
THE OPEN ARCHITECTURE SCHEDULING SYSTEM FOR A SINGLE-ARMED

CLUSTER TOOL WITH PM CLEANING OPERATIONS

Dong-Hyun Roh(a), Tae-Eog Lee(b)

(a),(b) Department of Industrial & Systems Engineering

Korea Advanced Institute of Science and Technology

Daejeon, Republic of Korea

(a)rdh@simlab.kaist.ac.kr, (b)telee@kaist.ac.kr

ABSTRACT

Cluster tools are a type of widely used semiconductor

manufacturing equipment. Generally, a cluster tool is

operated on a built-in schedule; however, it is impossible

to modify or change the built-in schedule because of the

closed architecture of the scheduling system for the tool.

In this study, we propose a framework for an open

architecture scheduling system for a single-armed cluster

tool with PM cleaning operations. The scheduling system

works by scheduling command files that can be modified

or replaced from outside. As an application of the

framework, performance comparison analysis between

the backward and backward(z) sequences in a single-

armed cluster tool with multi-period PM cleaning

operations is conducted.

Keywords: cluster tool, open architecture scheduling

system, virtual cluster tool, PM cleaning operation

1. INTRODUCTION

In modern semiconductor manufacturing systems, about

300 processes are required for the fabrication of a

semiconductor product. Most processes, including

etching, vapor deposition, and wafer cleaning, are

performed using cluster tools (Yu and Lee 2017). Cluster

tools are the most popular type of configurable

semiconductor manufacturing equipment; they consist of

several single-wafer process modules (PMs) and a

material-handling robot called a transporting module

(TM). PMs are modular and can be detached and attached;

TM is responsible for transporting wafers. Usually, a

cluster tool is operated according to a specified wafer

flow pattern and several operational constraints. There

have been numerous studies on the operation of cluster

tools for various wafer flow patterns and constraints

(Venkatesh et al. 1997; Geismar 2004; Lee et al. 2014;

Wu et al. 2011; Kim et al. 2015; Kim et al. 2013; Kim et

al. 2013; Yu and Lee 2017; Rostami et al 2001; Kim et

al. 2003; Wu 2008).

 Cluster tools have diverse structures depending on the

types of PM and TM; structures include single-armed

and dual-armed cluster tools, multi-slot cluster tools, and

in-line multi-cluster tools (Lee 2008). Inter alia, the most

commonly used structure is a radial cluster tool, in which

PMs radially surround the tool. A radial cluster tool is

called a single-armed or dual-armed cluster tool

according to the number of robot grippers. It is known

that the backward sequence and the swap sequence are

optimal robot task sequences for the single-armed and

dual-armed cluster tools with series-parallel wafer flow

patterns, respectively (Lee 2008).

Generally, a semiconductor fabrication plant, a so-

called “fab”, purchases semiconductor manufacturing

equipment including cluster tools from a variety of

equipment manufacturing companies. Therefore, most

cluster tools operate on the schedule built into the tool by

the equipment manufacturing company. The built-in

schedule usually consists of a benchmark schedule

mainly based on the backward or the swap sequence and

several exception-handling techniques.

However, there exists an issue that built-in schedules

and tool schedulers are different for each equipment

manufacturing company. In addition, a tool scheduler has

a closed architecture; in other words, only the equipment

manufacturing company can modify the internal

structure and operating logic of the scheduler. This

means that a fab cannot arbitrarily modify a tool schedule

to induce high productivity and exception-handling

techniques for quality control. Since, in recent years, the

method of semiconductor production has changed from

the existing high-volume low-mix production to high-

mix low-volume production, a tool scheduler with closed

architecture leads to difficulty in optimizing the

operation of the tool in situations in which frequent

schedule changes are needed. Furthermore, there also

exists a disadvantage that it is difficult to investigate

whether the existing built-in schedule provides optimal

productivity or, if not, which parts need to be improved.

