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ABSTRACT 

Cluster tools are a type of widely used semiconductor 

manufacturing equipment. Generally, a cluster tool is 

operated on a built-in schedule; however, it is impossible 

to modify or change the built-in schedule because of the 

closed architecture of the scheduling system for the tool. 

In this study, we propose a framework for an open 

architecture scheduling system for a single-armed cluster 

tool with PM cleaning operations. The scheduling system 

works by scheduling command files that can be modified 

or replaced from outside. As an application of the 

framework, performance comparison analysis between 

the backward and backward(z) sequences in a single-

armed cluster tool with multi-period PM cleaning 

operations is conducted. 

 

Keywords: cluster tool, open architecture scheduling 

system, virtual cluster tool, PM cleaning operation 

 

1. INTRODUCTION 

In modern semiconductor manufacturing systems, about 

300 processes are required for the fabrication of a 

semiconductor product. Most processes, including 

etching, vapor deposition, and wafer cleaning, are 

performed using cluster tools (Yu and Lee 2017). Cluster 

tools are the most popular type of configurable 

semiconductor manufacturing equipment; they consist of 

several single-wafer process modules (PMs) and a 

material-handling robot called a transporting module 

(TM). PMs are modular and can be detached and attached; 

TM is responsible for transporting wafers. Usually, a 

cluster tool is operated according to a specified wafer 

flow pattern and several operational constraints. There 

have been numerous studies on the operation of cluster 

tools for various wafer flow patterns and constraints 

(Venkatesh et al. 1997; Geismar 2004; Lee et al. 2014; 

Wu et al. 2011; Kim et al. 2015; Kim et al. 2013; Kim et 

al. 2013; Yu and Lee 2017; Rostami et al 2001; Kim et 

al. 2003; Wu 2008). 

 Cluster tools have diverse structures depending on the 

types of PM and TM; structures include single-armed 

and dual-armed cluster tools, multi-slot cluster tools, and 

in-line multi-cluster tools (Lee 2008). Inter alia, the most 

commonly used structure is a radial cluster tool, in which 

PMs radially surround the tool. A radial cluster tool is 

called a single-armed or dual-armed cluster tool 

according to the number of robot grippers. It is known 

that the backward sequence and the swap sequence are 

optimal robot task sequences for the single-armed and 

dual-armed cluster tools with series-parallel wafer flow 

patterns, respectively (Lee 2008). 

Generally, a semiconductor fabrication plant, a so-

called “fab”, purchases semiconductor manufacturing 

equipment including cluster tools from a variety of 

equipment manufacturing companies. Therefore, most 

cluster tools operate on the schedule built into the tool by 

the equipment manufacturing company. The built-in 

schedule usually consists of a benchmark schedule 

mainly based on the backward or the swap sequence and 

several exception-handling techniques. 

However, there exists an issue that built-in schedules 

and tool schedulers are different for each equipment 

manufacturing company. In addition, a tool scheduler has 

a closed architecture; in other words, only the equipment 

manufacturing company can modify the internal 

structure and operating logic of the scheduler. This 

means that a fab cannot arbitrarily modify a tool schedule 

to induce high productivity and exception-handling 

techniques for quality control. Since, in recent years, the 

method of semiconductor production has changed from 

the existing high-volume low-mix production to high-

mix low-volume production, a tool scheduler with closed 

architecture leads to difficulty in optimizing the 

operation of the tool in situations in which frequent 

schedule changes are needed. Furthermore, there also 

exists a disadvantage that it is difficult to investigate 

whether the existing built-in schedule provides optimal 

productivity or, if not, which parts need to be improved. 

Therefore, a system capable of changing a tool schedule 

from the outside as desired, called an open architecture 

scheduling system, is needed. In order to implement the 

open architecture scheduling system, a standard 

scheduling command scheme of cluster tools that all 

equipment manufacturing companies and fabs can 

understand is needed. If all cluster tool schedulers follow 

the same scheduling command scheme, it becomes quite 
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easy for a fab to replace the old tool schedule with a new 

one. This idea is similar to the NC programming 

language or the NC code used in CNC systems. Since the 

NC code has a standardized command scheme, a work 

schedule of a CNC machine can be easily changed from 

outside, even though the NC code is generated using a 

variety of CAD/CAM software. 

