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ABSTRACT 

This paper discusses modelling of a racing series hybrid 

electric vehicle called Noao. This plug-in hybrid system 

is equipped with an engine/generator set as its range 

extender. The battery acts as the prime mover to propel 

the vehicle. Available applications of control strategies 

for hybrid vehicle system in the literature are reviewed 

to identify a suitable solution for its optimization. The 

behaviour of the system and all of its components are 

modelled in simulation and validated through 

experiments performed on the real racing circuit. A 

dynamic programming approach is applied offline to 

optimize the existing rule based control parameters 

defined for this racing car application. The same 

approach is implemented to adjust the engine operating 

point in order to achieve a longer endurance and to have 

a better performance. 

 

Keywords: racing car, series hybrid electric vehicle, 

engine/battery, dynamic programming optimization 

 

1. INTRODUCTION 

Hybrid electric vehicle (HEV) system appears as one of 

the most viable technologies with significant potential 

to reduce fuel consumption and pollutant emissions 

within realistic economical, infrastructural, and 

customer acceptance constraints. It possesses new 

degrees of freedom to deliver power, thanks to presence 

of its reversible energy storage system (ESS) that offer 

capability of idle off, regenerative braking, power assist, 

and engine downsizing (Lin et al. 2001, Serrao et al. 

2011). It also has higher fuel efficiency and can achieve 

better performance than a conventional vehicle (Gao et 

al. 2009, Wirasingha et al. 2011). 

The design of HEV system architecture is 

complex, and the power management is complicated 

due to a high degree of control flexibility, non-linear 

and multi-domain components organization. So, an 

appropriate energy management is necessary to 

coordinate its multiple energy sources and converters to 

obtain maximum energy efficiency and optimize its 

potential (Lin et al. 2001, Salmasi 2007, Park et al. 

2007). 

The vehicle studied in this paper is a result of a 

collective work by the experts and specialists of racing 

car application around Magny-Cours circuit industrial 

site (PPNMC 2012, Magny Cours Circuit 2012). They 

use their expertise and experiences to build the car and 

define its control parameters. They adopt a heuristic 

approach of rule based method to control the amount of 

power given by the battery and the power generated by 

the engine/generator (EG) set which is easily 

implemented in real vehicle by using a set of 

deterministic rules or fuzzy rules. 

There are two methods of control strategies; the 

rule based method and the optimization method. The 

rule based (RB) power management strategy is based on 

engineering intuition and simple analysis on component 

efficiency tables or charts (Lin et al. 2003, Ambühl et 

al. 2009, Guzzella et al. 2009). It is robust, has less 

computational load, and is effective in real-time 

supervisory control of power flow in a hybrid drive-

train (Koot et al. 2005, Langari et al. 2005, Salmasi 

2007, Gong et al. 2008, Bayindir et al. 2011). It can 

achieve near optimal solution, but it may fail to fully 

exploit potentials of HEV architecture (Koot et al. 2005, 

Gong et al. 2008, Serrao et al. 2011, Wirasingha et al. 

2011). It also cannot be easily implemented to another 

vehicle or driving cycle due to lack of formal 

optimization and generalization (Serrao et al. 2011). 

The optimization based control methods can be 

local, global, real-time, and parameter or threshold 

optimization. It can provide generality and reduce heavy 

tuning of control parameters (Sciarretta et al. 2004). 

Optimization based controllers main task is to minimize 

a cost function which is derived based on the vehicle 

and component parameters, and also the performance 

expectations of the vehicle (Wirasingha et al. 2011). 

Global optimization approach can find a global 

optimum solution over a fixed driving cycle and known 

future driving conditions to determine power 

distribution of each system, make it unsuitable for a real 

time vehicle control (Sciarretta et al. 2004, Salmasi 
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2007, Sundstrom et al. 2009, Nino-Baron et al. 2011). It 

requires heavy computation and usually used for offline 

simulation applications as a design tool to analyze, 

assess, and adjust other control strategies for online 

implementation (Salmasi 2007, Gao et al. 2009, 

Wirasingha et al. 2011, Bayindir et al. 2011). The 

example of this method is Dynamic Programming (DP), 

Genetic Algorithm (GA), and Direct Algorithm. 