Therefore, a system capable of changing a tool schedule

from the outside as desired, called an open architecture

scheduling system, is needed. In order to implement the

open architecture scheduling system, a standard

scheduling command scheme of cluster tools that all

equipment manufacturing companies and fabs can

understand is needed. If all cluster tool schedulers follow

the same scheduling command scheme, it becomes quite

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

60

mailto:rdh@simlab.kaist.ac.kr
mailto:telee@kaist.ac.kr

easy for a fab to replace the old tool schedule with a new

one. This idea is similar to the NC programming

language or the NC code used in CNC systems. Since the

NC code has a standardized command scheme, a work

schedule of a CNC machine can be easily changed from

outside, even though the NC code is generated using a

variety of CAD/CAM software.

However, semiconductor manufacturing equipment,

including cluster tools, is much more sophisticated and

has diverse structures and operational constraints

depending on the processes. In addition, even equipment

that performs the same process may have different

structures depending on the equipment manufacturing

company. Therefore, establishing a standard scheduling

command scheme for cluster tools requires much expert

effort in the industrial setting.

 For this reason, this study proposes a framework for an

open architecture scheduling system. As an example, we

develop a virtual cluster tool (VCT) for a single-armed

cluster tool with PM cleaning operations and apply the

proposed framework to describe how the open

architecture scheduling system works. The framework

can be extended to cluster tools of various architectures.

In this paper, we first describe the open architecture

scheduling system framework. The framework improves

the basic concepts of the open scheduling architecture of

the cluster tool proposed by Lee and Lee (2010). Then,

we define the structure and operation of a single-armed

cluster tool with PM cleaning operations. To apply the

open architecture scheduling system framework, we also

suggest a reference model of the VCT. As an application,

we conduct a performance analysis for the backward and

the backward(z) sequences suggested by Yu and Lee

(2017).

2. ARCHITECTURE AND OPERATION OF A

SINGLE-ARMED CLUSTER TOOL WITH PM

CLEANING OPERATIONS

2.1. Architecture of a Single-armed Cluster Tool

Cluster tools have a variety of structures. Among them,

the single-armed cluster tool having a single-armed

transporting module and radially located PMs is one of

the most used pieces of manufacturing equipment in

leading fabs. A single-armed cluster tool consists of a

TM with a single gripper, several, usually two to six,

PMs, two loadlock modules for loading a wafer cassette,

and an aligner module for aligning a wafer unloaded

from a loadlock (Lee 2008). Among the components, the

TM and PMs are the most important for the operation.

2.2. Operation of a Single-armed Cluster Tool

When a cassette containing 25 wafers is loaded into a

loadlock, a TM carries a wafer to the PMs one by one.

The TM only performs wafer loading into the PM, wafer

unloading from the PM, and moving operations. In

addition, TM can perform one job at a time.

 Each wafer is processed according to a predetermined

recipe, which defines the sequence of process steps that

the wafer should visit and the process time for each

process step. For each process step, to raise productivity,

several PMs are assigned as parallel PMs. When a wafer

is processed sequentially in a tool having parallel PMs,

the wafer flow pattern is referred to as a series-parallel

flow pattern. After all processes have been completed,

the wafer is returned to the loadlock. This process

continues until all wafers in the cassette have been

processed.

 In order for a wafer to be loaded into a PM, the chuck

that serves to fix the wafer entering the PM should first

be prepared. When the chuck is ready, the slit valve door

opens and the TM loads the wafer. After wafer loading,

the slit valve door is closed and the chuck firmly holds

the wafer. Depending on the type of PM, pumping and

venting operations may be required to prepare the

process.

Therefore, the number of process steps, the number of

parallel PMs for each process step, the process time for

each PM, the required times for TM operations (loading,

unloading, and moving), and the required task times of

the slit valve door and chuck operations for each PM are

needed to define the configuration of a single-armed

cluster tool with a series-parallel flow pattern.

