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ABSTRACT 

Topology optimization commonly has performed 

minimization of the mean compliance under a volume 

constraint. On the other hand, mechanical product 

designers are considering “a weight minimization under 

a stress constraint” as an objective and constraints for 

generating new optimal structure. Moreover, for 

obtaining this objective, a mechanical structure design 

has performed to minimize weight of its structure by 

checking the principal stress vectors as the force’s flow, 

and speculating its desirable structure under maintaining 

its stiffness, iteratively. These design processes' 

difference has generated mismatch between actual 

design practice and the conventional topology 

optimization theory. Therefore, we have proposed ACO 

using the principal stress vector for overcoming 

mismatch of the topology optimization theory. In this 

paper, ACO Topology Optimization with Geometrical 

Constraint (ACTO with GC) is proposed to improve 

unnecessary structures elements problem. Our proposal 

is new geometrical constraint method which overlays 

obtained optimal ants route as the shape feature pattern, 

learns it for next optimization process. 
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1. INTRODUCTION 

Topology optimization has been used for structural 

optimization, and the various techniques and approaches 

of topology optimization have been developed and 

researched since about 1985 (Nishiwaki, Izui and 

Kikuchi 2012). Topology optimization can change shape, 

size and number of holes, therefore topology 

optimization is the most flexible methodology in 

structural optimization. Topology optimization has 

generally performed minimization of the mean 

compliance under a volume constraint until now. First 

topology optimization’s CAE software, which is named 

OPTISHAPE, has been sold in Japan from 1989. 

OPTISHAPE, based on minimization of the mean 

compliance, has been studied and developed (Bendsoe 

and Kikuchi 1988, Suzuki and Kikuchi 1991).  

OPTISHAPE has been utilized in various industries, 

such as machine, aircraft, building and automobile 

industries have been used. However, obtained optimal 

topological structure has complex shapes and layouts. It 

was difficult to manufacture it efficiently, because it is 

required that precision technology and great cost should 

be supplied. Additive Manufacturing (AM), which is a 

rapidly evolving field, solves the problem between 

topology optimization and an engineering and 

manufacturing standpoint. AM via including the 3D 

printer has changed this situation, because production by 

AM has flexible and to be able to produce optimal 

structure introduced by topology optimization.  A 

method of topology optimization focused on AM was 

suggested in 2011 (Brackett, Ashcroft and Hague 2011). 

On the other hand, mechanical product designers often 

consider “a weight minimization under a stress constraint” 

and the force flow i.e. principal stress vector when design 

optimal structure. Moreover, for obtaining this objective, 

a mechanical structure design has performed to minimize 

weight of its structure by checking the principal stress 

vectors as the force’s flow, and speculating its desirable 

structure under maintaining its stiffness, iteratively. 

These design processes' difference has generated 

mismatch between actual design practice and the 

conventional topology optimization theory. However, 

topology optimization has generally performed 

minimization of the mean compliance under a volume 

constraint. Moreover, topology optimization considering 

principal stress vector is not much.  

Structure optimization using ACO has been suggested 

by Champ et al. in 2004 (Camp and Bichon 2004), and 

topology optimization using ACO was applied in 2008 

(Kaveh, Hassani, Shojaee and Tavakkoli 2008). 

However, these applied optimization only have been 

introduced a basic principle of ACO theory to for 

minimization of the mean compliance via a density 

method (Takada 2006). Subsequently, new topology 

optimization using ACO, which is called ACO Topology 

Optimization (ACTO), has been proposed and developed 

(Guan and Chun 2009, Ito Hoshi and Hasegawa 2016). 

These methods have versatility of design variable and, 

optimize in elements of the discretized design domain 
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that is ants are moving in design domain. Especially, the 

method developed by Ito considered a principal stress 

vector as a design variable for filling this mismatch 

between the topology optimization theory and 

mechanical product designers. However, these 

optimization has an improvement problem, and it is that 

an optimal topological shape and layout in which many 

unnecessary structures elements were included is 

obtained. In this paper, ACTO with a geometrical 

constraint (ACTO with GC) is proposed to solve the 

unnecessary structures elements problem. Our proposal 

is new geometrical constraint method which overlays 

obtained optimal ants route as the shape feature pattern 

by ACO, and learns its pattern for next optimization 

process. This paper discusses the effect of new proposal 

method through a trial of simple cantilever problem. 