Real time optimization minimizes a cost function 

at each instant that depends only upon the system 

variables at the current time which have been  

developed using the system past information. It has 

limits on knowledge of future driving conditions and 

the electrical path self-sustainability causing the 

solution to be not global optimal (Sciarretta et al. 2004, 

Salmasi 2007, Wirasingha et al. 2011). The common 

method are the optimal control theory  (Delprat et al. 

2004, Ngo et al. 2010) and the equivalent consumption 

minimization strategy (ECMS) (Ambühl et al. 2009, 

Gao et al. 2009, Geng et al. 2011). The ECMS is mostly 

utilized because it only relies on the equivalence factor 

(EF) to solve the optimization problem (Geng et al. 

2011). 

 In this work, DP optimization method is chosen for 

this Noao car. This method has never been utilized to 

optimize a racing type vehicle. The complete driving 

schedule is obtained from the experiment carried out at 

Magny-Cours racing circuit in France. A global 

optimization can be done because a precise 

specification of all components is available. 

 DP is preferred over other approaches because it 

has established a reputation as the benchmark of other 

strategies with its global optimum solution (Lin et al. 

2001, Gong et al. 2008, Sezer et al. 2011). And it is 

chosen over multi-objective GA trade-off solution since 

minimization of pollutant emissions is not one of the 

focuses of this optimization. 

 The target of the control is to deplete the state of 

charge (SOC) of the battery from its high initial SOC at 

the start of the race and reach a low limit of final SOC 

after a number of turns at the end of the race. The 

objective of this study is to optimize the power split of 

both power sources in order to minimize the system 

power losses and improve energy efficiency through 

regenerative braking and power assist. The results are 

then utilized to adjust the control parameters to achieve 

the objective and improve the car endurance and 

enhance its performance. 

The next part of this paper introduces the vehicle 

and its components. It is followed by an explanation of 

the DP algorithm of dynamic programming used for the 

case studies, which results will be analyzed in the 

results and discussion part, and finally the conclusion in 

the last part. 

 

2. VEHICLE MODEL 

The Noao car used in this work is a series hybrid 

electric racing car system developed by the Association 

des Entreprises Pôle de la Performance Nevers Magny-

Cours (PPNMC 2012, Magny Cours Circuit 2012) 

shown in Figure 1. 

 Figure 2 presents the architecture of the system 

which consists of transmission (T), electric motor (EM), 

power conditioner (PC), Lithium-ion battery (B), 

internal combustion engine (ICE), and electric generator 

(G). Note that the arrows show the energy flows 

between components in the power-train. Parameters of 

this vehicle are given in Table 1, other characteristics of 

this vehicle can be found in the website of the 

association (PPNMC 2012). 

 

 
Figure 1: Noao Vehicle 

 

 
Figure 2: Series HEV Configuration 

 

Table 1: Vehicle Parameters 

 

 

2.1. Vehicle Dynamics 

The power needed at wheels from the two main energy 

sources, the battery and the engine are calculated using 

Equation 1, referring to (Guzella et al. 2007). 

 The terms on the right side of the vehicle dynamics 

equation represent the sum of aerodynamic force, 

friction force, inertia force, and climbing force times the 

average velocity,  of the car. Due to relatively high 

value of , the road slope factor cannot be ignored for 

this racing car system. The detail of the circuit and the 

profile of the road elevation in function of distance can 

be found in (Magny Cours Circuit 2012). For simulation 

purpose, the model is represented in a time discrete 

model in Matlab. 

 

 (1) 

  

 

 

Mass 

mv 

[kg] 

Front 

surface 

S [m
2
] 

Drag 

coefficient 

Cx [-] 

Rolling 

resistance 

μ [-] 

Wheel 

diameter 

[m] 

1200 2.0 0.35 0.012 0.62 
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Equivalent mass  is the sum of vehicle mass 

 and the equivalent mass of the rotating parts . It 

is used to calculate the inertia force to accelerate the 

rotating parts inside the vehicle (Guzella et al. 2007). 