Figure 1: Single-armed Cluster Tool

2.3. Periodic PM Cleaning Operations

As the diameter of a wafer increases and the thickness of

the wafer circuit becomes thinner, enhanced wafer

quality control is required. Therefore, it becomes

necessary to remove residual chemicals in the PM after

the wafer process completes. A PM cleaning operation is

a process of removing these impurities (Kim et al. 2013;

Yu and Lee 2017). It is performed after a predefined

number of wafer processes, which is called a cleaning

period. During the cleaning operation, a wafer cannot be

loaded.

In terms of operation, a cluster tool with periodic PM

cleaning operations has differences from a typical single-

armed cluster tool. To define an operation of a tool with

periodic PM cleaning operations, the cleaning period and

the cleaning time for each PM are additionally required.

Consequently, the tool configuration is defined by

information describing the tool operation which is shown

in Table 1.

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

61

Figure 2: Single-armed Cluster Tool with PM Cleaning

Operations

Table 1: Information Required to Define Tool

Configuration

3. OPEN ARCHITECTURE SCHEDULING

SYSTEM OF SINGLE-ARMED CLUSTER

TOOL WITH PM CLEANING OPERATIONS

The open architecture scheduling system of the cluster

tool is a tool scheduler that can receive from the outside

information necessary for scheduling. However, existing

cluster tool controllers and schedulers have been

developed independently for each equipment

manufacturing company and it is not easy to implement

them because there is no standardized scheduling model

or rule. Therefore, a standard for the cluster tool

scheduling commands should be given priority. It is

difficult to standardize the scheduling commands of all

cluster tools because of the various types of cluster tools

depending on their usage, function, and required

performance level. Furthermore, there exist differences

in tools due to technology gaps among manufacturing

companies. Consequently, this study suggests an open

architecture scheduling system for a single-arm cluster

tool with PM cleaning operations.

 Scheduling a cluster tool requires three pieces of

information: the tool architecture information, the

benchmark TM task schedules, and exception-handling

techniques. The tool architecture information is the

information about the tool configuration and the tool

operation, listed in Table 1. The benchmark TM task

schedules refer to the work schedule of a TM when the

cluster tool is in a steady state. A TM task schedule

consists of a TM task sequence and a timing rule. Lastly,

exception-handling techniques refer to TM task

schedules when a tool is in transient state or when an

exception occurs. The types of exceptions, criteria, and

coping methods are included.

Lee and Lee (2010) suggested an XML-based file

formats that contains integrated scheduling information,

called the Scheduling Command File (SCF). In this study,

we subdivide the SCF into three categories so that the

schedule can be more effectively adjusted. Using SCFs,

scheduling is performed by referencing the information

from each SCF at each necessary moment. Each SCF can

be replaced or modified as needed. Therefore, proposing

standardized SCFs is the most important task in

implementing the open architecture scheduling system.

We briefly describe the information contained in each

SCF and how the scheduler refers to each SCF.

Figure 3: Scheduling Command Files in a Tool

Scheduler

3.1. Tool Architecture Information SCF

In order to determine a tool schedule, the tool scheduler

must first have information on the tool configuration. It

also must have information on the constraints that must

be met in the operation of the tool. A ‘tool architecture

information SCF’ contains the information on tool

configuration and operational constraints. In this study,

the information is listed in Table 1.

3.2. Benchmark TM Task Schedules SCF

Most previous studies have expressed a benchmark

schedule through a Petri net or a timed event graph (TEG)

(Lee 2008). Therefore a ‘benchmark TM task schedules

SCF’ contains the information for the Petri net model of

the schedule, usually expressed by an incidence matrix

and a token marking vector, the firing sequence, and the

corresponding firing rule.

Among numerous benchmark TM task schedules, the

most commonly used schedule in the single-armed

cluster tool is the backward sequence and the earliest

starting rule (Lee 2008). The earliest starting rule lets a

TM perform a task as soon as possible.

3.3. Exception-handling Techniques SCF

An ‘exception-handling techniques SCF’ contains

information about types of exceptions that can be

controlled, a precise criteria for each exception, and a

TM schedule for each exception. In the types of

exceptions, not only hardware problems such as a PM or

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

62

a TM failure but also problems in a tool schedule such as

transient periods of the tool or a K-periodic schedule are

included. As cluster tools become increasingly

sophisticated, more exceptions arise. There are also

many cases in which the exceptions occur in combination.