However, semiconductor manufacturing equipment, 

including cluster tools, is much more sophisticated and 

has diverse structures and operational constraints 

depending on the processes. In addition, even equipment 

that performs the same process may have different 

structures depending on the equipment manufacturing 

company. Therefore, establishing a standard scheduling 

command scheme for cluster tools requires much expert 

effort in the industrial setting. 

 For this reason, this study proposes a framework for an 

open architecture scheduling system. As an example, we 

develop a virtual cluster tool (VCT) for a single-armed 

cluster tool with PM cleaning operations and apply the 

proposed framework to describe how the open 

architecture scheduling system works. The framework 

can be extended to cluster tools of various architectures. 

In this paper, we first describe the open architecture 

scheduling system framework. The framework improves 

the basic concepts of the open scheduling architecture of 

the cluster tool proposed by Lee and Lee (2010). Then, 

we define the structure and operation of a single-armed 

cluster tool with PM cleaning operations. To apply the 

open architecture scheduling system framework, we also 

suggest a reference model of the VCT. As an application, 

we conduct a performance analysis for the backward and 

the backward(z) sequences suggested by Yu and Lee 

(2017). 

 

2. ARCHITECTURE AND OPERATION OF A 

SINGLE-ARMED CLUSTER TOOL WITH PM 

CLEANING OPERATIONS 

 

2.1. Architecture of a Single-armed Cluster Tool 

Cluster tools have a variety of structures. Among them, 

the single-armed cluster tool having a single-armed 

transporting module and radially located PMs is one of 

the most used pieces of manufacturing equipment in 

leading fabs. A single-armed cluster tool consists of a 

TM with a single gripper, several, usually two to six, 

PMs, two loadlock modules for loading a wafer cassette, 

and an aligner module for aligning a wafer unloaded 

from a loadlock (Lee 2008). Among the components, the 

TM and PMs are the most important for the operation. 

 

2.2. Operation of a Single-armed Cluster Tool 

When a cassette containing 25 wafers is loaded into a 

loadlock, a TM carries a wafer to the PMs one by one. 

The TM only performs wafer loading into the PM, wafer 

unloading from the PM, and moving operations. In 

addition, TM can perform one job at a time. 

 Each wafer is processed according to a predetermined 

recipe, which defines the sequence of process steps that 

the wafer should visit and the process time for each 

process step. For each process step, to raise productivity, 

several PMs are assigned as parallel PMs. When a wafer 

is processed sequentially in a tool having parallel PMs, 

the wafer flow pattern is referred to as a series-parallel 

flow pattern. After all processes have been completed, 

the wafer is returned to the loadlock. This process 

continues until all wafers in the cassette have been 

processed. 

 In order for a wafer to be loaded into a PM, the chuck 

that serves to fix the wafer entering the PM should first 

be prepared. When the chuck is ready, the slit valve door 

opens and the TM loads the wafer. After wafer loading, 

the slit valve door is closed and the chuck firmly holds 

the wafer. Depending on the type of PM, pumping and 

venting operations may be required to prepare the 

process. 

Therefore, the number of process steps, the number of 

parallel PMs for each process step, the process time for 

each PM, the required times for TM operations (loading, 

unloading, and moving), and the required task times of 

the slit valve door and chuck operations for each PM are 

needed to define the configuration of a single-armed 

cluster tool with a series-parallel flow pattern. 

 

 
Figure 1: Single-armed Cluster Tool 

 

2.3. Periodic PM Cleaning Operations 

As the diameter of a wafer increases and the thickness of 

the wafer circuit becomes thinner, enhanced wafer 

quality control is required. Therefore, it becomes 

necessary to remove residual chemicals in the PM after 

the wafer process completes. A PM cleaning operation is 

a process of removing these impurities (Kim et al. 2013; 

Yu and Lee 2017). It is performed after a predefined 

number of wafer processes, which is called a cleaning 

period. During the cleaning operation, a wafer cannot be 

loaded. 