 

2. ANT COLONY OPTIMIZATION 

ACO algorithm was inspired by a behavior of ant 

swarm intelligence. ACO consists of three steps (Figure 

1). First step is a setting the initial pheromone of ants on 

the route. Next step is to add pheromone on the route 

where ants selected. Final step is to update the 

pheromone on overall routes. By repeating these steps, 

ACO obtains the optimal route by moving of ants which 

are guided to its pheromone. This pheromone update 

procedure consists of addition and evaporation of 

pheromone. The addition of pheromone means that 

pheromone is added on the route where ants passed, and 

then, the evaporation of pheromone means that a 

pheromone evaporates with rain, respectively. Moreover, 

ants are able to communicate with a number of ants and 

can obtain optimal route through pheromone update. 

To compute pheromone updating: 

 

τ(t+1) = μτ(t)+∑∆τi

m

i=1

 (1) 

μ: Reduction factor   m: individual Number  

i:selected route  ∆τi:addition pheromone 

t: Generation Number 

 

Equation(1) shows update rule of the pheromone. 

Where, Reduction factor μ become decimal value, and 

then the pheromone is reduced via this factor. It means 

evaporation of pheromone.  

 

 
Figure 1: Process of ACO 

 

3. ACO TOPOLOGY OPTIMIZATION 

First, several ants generate routes in a design region. 

The design region is set from Von Mises stress as first 

pheromone of first generation. The generation means a 

repeat of ACTO. Routes of generated by ants become a 

structure one of structures of first generation. This study 

regards the structure as an individual. Optimal individual 

in first generation is chose by elite strategy when ACTO 

satisfy the requirement of individual. ACTO update first 

phenome of next generation base on the optimal 

individual of first generation. Moreover, the design space 

of a mechanical structure is divided by finite element 

where each element shows material or void as Figure 2 

(exist: 1, not exist: 0). In addition, ants explore optimal 

route in the design space by considering finite elements 

as a route. A topology representation is created by an 

ant's routes via setting 1 as passed route and 0 as non-

passed of an existence for a finite element. These 

elements become design variables of ACTO. The 

structure can be described by a discrete functionρ, as 

below: 

ρ = {ρ1, ρ2 … ρi} (2) 

Eρ = {
E1 ∶ if ρi = 1
E2 ∶ if ρi = 0

 (3) 

ρ ∈ 1, 0 (4) 

ρ: density function   i:element number   

E1: Young’s modulus(material exist)  

E2: Young’s modulus(material don’t exist) 

 

 In this case, E1is adopt as young’s modulus when the 

element has material but E2 is adopt as young's modulus 

when the element is void. Therefore, the element chose 

as route by ants has material, hence optimal structure of 

ACTO only has 1 or 0 of density (Figure 3).  

 

 

Figure 2: Flow chart of ACO topology optimization 
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Figure 3: Object model diagram and route of ants 

 

1) Initial Configuration 

The first pheromone is set for each elements. Von 

Mises stress is used to set the first pheromone. 

 

2) Ant of route selection 

The set first pheromone is use by ants to generate 

routes.  This section use some method, as follow: 

 

-  Linear rank method 

The linear rank method has been proposed by Baker in 

1985(Baker 1985, Mitchell and Iba 1997). In the linear 

rank method, its pheromone are ranked normal ascending 

order from 1st to Nth,  redistribute values based on rank 

order (Figure 4). Moreover, the Max value of the linear 

rank method use Table 1.  

