of 
power grid operation. Equation 1 illustrates such a 
policy, which has been found in studies on the above 
mentioned system. 
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While the used input variables are discussed extensively 
in (Hutterer, 2012; Hutterer, 2013b), this policy 
considers an EVs remain time at a charging spot (ERT), 
the actual electricity price (AP), the actual wind speed 
(AWS), the mean charging rate of all other EVs during 
the previous time step (MCR), the past base load (PBL) 
at the previous time step as well as the actual solar 
irradiance (AI). Since all input rules are defined to give 
a value in the range [0,1], with the constants c1=17.86, 
c2=0.03 and c3=0.11 the policy finally provides a 
charging power value in the unit [kW].  

Figure 2 depicts the mean charging power over all 300 
EVs in the simulated system when applying the evolved 
policy to a test-scenario. From this illustration one can 
observe the principal functionality that this policy 

causes during operation, namely the principal shift of 
charging to time steps at night (where the grid-load is 
low). While this graph gives the mean charging power, 
the actual power of each EV differs and considers its 
individual behavior. However, over all EVs the system-
wide constraints are satisfied that enable secure power 
grid operation, while the objective function considering 
total costs of energy supply is minimized. 

 

Figure 2: Charging Power in Simulated Test Scenario 
 
However, this example shall demonstrate the evolution 
of control policies for dynamic optimization to an actual 
smart-grid relevant problem domain. More detailed 
discussions can be obtained from the referenced works, 
while this paper aims at providing a general view on the 
developed techniques. An outlook shall now depict 
several open issues. 

 

5. OUTLOOK 
Dynamic optimization with policies has the great 
advantage that it avoids the necessity of computing a 
specific solution to each state the dynamic system 
exhibits over time. Hence, dynamic adaptation of 
solutions seems to be not necessary, which is a major 
challenge in dynamic evolutionary optimization 
(Nguyen 2013a, Nguyen 2013b). However, this 
advantage only holds in a restrictive manner: A policy 
is able to make accurate decisions within situations that 
are sufficiently similar to those situations it has been 
trained to. For other situations, its extrapolation-ability 
is necessary to still make good decisions. As soon as 
specific situations are too different from the training 
simulation, obviously the policy-based control becomes 
useless. In such a case, the simulation model would 
need to be adapted in order to correspond to such 
situations, and the policy would need to be adapted / 
relearned.  

Hence, if being learned accurately, policy-based control 
is valid for systems where their behavior, dynamics and 
uncertainty are adequately predictable. If such a system 
changes over long time, and the simulation no more 
matches the real-world, special techniques will need to 
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be applied for learning a new policy or adapting the 
existing one, where numerous approaches already exist 
in literature, using memories of already evaluated 
solutions, sub-populations or immigration 
methodologies in order to adapt the evolutionary search 
to changing positions of the desired optima over time 
(Yang 2013). Hence, solution adaptation is avoided on a 
short-time scale, where the policy is able to derive 
decisions for uncertain and dynamic states. On a long-
time scale, solution adaptation is still necessary in order 
to meet potential drifts of the system (i.e. a mismatch 
between simulation model and real-world). 

Future work will need to concentrate on the 
examination of such drifts and needs to apply 
methodologies for policy adaptation. 

5.1. Conclusion 
This paper illustrated the application of policy function 
approximation for the sake of dynamic optimization 
under uncertainty in power grids. Summarizing related 
work from the authors and stating new results, two 
empirical studies have been outlined that show the 
application to central problem classes in power grid 
optimization. While policy-function approximation 
seems to be a fruitful technology for dynamic 
optimization, open issues have been identified that 
challenge new research questions in the context of 
dynamic systems. 

 
ACKNOWLEDGMENTS 
The work described in this paper was done within the 
Josef Ressel Centre for Heuristic Optimization 
Heureka! (http://heureka.heuristiclab.com/) sponsored 
by the Austrian Research Promotion Agency (FFG). 

 
REFERENCES 
Clement, K., Haesen, E., and Driesen, J. (2008): The 

Impact of Uncontrolled and Controlled Charging 
of Plug-In Hybrid Electric Vehicles on the 
Distribution Grid, Proceedings of the European 
Ele-Drive Conference, (EET-2008). 