Different from a conventional vehicle, this mass is 

determined from the EM down to the wheels as detailed 

in Equation 2. From calculation, it is found out to be 

185kg for a mechanical efficiency of 0.95, transmission 

ratio of 2.9, and polar moment of inertia of 3.2kgm
2
, 

0.05kgm
2
, and 1.8kgm

2
 for the wheels, propeller shaft, 

and electric motor respectively.  

 

 (2) 

 

 The model development of the components used in 

this study is based on models developed in (Butler et al. 

1999, Rizzoni et al. 1999, Lin et al. 2001, Ehsani et al. 

2004, Guzella et al. 2007, Liu et al. 2008). The driving 

cycle of the circuit and the requested power profile at 

wheels are shown in Figure 3 which represent four turns 

of the racing circuit. Verification of the model is made 

in the same figure and errors are identified to be ±1.5%. 

Consistent behaviour can be observed even if there are 

still errors in the power request profile of the model. 

 

 
Figure 3: Driving Cycle and Power Request Profile 

 

2.1.1. Battery Model 

There are three Lithium-ion batteries of 500V nominal 

voltage installed in this car. Equation 3 to Equation 7 

represent the model of the battery.  is the power of 

the battery, positive during discharge and negative value 

if it is recharged  (Butler et al. 1999). The battery open 

circuit voltage  and its resistance  are in function of 

SOC. Figure 4 shows the verification of this model in 

terms of battery current, voltage, and SOC evolution 

with its results from experiment.  

 

     (3) 

 

   (4) 

 

  

      (5) 

 

    (6) 

 

    (7) 

 

 

 
Figure 4: Battery Model Verification 

 

2.1.2. Engine/Generator Model 

The ICE is a three cylinders direct-injection gasoline 

engine of 1.0L, 50kW nominal power and coupled with 

a generator of 54kW nominal power at 4500rpm. As 

applied in most of series HEV configuration 

optimization studies like in (Konev et al. 2006, Park et 

al. 2007, Nino-Baron et al. 2011, Moura et al. 2011, 

Serrao et al. 2011, Sezer et al. 2011), the combined 

efficiency map of these components is demonstrated in 

Figure 5. Assuming that the dynamic behaviour of the 

EG can be neglected for a discrete time optimization of 

1s interval. 

 

  

 
Figure 5: Engine/Generator Efficiency Map 

 

TICEmax 
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 The optimal operating points are the best efficiency 

point at a specific power value. It is traced along an 

increment of 5kW power until the maximum power that 

can be given by the engine. Efficiency map of the 

engine is obtained by a zero dimensional 

thermodynamic model explained in (Asus et al. 2012) 

which is done in simulation and confirmed with the 

experimental result. 

 

3. DYNAMIC PROGRAMMING ON NOAO 

DP can solve the optimal control of non-linear, time-

variant, constrained, discrete time approximations of 

continuous-time dynamic models of HEV. It can 

achieve absolute optimal fuel consumption for different 

system configurations, but it needs all of the future 

conditions for inputs to be known a priori (Sundstrom et 

al. 2009, Ambühl et al. 2009). 

 It is not implementable in real vehicle due to their 

preview nature and heavy computation requirement, 

therefore is difficult to be applied in real time control. 

But, it can be used for offline simulations and to 

compare performance of a real time controller (Lin et al. 

2001, Lin et al. 2003, Gong et al. 2008, Sezer et al. 

2011). Stochastic DP has been implemented by (Liu et 

al. 2008, Opila et al. 2011, Moura et al. 2011) to be use 

in a real vehicle by selecting a finite number of sampled 

power demand defined using Markov-chain model. 

 The DP optimization method is largely 

implemented in parallel HEV to determine optimal 

torque split of the system (Gong et al. 2007, Gong et al. 

2008, Gong et al. 2009, Lin et al. 2001, Lin et al. 2003, 

Lin et al. 2004, Sundstrom et al. 2008, Sundstrom and 

Guzella 2009, Ngo et al. 2010). While (Bonnans et al. 

2004, Liu et al. 2008, Opila et al. 2011, Moura et al. 

2011) use it to optimize the power split in a series-

parallel HEV. 