In terms of operation, a cluster tool with periodic PM 

cleaning operations has differences from a typical single-

armed cluster tool. To define an operation of a tool with 

periodic PM cleaning operations, the cleaning period and 

the cleaning time for each PM are additionally required. 

Consequently, the tool configuration is defined by 

information describing the tool operation which is shown 

in Table 1. 
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Figure 2: Single-armed Cluster Tool with PM Cleaning 

Operations 

 

Table 1: Information Required to Define Tool 

Configuration 

 
 

3. OPEN ARCHITECTURE SCHEDULING 

SYSTEM OF SINGLE-ARMED CLUSTER 

TOOL WITH PM CLEANING OPERATIONS 

The open architecture scheduling system of the cluster 

tool is a tool scheduler that can receive from the outside 

information necessary for scheduling. However, existing 

cluster tool controllers and schedulers have been 

developed independently for each equipment 

manufacturing company and it is not easy to implement 

them because there is no standardized scheduling model 

or rule. Therefore, a standard for the cluster tool 

scheduling commands should be given priority. It is 

difficult to standardize the scheduling commands of all 

cluster tools because of the various types of cluster tools 

depending on their usage, function, and required 

performance level. Furthermore, there exist differences 

in tools due to technology gaps among manufacturing 

companies. Consequently, this study suggests an open 

architecture scheduling system for a single-arm cluster 

tool with PM cleaning operations. 

 Scheduling a cluster tool requires three pieces of 

information: the tool architecture information, the 

benchmark TM task schedules, and exception-handling 

techniques. The tool architecture information is the 

information about the tool configuration and the tool 

operation, listed in Table 1. The benchmark TM task 

schedules refer to the work schedule of a TM when the 

cluster tool is in a steady state. A TM task schedule 

consists of a TM task sequence and a timing rule. Lastly, 

exception-handling techniques refer to TM task 

schedules when a tool is in transient state or when an 

exception occurs. The types of exceptions, criteria, and 

coping methods are included. 

Lee and Lee (2010) suggested an XML-based file 

formats that contains integrated scheduling information, 

called the Scheduling Command File (SCF). In this study, 

we subdivide the SCF into three categories so that the 

schedule can be more effectively adjusted. Using SCFs, 

scheduling is performed by referencing the information 

from each SCF at each necessary moment. Each SCF can 

be replaced or modified as needed. Therefore, proposing 

standardized SCFs is the most important task in 

implementing the open architecture scheduling system. 

We briefly describe the information contained in each 

SCF and how the scheduler refers to each SCF. 

 

 
Figure 3: Scheduling Command Files in a Tool 

Scheduler 

 

3.1. Tool Architecture Information SCF 

In order to determine a tool schedule, the tool scheduler 

must first have information on the tool configuration. It 

also must have information on the constraints that must 

be met in the operation of the tool. A ‘tool architecture 

information SCF’ contains the information on tool 

configuration and operational constraints. In this study, 

the information is listed in Table 1. 

 

3.2. Benchmark TM Task Schedules SCF 

Most previous studies have expressed a benchmark 

schedule through a Petri net or a timed event graph (TEG) 

(Lee 2008). Therefore a ‘benchmark TM task schedules 

SCF’ contains the information for the Petri net model of 

the schedule, usually expressed by an incidence matrix 

and a token marking vector, the firing sequence, and the 

corresponding firing rule. 

Among numerous benchmark TM task schedules, the 

most commonly used schedule in the single-armed 

cluster tool is the backward sequence and the earliest 

starting rule (Lee 2008). The earliest starting rule lets a 

TM perform a task as soon as possible. 