Therefore, it becomes an issue to establish precise

criteria for all exceptions and corresponding coping

methods.

4. DEVELOPMENT OF A VIRTUAL SINGLE-

ARMED CLUSTER TOOL WITH PERIODIC

PM CLEANING OPERATIONS

The open architecture scheduling system proposed in this

study is a system capable of operating a tool through an

external input schedule; thus, a fab can arbitrarily adjust

the schedule. However, there exist significant time and

money costs to apply the system to a real cluster tool.

Therefore, we develop a VCT that operates in a manner

similar to the actual cluster tool and apply the framework

to the VCT. Among numerous studies about VCTs (Shin

et al. 2001; Joo and Lee 2004; Kim and Lee 2013; Min

and Lin 2013; Niedermayer and Rose 2003; Pan and Bao

2012), we implemented the virtual cluster tool based on

the VCT framework suggested by Joo and Lee (2004).

Figure 4: Reference Model of the VCT

4.1. Reference Model of the VCT

The core components of the cluster tool are PMs, a TM,

the tool scheduler, and the module manager. The PM and

the TM are devices that process and transport wafers; the

tool scheduler is responsible for scheduling tasks for the

modules, especially for the TM. The module manager is

a kind of interface module that interprets scheduling

commands coming from the scheduler into a language

understood by the modules and transfers the messages to

each module.

The VCT also consists of PMs, a TM, the tool scheduler,

and the module manager; the components in the VCT are

modeled to perform the same functions as the

components of the real cluster tool. Fig. 4 demonstrates

the reference model of the VCT. The reference model

shows what types of messages are exchanged between

the components and what functions and information each

component has.

4.2. Modeling of Cluster Tool Components

In order to implement the VCT, it is necessary to

accurately model the internal operating logic of each

component. In this study, we model the internal

operating logics of the PMs and the TM as state graphs.

Brief explanations of the tool scheduler and the module

manager are also included.

4.2.1. State Graph Models

We first briefly explain the state graph model. A state

graph is an extended version of timed automata having

state variables, system variables, and timers (Choi and

Kang 2013). In addition, a state graph allows transition

conditions and three types of actions: entry, input, and

transition actions. In the graph, “?” denotes an input

event or message, and “!” denotes an output event or

message. A transition condition is denoted by “~”.

Among the states of the graph, the initial state and the

final state are expressed differently. Fig. 5 shows an

example of a simple state graph.

 Each state has its own name, entry actions, and a timer

[Δ(𝑡0)]. A state graph model can be described by a state

transition table. In a state transition table, all components

for constructing the state graph model are specified. The

state transition table shown in Table 2 represents the state

graph model in Fig. 5.

Figure 5: Example of State Graph Model

Table 2: State Transition Table of Model in Fig. 5

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

63

4.2.2. State Transition Diagram of PM(i,j)

A PM consists of a process part, a chuck, and a slit valve.

Therefore, in order to model the operating logic of a PM,

the three state graphs for the components are required. In

the model, PM(i,j) denotes the j-th parallel PM for the i-

th process step.

For the process part, the state graph has six states:

‘IDLE’, ‘PREPARE’, ‘PROCESS’, ‘PROCESS_END’,

‘CLEANING’, and ‘STOP’. When a wafer is loaded into

a PM and a slit valve door is closed, the state of the PM

is changed from ‘IDLE’ to ‘PREPARE’. In this study, we

assume that a tool follows the earliest starting policy that

there are no intentional delays in the tool; hence, the state

is changed instantly from ‘PREPARE’ to ‘PROCESS’. If

a tool follows another process-start rule, there might be a

time delay ℎ𝑡 before entering the process state. The state

becomes ‘PROCESS_END’ after the process time 𝑝𝑡 has

elapsed. Then the state becomes ‘IDLE’ after TM

unloads the wafer and the slit valve door is closed. A PM

cleaning operation can be performed only when the state

is ‘IDLE’. In order for the cleaning operation to start, the

cleaning condition should be satisfied. For a multi-period

cleaning operation, the operation starts after the specified

number of wafers are processed. For a non-periodic

cleaning operation, the operation starts when the degree

of contamination inside the PM exceeds the reference

value. Such conditions are referred to in the model as

(C1). If a cleaning operation starts, the state becomes

‘CLEANING’. After a required cleaning time 𝑐𝑡 has

elapsed, the state returns to ‘IDLE’. When a PM receives

a ‘_stop’ event message, the state becomes ‘STOP’ and

the simulation is terminated.

The state graph of a chuck has three states: ‘UNFIXED’,

‘FIXED’, and ‘STOP’. The state graph of a slit valve

door also has three states: ‘CLOSED’, ‘OPENED’, and

‘STOP’. The chuck and the slit valve door work closely

together. In order for a wafer to be loaded, the state of the

slit valve door should be ‘OPENED’. The wafer is then

loaded, and the state of the chuck becomes ‘FIXED’ and

the state of the slit valve door becomes ‘CLOSED’.

Similarly, in order to unload a wafer, the states of the

chuck and the slit valve door respectively become

‘UNFIXED’ and ‘OPENED’. After the wafer is

unloaded, the state of the slit valve door again becomes

‘CLOSED’. When the chuck and the slit valve door

receive ‘_stop’ event messages, the states become

‘STOP’.

Every operation of the chuck and the slit valve door has

its own task time. Therefore, the chuck and the slit valve

door send their state transition messages after required

task times have passed.

 In this study, we propose a model to consider only

simplified PM operating logics and PM cleaning

operations. However, in actual tools, motion control and

wafer alignment check are conducted inside the PM.

Furthermore, there are various exceptions such as PM

failure and repair, time variations, and wafer alignment

failures. An improved model has been developed in order

to consider all realistic situations.

Figure 6: State Transition Diagram of PM(i,j)

Table 3: State Transition Table of PM(i,j)

4.2.3. State Transition Diagram of TM

The state transition diagram of a TM is shown in Fig. 7

and Table 4. The state graph model of the TM has three

states: ‘EMPTY’, ‘HOLD’, and ‘STOP’. If the TM holds

a wafer, then its state is ‘HOLD’. If not, then the state is

‘EMPTY’. Each state has a state variable (i,j) that

denotes the ID of the PM to which the TM is directed. So

that the TM can unload the wafer, the states of the chuck

and the slit valve door are ‘UNFIXED’ and ‘OPENED’,

respectively. After the TM completes its unloading task,

it sends an event message ‘_svdClose’ so that the slit

valve door can be closed. Likewise, the state of the slit

valve door should be ‘OPENED’ before the TM loads a

wafer. After the wafer loading is completed, the TM

sends event messages ‘_chuckFix’ and ‘_svdClose’ to

the chuck and slit valve door, respectively. When the TM

moves to another PM, it updates its state variable (i,j).

Finally, the state becomes ‘STOP’, which is the final

state, if the TM receives a ‘_stop’ event message.

Each robot operation has its own task time. Thus, like

the chuck and the slit valve door, the TM sends its job

completion messages after the simulation time has

elapsed the required task time.

 In addition to the single-armed robot considered in this

study, there exist diverse TMs such as a dual-armed robot,

a quad-armed robot, and a robot with independent arms.

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

64

Furthermore, TM malfunctions occasionally occur.

Future work will address a more comprehensive TM

model.

Figure 7: State Transition Diagram of TM

Table 4: State Transition Table of TM

4.2.4. Tool Scheduler and Module Manager

The tool scheduler determines when each module,

especially the TM, should perform what tasks. We apply

the open architecture scheduler to the VCT. The tool

scheduler issues scheduling commands by referring to

the SCFs.