Equation of linear rank method, as follow: 

Exp Val(r，t) = Min+(Max+Min)
rank(r，t)-1

N-1
 

(5) 

1 ≤ Max ≤ 2 (6) 

Min = 2 − Max (7) 

t: time(iteration number)  Max: Nth redistribution value 

Min: 1st redistribution value r: rank 

 

 

 
Figure 4: Linear rank method 

 

 

 

 

Table 1: Max value of the linear rank method 

 
 

- Roulette wheel selection 

Roulette wheel section (Lipowski and Lipowska 2012) 

is the probability of selection is proportional to 

redistribute values of the liner lank method. The better 

fitted redistribute values of the liner lank method, the 

larger the probability of selection (Figure 5). This 

method considers N individuals, each characterized by 

redistribute values of the liner lank method. Selection of 

an individual choose randomly. The selection probability 

of i-th individual Pi is follow as: 

 

Pi =
Exp Val(r, t)

∑ Exp Val(r, t)N
i=1

  (i = 1,2,3 … , N) (8) 

Exp Val(i,t): redistribution value of liner lank method 

i: individual  r: rank of liner lank method 

 

 
Figure 5: Roulette wheel selection 

 

-Consider with the principal stress vector 

The green arrow in Figure 6 is the synthetic vector of 

the maximum principal stress and the minimum seed 

stress. The probability of selected the element increase 

when the element has the principal stress vector (Ito, 

Hoshi and Hasegawa 2016). 

 

 
Figure 6: Consider with the principal stress vector 

 

3) Fills population 

 Ants repeat route selection in design domain until the 

set number of individuals is satisfied. 
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4) Elite preservation strategy 

 Elite preservation strategy is able to replicate optimal 

individuals (i.e. optimal structure) in next generation, 

therefore this method prevents deterioration of volume of 

optimal structure (Kenneth 1975). Figure 7 shows the 

flow of Elite preservation strategy. 

 

Figure 7: Elite preservation strategy 

 

5) Pheromone update 

  This section executes pheromone update where paths’ 

ants have walked. Also, existing pheromones decrease 

because of evaporation of pheromone. Reduction rate of 

evaporation of pheromone M is often use 0.8 to 0.98. 

 

6) Fill individual 

ACTO repeats generating optimal structures until the 

set number of generations is satisfied. 

 

4. ACO TOPOLOGY OPTIMIZATION WITH 

GEOMETRICAL CONSTRAINT 

An optimal structure, is introduced by ACTO, has not 

been able to generate the intermediate element of density. 

This is a strong point of ACTO, but many unnecessary 

structures elements have comprised a large percentage of 

an optimal structure (Figure 8).  

 

 
Figure 8: Analysis result of ACTO 

 

Therefore, we propose new geometrical constraint 

method (i.e. learning function) by learning overlaid ants 

route into ACTO, which is named ACTO with GC, to 

improve unnecessary structures problem. Figure 9 shows 

the process of ACTO with GC. First step is to perform 

ACTO of the inner loop using Von Mises stress as the 

first pheromone value. This is repeated until iteration 

count in Table 2. Next, the shape feature pattern is made 

in learning function. Figure 10 shows a way of making 

the shape feature pattern in learning function. Red part of 

this figure is necessary structures for optimal structure of 

ACTO. On the other hand, blue part of this figure is 

unnecessary structures for optimal structure of ACTO. In 

this function, optimal ants route is overlaid. After that, 

elements with small number values  change the value to 

0 because this elements is unnecessary structures for 

optimal structure of ACTO.  This overlaid route 

becomes the first shape feature pattern. We repeat ACTO 

based on the pheromone that was calculated from the first 

shape feature pattern and its Von Mises stress into outer 

loop. This outer loop terminates the iteration count of 

outer loop in Table 2. 

 

 
Figure 9: Flowchart of ACTO with GC 

 

Table 2: Iteration count of inner and outer loops 

 
 

 
Figure 10: making the shape feature pattern in learning 

function 

 

5. EVALUATION 

Initial pheromone distribution of ants is created by Von 

Mises stress distribution. The optimization definition is 

described as the following. 