 

3.1. Dynamic Programming Problem Formulation 

 The DP used for this car is based on the problem 

formulation discussed in (Brahma et al. 2000, Perez et 

al. 2006, Koot et al. 2005) for a series HEV 

architecture. The power request at time  is the sum of 

both power sources (Equation 8), the power flow from 

the engine/generator and the power flow of the ESS. 

The ESS power is positive if the power flowing away 

from the ESS. The requested power here is defined as 

the amount of power needed at the electic motor. 

 

   (8) 

 

 The power sources are subjected to physical 

constraints expressed in Equation 9 and Equation 10. 

 

  (9) 

 

  (10) 

 

 The control objective is to minimise the energy 

consumption of the system in a time interval [0,T]. It 

finds the power flow profile in the EG path and ESS 

path that minimises cost function in Equation 11.  

is the amount of power of the fuel burnt. 

   

 

 

 

   

 

                   (11) 

  

 The dynamic programming model is implemented 

in Matlab function developed by (Sundstrom and 

Guzella 2009) and is modified to improve the power 

split factor,  applied for this system. 

Battery SOC,  is the state variable at instance , 

forms the time-variant model (Equation 12) that 

includes the known variables of the driving cycle.  is 

the number of the time steps , which defines , the 

length of the problem. 

 

    (12) 

  

                (13) 

  

                 (14) 

 

 Throughout this paper, the initial and final state 

variables  and  will be changed according to 

optimizations carry out for this car. 

 

3.2. Refinement of the Actual System 

The rule based control strategy method implemented in 

the actual car decides the amount of power that will be 

delivered by the battery and generated by the EG set to 

assist the propulsion during traction. And help 

recharging the battery during regenerative braking as 

can be observed in Figure 7. For this experiment, the 

SOC decreases from 0.54 to 0.37 after four turns of the 

circuit for the duration of 610 seconds. It chooses the 

operational points in function of the requested power to 

operate the EG around its optimal operating region. 

 DP optimization is carried out for the same driving 

cycle to see improvement that can be made on the 

system energy efficiency. It is because, it is possible for 

the EG to help recharging the battery or to be idle 

during regenerative braking phase. The compared 

values are presented in Table 2. 

  

3.3. Improvement on Vehicle Endurance 

As stated before, the battery charge is expected to 

decrease to its lower limit by the end of a target number 

of turns. And the existed defined control parameters can 

achieve 14 turns of the circuit with SOC depletion from 

0.9 to 0.3, assuming that the depletion is constant 

between this ranges. 
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 The endurance of the car depends on the distance it 

can cover before the SOC falls to 0.3. Considering the 

same assumption, the car is imposed to complete 20 

turns in this DP optimization to see its feasibility for a 

longer autonomy range. So, using the same driving 

cycle the state constraint which is the final SOC value is 

changed to 0.42. 

 

Table 2: Results Comparison of DP Optimization 

 Actual RB 

Method 

DP DP 

Endurance  

SOC 

Initial 
0.54 0.54 

SOC 

Final 
0.37 0.42 

Σ Preq 

[MWs] 
32.448 32.448 

Σ PEG 

[MWs] 
20.894 20.513 22.790 

Σ Pfuel 

[MWs] 
84.194 76.099 84.166 

Average 

ηEG 
0.2482 0.2696 0.2708 

Σ mfuel 

[kg] 
1.914 1.729 1.913 

Σ PESS 

[MWs] 
11.554 11.935 9.6577 

Σ Pbat 

[MWs] 
11.599 11.769 9.6439 

Average 

ηESS 
0.9961 1.0141 1.0014 

Average 

ηsystem 
0.3387 0.3693 0.3459 

 

 

3.4. Improvement on Vehicle Performance 

The same approach is used to enhance the performance 

of this car by using a more aggressive driving cycle for 

the same driving circuit. It is expected that it will have 

higher power consumption, rapid battery discharge, and 

cause more losses. But, the vehicle can arrive in a 

shorter time at the finish line which is essential for a 

racing car. 