Clement, K., Haesen, E., and Driesen, J. (2009). 
Stochastic Analysis of the Impact of Plug-In- 
Hybrid Electric Vehicles on the Distribution Grid, 
20th International Conference on Electricity 
Distribution CIRED, Prague. 

Hutterer, S., Affenzeller, M., and Auinger, F., (2012). 
Evolutionary Optimization of Multi-Agent Control 
Strategies for Electric Vehicle Charging. 
Companion Publication of the Genetic and 
Evolutionary Computation Conference, 
GECCO'12, Philadelphia, PA 

Hutterer, S., Affenzeller, M., and Auinger, F., (2013). 
Evolutionary Algorithm Based Control Policies for 
Flexible Optimal Power Flow Over Time, 
Proceedings of the EvoStar – EvoEnergy 
Workshop Workshop, Vienna, Austria 

Hutterer, S., Auinger, F., and Affenzeller, M., (2013). 
Evolutionary Computation Enabled Controlled 
Charging for E-Mobility Aggregators, IEEE CIS 

Symposium Series on Computational Intelligence, 
Workshop: CIASG, Singapore 

Hutterer, S. and Affenzeller, M., (2013). Genetic 
Programming Enabled Evolution of Control 
Policies for Dynamic Stochastic Optimal Power 
Flow, Companion Publication of the Genetic and 
Evolutionary Computation Conference, 
GECCO'13, Amsterdam, Netherlands 

Nguyen, T.T, Yang, S., and Branke, J. (2012). 
Evolutionary dynamic optimization: A survey of 

  the state of the art. Swarm & Evol. Comput. 6, pp. 
1–24. 

Nguyen, T. T. and Yao X. (2012). Continuous Dynamic 
Constrained Optimization-The Challenges. IEEE 
Transactions on Evolutionary Computation, 16(6), 
pp. 769-786. 

Powell, W. B., Simao, H. P., and Bouzaiene-Ayari, B. 
(2012). Approximate dynamic programming in 
transportation and logistics: A unified framework. 
European Journal of Transportation and 
Logistics, 1(3), pp. 237-284. 

Sortomme, E.,  Hindi, M. M. , McPherson, J. & 
Venkata, M. (2011). Coordinated Charging of 
Plug-In Hybrid Electric Vehicles to Minimize 
Distribution System Losses. IEEE Transactions on 
Smart Grid, 1(1). 

Wang, H., Murillo-Sanchez, C. E., Zimmerman, R. D., 
and Thomas, R. J. (2007): On computational 
issues of market-based optimal power flow. IEEE 
Transactions on Power Systems, 22(3). 

Yang, S. and Yao, X. (2013). Evolutionary 
Computation for Dynamic Optimization Problems. 
Studies in Computational Intelligence Vol. 490, 
Springer Berlin Heidelberg 
 

AUTHORS BIOGRAPHY 
Stephan Hutterer received his Diplomingenieur (FH) 
(graduate engineer) in Automation Engineering at the 
University of Applied Sciences Upper Austria. Since 
2009, he is PhD candidate at the Johannes Kepler 
University Linz, Austria, working in the field of 
evolutionary optimization for intelligent power grids. 
His special research interests are simulation-based 
optimization for the integration of distributed renewable 
supply as well as electric vehicle fleets into power grids. 
He is member of the Heuristic and Evolutionary 
Algorithms Laboratory at the University of Applied 
Sciences Upper Austria. 

Michael Affenzeller has published several papers, 
journal articles and books dealing with theoretical and 
practical aspects of evolutionary computation, genetic 
algorithms, and meta-heuristics in general. In 2001 he 
received his PhD in engineering sciences and in 2004 he 
received his habilitation in applied systems engineering, 
both from the Johannes Kepler University of Linz, 
Austria. Michael Affenzeller is professor at the 
University of Applied Sciences Upper Austria, Campus 
Hagenberg, and head of the Josef Ressel Center 
Heureka! at Hagenberg. 

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2013, 
ISBN 978-88-97999-27-0; Bossomaier, Bruzzone, Cunha, Janosy, Longo, Eds. 

70