 

3.3. Exception-handling Techniques SCF 

An ‘exception-handling techniques SCF’ contains 

information about types of exceptions that can be 

controlled, a precise criteria for each exception, and a 

TM schedule for each exception. In the types of 

exceptions, not only hardware problems such as a PM or 
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a TM failure but also problems in a tool schedule such as 

transient periods of the tool or a K-periodic schedule are 

included. As cluster tools become increasingly 

sophisticated, more exceptions arise. There are also 

many cases in which the exceptions occur in combination. 

Therefore, it becomes an issue to establish precise 

criteria for all exceptions and corresponding coping 

methods. 

 

4. DEVELOPMENT OF A VIRTUAL SINGLE-

ARMED CLUSTER TOOL WITH PERIODIC 

PM CLEANING OPERATIONS 

The open architecture scheduling system proposed in this 

study is a system capable of operating a tool through an 

external input schedule; thus, a fab can arbitrarily adjust 

the schedule. However, there exist significant time and 

money costs to apply the system to a real cluster tool. 

Therefore, we develop a VCT that operates in a manner 

similar to the actual cluster tool and apply the framework 

to the VCT. Among numerous studies about VCTs (Shin 

et al. 2001; Joo and Lee 2004; Kim and Lee 2013; Min 

and Lin 2013; Niedermayer and Rose 2003; Pan and Bao 

2012), we implemented the virtual cluster tool based on 

the VCT framework suggested by Joo and Lee (2004). 

 

 
Figure 4: Reference Model of the VCT 

 

4.1. Reference Model of the VCT 

The core components of the cluster tool are PMs, a TM, 

the tool scheduler, and the module manager. The PM and 

the TM are devices that process and transport wafers; the 

tool scheduler is responsible for scheduling tasks for the 

modules, especially for the TM. The module manager is 

a kind of interface module that interprets scheduling 

commands coming from the scheduler into a language 

understood by the modules and transfers the messages to 

each module. 

The VCT also consists of PMs, a TM, the tool scheduler, 

and the module manager; the components in the VCT are 

modeled to perform the same functions as the 

components of the real cluster tool. Fig. 4 demonstrates 

the reference model of the VCT. The reference model 

shows what types of messages are exchanged between 

the components and what functions and information each 

component has. 

 

4.2. Modeling of Cluster Tool Components 

In order to implement the VCT, it is necessary to 

accurately model the internal operating logic of each 

component. In this study, we model the internal 

operating logics of the PMs and the TM as state graphs. 

Brief explanations of the tool scheduler and the module 

manager are also included.  

 

4.2.1. State Graph Models 

We first briefly explain the state graph model. A state 

graph is an extended version of timed automata having 

state variables, system variables, and timers (Choi and 

Kang 2013). In addition, a state graph allows transition 

conditions and three types of actions: entry, input, and 

transition actions. In the graph, “?” denotes an input 

event or message, and “!” denotes an output event or 

message. A transition condition is denoted by “~”. 

Among the states of the graph, the initial state and the 

final state are expressed differently. Fig. 5 shows an 

example of a simple state graph. 

 Each state has its own name, entry actions, and a timer 

[Δ(𝑡0)]. A state graph model can be described by a state 

transition table. In a state transition table, all components 

for constructing the state graph model are specified. The 

state transition table shown in Table 2 represents the state 

graph model in Fig. 5.  

 

 

Figure 5: Example of State Graph Model 

 

Table 2: State Transition Table of Model in Fig. 5 
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4.2.2. State Transition Diagram of PM(i,j) 

A PM consists of a process part, a chuck, and a slit valve. 

Therefore, in order to model the operating logic of a PM, 

the three state graphs for the components are required. In 

the model, PM(i,j) denotes the j-th parallel PM for the i-

th process step. 