 

fP(ρ)＝V(ρ) + rP(ρ)  → Min (5) 

V(ρ) = ∫ ρ
s

ds (6) 

P(ρ) = {
0，if σmax < σall 

1，otherwise           
 (7) 
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Where fP(ρ ), V(ρ ), and P( ρ )  denote the modified 

objective function, the volume function for mechanical 

structure, and the penalty function, respectively. The 

design variables are defined by density variable ρ. The 

local stress constraint is consisted of maximum stress 

σmax and allowable stress σall.  

 

6. ANALYSIS SETTING 

Figure 11 shows object model in using this study. In 

addition, the analysis settings of this paper are shown in 

Table 3. In this study, we analyze 2 approaches to 

consider the shape feature pattern in ACTO with GC. 

First, analysis type 1(no normalization) does not change 

the shape feature pattern in setting the first pheromone. 

On the other hand, analysis type 2 (normalization) 

generate the first pheromone by binarizing the shape 

feature pattern (Figure 12). 

 

Figure 11: object model 

Table 3: Experiment condition 

 

 

Figure12:  Binarizing the shape feature pattern 

 

7. RESULTS AND DISCUSSION 

We applied ACTO with GC to the simple cantilever 

problem. Figure 13 shows the shape feature pattern of 

cantilever structure in each outer loop of learning 

function and the optimal structure. Red elements of this 

figure have strong characteristics of optimal structure, 

especially these elements are necessary structures for 

optimal structure of ACTO. On the other hand, yellow 

and green elements of this figure has weak characteristic 

of optimal structure, seemingly this part is unnecessary 

structures for optimal structure of ACTO. In addition, the 

optimal structure extracted characteristics from the shape 

feature pattern and made by using modeling tool.  

The shape feature pattern of analysis type 1 have red 

elements all over this shape. Especially, the third shape 

feature pattern (Figure13(c)) has its tendency. Hence, 

ACTO with GC is possible to delete unnecessary 

structures and generate clearly optimal structure from the 

shape feature pattern, such as Figure13 (d). However, the 

optimal structure (Figure 13(d)) have scraggly paths, 

because the shape feature pattern of analysis type 1 has a 

tendency that the structure of the upper part of the shape 

feature pattern is derived thickly. Analysis type 1 need to 

lessen its tendency. 

Figure 13: Analysis result of ACTO with GC 

with GC 
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On the other hand, the shape feature pattern of analysis 

type 2 has not the tendency that the structure of the upper 

part of the shape feature pattern is derived thickly. In 

addition, the shape feature pattern of analysis type 2 has 

a tendency to generate the internal structure finely. 

However, the internal shape of the shape feature pattern 

of analysis type 2 has Red elements less than the shape 

feature pattern of analysis type 1, because of a global 

route selection by ants. Therefore, the optimal structure 

(Figure 13(h)) has not tendency of the internal structure 

finely. Analysis type 2 need to increase iteration count of 

inner and outer loops of learning function. 

From these facts, the optimal structure is change by a 

way of setting initial pheromone value of the shape 

feature pattern in ACTO with GC. Moreover, count of 

inner and outer loops of learning function is important to 

improve the optimal structure. 

 

8. CONCLUSION 

In this paper, to solve the unnecessary structures 

problem of ACTO, the geometrical constraint method by 

learning overlaid optimal ants route have been 

introduced in ACTO. As the result, we confirmed ACO 

with GC is able to obtain the optimal structure, and to 

reduce unnecessary structures elements. However, 

unnecessary structures elements remain in the shape 

feature pattern. To remove unnecessary structures 

elements, it is necessary to increase iteration count of 

inner and outer loops. In addition, a way of setting initial 

pheromone value of the shape feature pattern in ACTO 

with GC is important to improve the optimal structure. In 

the future work, we plan to reconsider about iteration 

count of inner and outer loops and way of setting initial 

pheromone value of the shape feature pattern in learning 

function. After that, we try to perform ACTO with GC 

using new iteration count and a way of setting initial 

pheromone value. 
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