 

 
Figure 6: Aggressive Driving Cycle and Its Power 

Request Profile 

 

Experimental data obtained for this case study has 

higher limits of maximum power given by the power 

sources of the system. It results in superior velocity than 

the previous configuration because it has more available 

power for acceleration as can be observed in Figure 6. 

SOC depletes from 0.38 to 0.09 in 580 seconds to 

complete four turns of the circuit for this experiment, 

which means only eight circuit turns for the targeted 0.9 

to 0.3 SOC diminution. After that, a higher SOC lower 

limit is set to see the maximum number of turns that can 

be achieved for this power configuration. The results of 

this case study are presented in Table 3. 

 

Table 3: DP Optimization for Better Performance 

 Actual RB 

Method 

DP Performance 

Optimized Maximum 

SOC 

Initial 
0.38 0.38 

SOC 

Final 
0.09 0.14 

Σ Preq 

[MWs] 
38.342 38.342 

Σ PEG 

[MWs] 
19.276 17.829 21.498 

Σ Pfuel 

[MWs] 
72.600 66.483 79.377 

Average 

ηEG 
0.2655 0.2682 0.2708 

Σ mfuel 

[kg] 
1.650 1.511 1.804 

Σ PESS 

[MWs] 
19.136 20.514 16.845 

Σ Pbat 

[MWs] 
19.063 19.354 16.073 

Average 

ηESS 
0.9962 1.0600 1.0480 

Average 

ηsystem 
0.4183 0.4467 0.4017 

 

 

4. RESULTS AND DISCUSSION  

In the previous section, three study cases are 

highlighted in order to optimize the racing car system. 

As can be seen in Table 2 and Table 3, DP approach 

enables the system to have lower fuel consumption and 

better system efficiency compared to its actual utilized 

control parameters. 

 Refinement of the actual system gives result as can 

be observed in Figure 7. For the same SOC trajectory, 

at the beginning DP optimization selects to use more 

power from EG, and then reduces its consumption to 

utilize more energy from the ESS to finish the rest of 

the cycle. As demonstrated in Table 2, we can see that 

the optimization results in lower fuel consumption, 

enhanced fuel power efficiency, and improved system 

efficiency. Recuperated energy during regenerative 

braking has improve the ESS average efficiency which 

is simply taken as the total ESS power divided by the 

total battery power of the system. 

Experiment   Model 
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The second study case is to improve the vehicle 

endurance. The results of both power profiles are 

presented in Figure 8 and the considered values are 

stated in Table 2. As can be analyzed, the EG outputs 

more power to compensate battery energy utilization 

and choose to generate power during deceleration phase 

to help recharging the battery. 

 

 

 
Figure 7: Results Comparison between the Actual RB 

Method and DP Optimisation 

 

 

 
Figure 8: Results of DP Optimization to Increase the 

Vehicle Endurance 

 

Figure 9 shows the distribution points of the EG 

power in function of the power request compared 

between the actual RB control, DP optimization, and 

DP optimization for longer endurance. In the RB 

method, the points are concentrated at 40kW EG power 

when the power request for traction is more than 60kW. 

But for DP, the threshold is at 40kW power request. 

The EG power of RB goes to 0kW when the power 

request is in the range of -20kW to 20kW, and then 

scattered between 15kW to 35kW EG power during 

regenerative braking. However during this phase, DP 

chooses to help recharging the battery. 

In this chart (Figure 9), we cannot see the 

difference between the DP solution and the DP 

endurance, but we can study it further in Figure 7 and 

Figure 8. These results will be used to recalibrate the 

control parameters of the electric generation path i.e EG 

power of the racing car for the regular driving cycle of 

the circuit. 

 

 
Figure 9: The EG Power in Function of Power Request 

 

 As shown in Table 3, as expected in the last case 

study, the total power request is higher for this 

aggressive driving cycle than in its regular driving 

cycle. The car can arrive about 7.5 seconds earlier per 

turn but it decreases the battery charge rapidly and 

causes important energy losses in the power train. In the 

real car, the system prefers to utilize energy from the 

battery to achieve the better performance. 