For the process part, the state graph has six states: 

‘IDLE’, ‘PREPARE’, ‘PROCESS’, ‘PROCESS_END’, 

‘CLEANING’, and ‘STOP’. When a wafer is loaded into 

a PM and a slit valve door is closed, the state of the PM 

is changed from ‘IDLE’ to ‘PREPARE’. In this study, we 

assume that a tool follows the earliest starting policy that 

there are no intentional delays in the tool; hence, the state 

is changed instantly from ‘PREPARE’ to ‘PROCESS’. If 

a tool follows another process-start rule, there might be a 

time delay ℎ𝑡 before entering the process state. The state 

becomes ‘PROCESS_END’ after the process time 𝑝𝑡  has 

elapsed. Then the state becomes ‘IDLE’ after TM 

unloads the wafer and the slit valve door is closed. A PM 

cleaning operation can be performed only when the state 

is ‘IDLE’. In order for the cleaning operation to start, the 

cleaning condition should be satisfied. For a multi-period 

cleaning operation, the operation starts after the specified 

number of wafers are processed. For a non-periodic 

cleaning operation, the operation starts when the degree 

of contamination inside the PM exceeds the reference 

value. Such conditions are referred to in the model as 

(C1). If a cleaning operation starts, the state becomes 

‘CLEANING’. After a required cleaning time 𝑐𝑡  has 

elapsed, the state returns to ‘IDLE’. When a PM receives 

a ‘_stop’ event message, the state becomes ‘STOP’ and 

the simulation is terminated. 

The state graph of a chuck has three states: ‘UNFIXED’, 

‘FIXED’, and ‘STOP’. The state graph of a slit valve 

door also has three states: ‘CLOSED’, ‘OPENED’, and 

‘STOP’. The chuck and the slit valve door work closely 

together. In order for a wafer to be loaded, the state of the 

slit valve door should be ‘OPENED’. The wafer is then 

loaded, and the state of the chuck becomes ‘FIXED’ and 

the state of the slit valve door becomes ‘CLOSED’. 

Similarly, in order to unload a wafer, the states of the 

chuck and the slit valve door respectively become 

‘UNFIXED’ and ‘OPENED’. After the wafer is 

unloaded, the state of the slit valve door again becomes 

‘CLOSED’. When the chuck and the slit valve door 

receive ‘_stop’ event messages, the states become 

‘STOP’. 

Every operation of the chuck and the slit valve door has 

its own task time. Therefore, the chuck and the slit valve 

door send their state transition messages after required 

task times have passed. 

 In this study, we propose a model to consider only 

simplified PM operating logics and PM cleaning 

operations. However, in actual tools, motion control and 

wafer alignment check are conducted inside the PM. 

Furthermore, there are various exceptions such as PM 

failure and repair, time variations, and wafer alignment 

failures. An improved model has been developed in order 

to consider all realistic situations. 

 

 
Figure 6: State Transition Diagram of PM(i,j) 

 

Table 3: State Transition Table of PM(i,j) 

 
 

4.2.3. State Transition Diagram of TM 

The state transition diagram of a TM is shown in Fig. 7 

and Table 4. The state graph model of the TM has three 

states: ‘EMPTY’, ‘HOLD’, and ‘STOP’. If the TM holds 

a wafer, then its state is ‘HOLD’. If not, then the state is 

‘EMPTY’. Each state has a state variable (i,j) that 

denotes the ID of the PM to which the TM is directed. So 

that the TM can unload the wafer, the states of the chuck 

and the slit valve door are ‘UNFIXED’ and ‘OPENED’, 

respectively. After the TM completes its unloading task, 

it sends an event message ‘_svdClose’ so that the slit 

valve door can be closed. Likewise, the state of the slit 

valve door should be ‘OPENED’ before the TM loads a 

wafer. After the wafer loading is completed, the TM 

sends event messages ‘_chuckFix’ and ‘_svdClose’ to 

the chuck and slit valve door, respectively. When the TM 

moves to another PM, it updates its state variable (i,j). 

Finally, the state becomes ‘STOP’, which is the final 

state, if the TM receives a ‘_stop’ event message. 

Each robot operation has its own task time. Thus, like 

the chuck and the slit valve door, the TM sends its job 

completion messages after the simulation time has 

elapsed the required task time.  