The module manager is responsible for interpreting the

scheduling commands into language that PMs and TM

can understand and delivering the commands to the

modules. In this study, state transitions of the modules

occur via event messages; the module manager interprets

scheduling commands into several event message

sequences and transfers the commands to the modules.

For example, when the module manager of the VCT

receives a scheduling command ‘unload the wafer #1

from PM(1,1)’, the module manager sends an event

message ‘_unload(1,1)’ to TM and event messages

‘_svdOpen(1,1)’ and ‘_chuckUnfix(1,1)’ to PM(1,1),

particularly to SlitValveDoor(1,1) and Chuck(1,1),

respectively. If the tool follows other job timing rules,

rather than the earliest starting policy, the event messages

should include the timing information for each event

message.

 The module manager is highly related to the tool

configuration and the internal operating logic of the

modules. The presence of the module manager allows the

tool scheduler to operate independently of the tool

architecture. Even when two cluster tools have different

architectures, it is possible to operate them through a

single scheduler when the two module managers are able

to interpret the same scheduling commands.

 In addition, the module manager informs the scheduler

of the states of the modules. The module manager

analyzes the state messages sent from the modules and

informs the scheduler as to whether each module is

abnormal or not.

5. APPLICATION: PERFORMANCE ANALYSIS

IN A SINGLE-ARMED CLUSTER TOOL

WITH PM CLEANING OPERATIONS

As an application of the proposed framework, we

conduct a performance analysis on benchmark schedules

in a single-armed cluster tool with PM cleaning

operations. The schedules to be analyzed are the

backward sequence which guarantees optimal

productivity in the basic single-armed cluster tool and the

backward(z) sequence which is known to give good

performance in a single-armed cluster tool with 1-

periodic PM cleaning operations, as proposed by Yu and

Lee (2017).

5.1. SCFs for Performance Analysis

For the performance analysis, we first create tool

architecture information SCFs. In the analysis, we set all

task times of the slit valve door and the chuck 1. TM task

times are also set to 3. The number of process steps, the

number of parallel PMs, the process times, the cleaning

times, and the cleaning periods are set differently

according to the experiment.

 After this, the benchmark TM task schedule SCFs for the

backward and the backward(z) sequences should be

created. Both sequences are basically similar in that they

are pull-type tool operation methods; however, the initial

state of the tool when the tool is operated in the cyclic

schedule is different. The conventional backward

sequence proceeds at the full loading state while all PMs

are in progress and then returns to the full loading state.

On the other hand, in order to keep the WIP constantly

and increasing the productivity, the backward(z)

sequence is used to allocate some of the parallel PMs to

PM cleaning operations, where the number of PMs to

allocate is denoted by ‘z’. This is called a partial loading

strategy. Therefore, although both schedules give the

same schedule messages, those show a large difference

in productivity due to the different operation strategies.

For example, consider a tool with six PMs and three

process steps. Assume that PM1, PM2 - PM4, and PM5

- PM6 are assigned as parallel PMs for the first, the

second, and the third process steps. Table 5 demonstrates

the initial states of both sequences when a tool is operated

on a cyclic schedule. One way of finding an optimal z

value is introduced in Yu and Lee (2017). Fig. 8 shows

Petri net models for both schedules. The model has a

different net shape and token marking vectors depending

on the tool configuration and the cleaning period. The

earliest starting rule is applied in the analysis.

 In this experiment, we do not consider any exceptions in

our analysis of the impact of the cleaning period and time

on the performance of each TM schedule.

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

65

Table 6: Initial States for Backward and Backward(z)

Sequences

Figure 8: Petri Net Models for the Backward and the

Backward(z) Sequences

5.2. Experiment Results

In the experiments, we computed the average cycle times

of the backward and backward(z) sequences for the SCFs

that we created for diverse tool configuration and both

TM schedules.