 Through optimization, DP method can improve the 

system overall efficiency during this condition. The fuel 

consumption is lower because it chooses to limit the EG 

power production as in Figure 10 to give a way for the 

battery to supply a slightly more power for propulsion 

for the same SOC trajectory like in the experiment. 

 In order to determine the maximum number of 

turns that can be completed by using this power 

configuration, the final SOC is set at 0.26. But, it turns 

out to be unattainable due to limitations and physical 

constraints of the system. And it gives 0.14 as the final 

SOC value demonstrated in Figure 11 which means a 

shorter autonomy range for the optimal SOC depletion. 

This corresponds to only 10 turns of the circuit even if 

the EG tries to give a maximum power to recharge the 

battery during regenerative braking phase.  

 For the moment, even though this method is not 

applicable in the real vehicle, this approach can be the 

reference to set the parameters of the power sources to 

boost the performance of the vehicle optimally. 

Experiment 
DP refinement 

Experiment 
DP Endurance 

Experiment  xxx 
DP refinement  ooo 
DP Endurance  ••• 
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Figure 10: Results of DP Optimization by Using a More 

Aggressive Driving Cycle 

 

 

 

 
Figure 11: Maximum Endurance by Using a More 

Aggressive Driving Cycle 

 

 The simulations of the case studies are performed 

on a 32-bit Intel(R) Pentium Dual CPU 1.8GHz with 

2GB RAM. The computational time for the calculation 

varies from 53s to 65s to analyse about 20 millions 

points, which mean 330000 potential points per seconds 

to solve these problems. 

 In the future, it is possible to consider the 

implementation of this method online by using the 

results obtained in this paper. Because the driving cycle 

can be recognized in advance given the limitations 

determined for the power sources. The repeatable 

driving schedule during a race allows a segmentation of 

the optimization that can reduce the computational 

burden of the calculation. And the SOC trajectory is 

predictable through an offline optimisation for the 

whole period of any race. The SOC evolution can be 

checked every time the car passes the starting point of 

the racing circuit and update its data for the next turns.  

 

5. CONCLUSION 

A DP optimization method is applied on Noao, a series 

hybrid racing car with a range extender. Some 

modifications are made on the existing vehicle model 

for the racing car application which error is controlled 

in the range of ±1.5%. The results from simulation show 

possible improvement in the fuel and system efficiency 

for the same driving cycle and SOC depletion from 

experimental result of the real car. The same approach 

of DP is used to study the possibility to increase the 

autonomy range of the racing car and proven to be 

feasible. These results then analyzed and will be utilized 

to adjust the control parameters of the engine/generator 

generation power. Then, the DP approach is 

implemented to enhance the performance of this racing 

car for a more aggressive driving cycle applied for the 

same racing circuit. But the car has a shorter autonomy 

range under this condition. As perspectives, this global 

optimisation approach will be studied further to be used 

in the racing car online control application. 
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APPENDIX 

 road slope 

 acceleration 

 Capacity of battery 

 Drag coefficient 

DP Dynamic Programming 

ECMS 
Equivalent Consumption Minimization 

Strategy 

EF Equivalent Factor 

EG Engine/Generator 

EM Electric Motor 

ESS Electrical Storage System 

FT Fuel Tank 

 gravity 

G Generator 

GA Genetic Algorithm 

HEV Hybrid Electric Vehicle 

 Battery current 

 Polar moment of inertia 

ICE Internal Combustion Engine 

 mass of fuel consumption 

 vehicle mass 

 rolling resistance 

 number of cells 

 ESS efficiency 

 Electric Motor efficiency 

 Engine/Generator efficiency 

 Transmission efficiency 

 System efficiency 

Experiment 
DP Performance 

Experiment 
DP Max Performance 

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2013, 
ISBN 978-88-97999-27-0; Bossomaier, Bruzzone, Cunha, Janosy, Longo, Eds. 

29



 Battery Power 

 Electric Motor Power 

 Electrical Storage System Power 

 Fuel Power 

 Requested Power 

 Power at wheels 

PC Power Conditioner 

 air density 

RB Rule Based 

 Front surface 

SOC State of Charge 

T Transmission 

 Velocity 

 Average velocity 

 Battery voltage 

 Open circuit voltage 
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