Problem instances for the experiment and the results are

shown in Table 7. In the table, the wafer flow pattern

[𝑚1, … ,𝑚𝑛] means that there exist 𝑚𝑖 parallel PMs for

the i-th process step. This is similar to the process times

[𝑝1, … , 𝑝𝑛] and the cleaning times [𝑐1, … , 𝑐𝑛] . The

cleaning periods are assumed to have the same value for

all PMs; this value is larger than one. Since the average

cycle time indicates that the average time elapsed to

produce a wafer, a lower average cycle time means better

performance. The gap shows how the average cycle time

of the backward(z) sequence is lower than the average

cycle time of the backward sequence. Thus, the negative

gap means that the backward sequence yields better

performance.

From Table 7, we can see that, for the most cases, the

backward(z) sequence provides better performance than

the backward sequence. Particularly, the gap becomes

larger when the PMs have a short cleaning period and

long cleaning times. This indicates that the greater the

influence of the PM cleaning processes on the tool

operation, the better the productivity of the backward(z)

sequence. However, the backward sequence provides

better performance for several cases with long cleaning

period and short cleaning times. Therefore, in order to

increase the productivity, it is important to apply an

appropriate schedule according to the tool configuration,

the cleaning time, and the cleaning period. Since adaptive

scheduling is possible in response to environment

changes and time-disruptive exceptions, the suggested

open architecture scheduling system for the cluster tool

will be competitive.

Table 7: Performance Analysis of the Backward and Backward(z) Sequences.

Wafer Flow Pattern Process Times Cleaning Times Cleaning Periods Backward Backward(z) Gap (%)

2 190 150.5 20.8

3 169.7 141.5 16.6

2 199.5 168.8 15.4

3 178.6 161.33 9.7

2 152.8 164.5 -7.7

3 129.1 164.5 -27.4

2 221.2 181.5 17.9

3 188.4 171.8 8.8

2 168 148.4 11.7

3 150.7 148.4 1.5

2 275.6 154.9 43.8

3 215.5 147.3 31.6

2 298 268.5 9.9

3 278 238.7 14.1

2 459.1 279.5 39.1

3 385 250.8 34.9

2 158.3 164.5 -3.9

3 144.7 164.5 -13.7

2 241.4 191.2 20.8

3 203 182 10.3

Tool Configuration Average Cycle Time

[4]
[100]

[100]

[50]

[100]

[1, 3] [70, 300]

[35, 150]

[70, 300]

[35, 200]

[70, 400]
[70, 400]

[75, 150]

[150, 300]

[25, 150, 75]

[50, 300, 150]

[150, 300][2, 3]

[1, 3, 2] [50, 300, 150]

[1, 4]

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

66

6. CONCLUSION

We have suggested a framework of an open architecture

scheduling system for a single-armed cluster tool with

PM cleaning operations. In the system, the tool scheduler

refers to SCFs and performs scheduling. SCFs can be

freely replaced from outside. To apply the framework,

we have developed a VCT similar to the actual cluster

tool. The scheduler, the module manager, the PMs, and

the TM are modeled to describe the VCT. Using the VCT,

we have also conducted performance analysis on the

backward and backward(z) sequences for a single-armed

cluster tool with multi-period PM cleaning operations.

As a result, we found that the open architecture

scheduling system that can modify or change the tool

schedules based on various tool environments is effective

at increasing productivity.

In future works, we will specify SCFs to enable

scheduling of various tool structures and operational

constraints. Furthermore, exception-handling techniques

for various exceptions will be examined.

ACKNOWLEDGMENTS

This research was supported by the Basic Science

Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of

Education, Science and Technology

(2015R1D1A1A01057131).

REFERENCES

Choi B.-K. and Kang D., 2013. Modeling and Simulation

of Discrete Event Systems. John Wiley & Sons.

Geismar H. N., Dawande M., and Sriskandarajah C.,

2004. Robotic cells with parallel machines:

Throughput maximization in constant travel-time

cells. Journal of Scheduling, 7 (5), 375–395.

Joo Y.-J. and Lee T.-E., 2004. A Virtual Cluster Tool for

Testing and Verifying a Cluster Tool Controller and

a Scheduler. IEEE Robotics & Automation

Magazine, 11 (3), 33-49.

Kim C. and Lee T.-E., 2013. Modelling and simulation

of automated manufacturing systems for evaluation

of complex schedules. International Journal of

Production Research, 51 (12), 3734-3747.

Kim H., Kim H.-J., Lee J.-H., and Lee T.-E., 2013.

Scheduling dual-armed cluster tools with cleaning

processes. International Journal of Production

Research, 51 (12), 3671–3687.

Kim H.-J., Lee J.-H., and Lee T.-E., 2015. Noncyclic

scheduling of cluster tools with a branch and bound

algorithm. IEEE Transactions on Automation

Science and Engineering, 12 (2), 690–700.

Kim H.-J., Lee J.-H., Jung C., and Lee T.-E., 2013.

Scheduling cluster tools with ready time constraints

for consecutive small lots. IEEE Transactions on

Automation Science and Engineering, 10 (1), 145–

159.

Kim J.-H., Lee T.-E., Lee H.-Y., and Park D.-B., 2003.

Scheduling analysis of time-constrained dual-

armed cluster tools. IEEE Transactions on

Semiconductor Manufacturing, 16 (3), 521–534.

Lee J.-H., Kim H.-J., and Lee T.-E., 2014. Scheduling

cluster tools for concurrent processing of two wafer

types. IEEE Transactions on Automation Science

and Engineering, 11 (2), 525–536.

Lee, J.-H., and Lee, T.-E., 2010. An open scheduling

architecture for cluster tools. In Proceedings of the

6th IEEE Conference on Automation Science and

Engineering, pp. 420-425, Toronto (Ontario,

Canada).

Lee, T.-E., 2008. A review of scheduling theory and

methods for semiconductor manufacturing cluster

tools. In Proceedings of the 40th Conference on

Winter Simulation, pp. 2127-2135, Miami (Florida,

USA).

Min Y. and Lin X.-R., 2013. A Simulation-Based

Analysis of Cluster Tools Scheduling with Plant

Simulation. In Proceedings of the 19th

International Conference on Industrial Engineering

and Engineering Management, pp. 71-80. Berlin

(Germany),

Niedermayer H. and Rose O., 2003. A simulation-based

analysis of the cycle time of cluster tools in

semiconductor manufacturing. In Proceedings of

the 15th European Simulation Symposium, pp.

349-354, Delft (Netherlands).

Pan C., and Bao N., 2012. An eM-Plant-based virtual

single-arm cluster tool. In Proceedings of the 9th

IEEE International Conference on In Networking,

Sensing and Control, pp. 40-45, Beijing (China).

Rostami S., Hamidzadeh B., and Camporese D., 2001.

An optimal periodic scheduler for dual-arm robots

in cluster tools with residency constraints. IEEE

Transactions on Robotics and Automation, 17 (5),

609–618.

Shin Y.-H., Lee T.-E., Kim J.-H., and Lee H.-Y., 2001.

Modeling and implementing a real-time scheduler

for dual-armed cluster tools. Computers in Industry,

45, 13-27.

Yu T.-S., Kim H.-J., and Lee T.-E., 2017, Scheduling

single-armed cluster tools with chamber cleaning

operations. IEEE Transactions on Automation

Science and Engineering, DOI:

10.1109/TASE.2017.2682271.

Venkatesh S., Davenport R., Foxhoven P., and Nulman

J., 1997. A steady-state throughput analysis of

cluster tools: Dual-blade versus single-blade robots.

IEEE Transactions on Semiconductor

Manufacturing, 10 (4), 418–424.

Wu N. Q., Chu F., Chu C., and Zhou M. C., 2011. Petri

net-based scheduling of single-arm cluster tools

with reentrant atomic layer deposition processes.

IEEE Transactions on Automation Science and

Engineering, 8 (1), 42–55.

Wu N. Q., Chu C., Chu F., and Zhou M. C., 2008. A petri

net method for schedulability and scheduling

problems in single-arm cluster tools with wafer

residency time constraints. IEEE Transactions on

Semiconductor Manufacturing, 21 (2), 224–237.

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

67