 In addition to the single-armed robot considered in this 

study, there exist diverse TMs such as a dual-armed robot, 

a quad-armed robot, and a robot with independent arms. 

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017, 
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

64



Furthermore, TM malfunctions occasionally occur. 

Future work will address a more comprehensive TM 

model. 

 

 
Figure 7: State Transition Diagram of TM 

 

Table 4: State Transition Table of TM 

 
 

4.2.4. Tool Scheduler and Module Manager 

The tool scheduler determines when each module, 

especially the TM, should perform what tasks. We apply 

the open architecture scheduler to the VCT. The tool 

scheduler issues scheduling commands by referring to 

the SCFs. 

The module manager is responsible for interpreting the 

scheduling commands into language that PMs and TM 

can understand and delivering the commands to the 

modules. In this study, state transitions of the modules 

occur via event messages; the module manager interprets 

scheduling commands into several event message 

sequences and transfers the commands to the modules. 

For example, when the module manager of the VCT 

receives a scheduling command ‘unload the wafer #1 

from PM(1,1)’, the module manager sends an event 

message ‘_unload(1,1)’ to TM and event messages 

‘_svdOpen(1,1)’ and ‘_chuckUnfix(1,1)’ to PM(1,1), 

particularly to SlitValveDoor(1,1) and Chuck(1,1), 

respectively. If the tool follows other job timing rules, 

rather than the earliest starting policy, the event messages 

should include the timing information for each event 

message.  

 The module manager is highly related to the tool 

configuration and the internal operating logic of the 

modules. The presence of the module manager allows the 

tool scheduler to operate independently of the tool 

architecture. Even when two cluster tools have different 

architectures, it is possible to operate them through a 

single scheduler when the two module managers are able 

to interpret the same scheduling commands. 

 In addition, the module manager informs the scheduler 

of the states of the modules. The module manager 

analyzes the state messages sent from the modules and 

informs the scheduler as to whether each module is 

abnormal or not. 

 

5. APPLICATION: PERFORMANCE ANALYSIS 

IN A SINGLE-ARMED CLUSTER TOOL 

WITH PM CLEANING OPERATIONS  

As an application of the proposed framework, we 

conduct a performance analysis on benchmark schedules 

in a single-armed cluster tool with PM cleaning 

operations. The schedules to be analyzed are the 

backward sequence which guarantees optimal 

productivity in the basic single-armed cluster tool and the 

backward(z) sequence which is known to give good 

performance in a single-armed cluster tool with 1-

periodic PM cleaning operations, as proposed by Yu and 

Lee (2017). 

 

5.1. SCFs for Performance Analysis 

For the performance analysis, we first create tool 

architecture information SCFs. In the analysis, we set all 

task times of the slit valve door and the chuck 1. TM task 

times are also set to 3. The number of process steps, the 

number of parallel PMs, the process times, the cleaning 

times, and the cleaning periods are set differently 

according to the experiment. 

 After this, the benchmark TM task schedule SCFs for the 

backward and the backward(z) sequences should be 

created. Both sequences are basically similar in that they 

are pull-type tool operation methods; however, the initial 

state of the tool when the tool is operated in the cyclic 

schedule is different. The conventional backward 

sequence proceeds at the full loading state while all PMs 

are in progress and then returns to the full loading state. 

On the other hand, in order to keep the WIP constantly 

and increasing the productivity, the backward(z) 

sequence is used to allocate some of the parallel PMs to 

PM cleaning operations, where the number of PMs to 

allocate is denoted by ‘z’. This is called a partial loading 

strategy. Therefore, although both schedules give the 

same schedule messages, those show a large difference 

in productivity due to the different operation strategies. 

For example, consider a tool with six PMs and three 

process steps. Assume that PM1, PM2 - PM4, and PM5 

- PM6 are assigned as parallel PMs for the first, the 

second, and the third process steps. Table 5 demonstrates 

the initial states of both sequences when a tool is operated 

on a cyclic schedule. One way of finding an optimal z 

value is introduced in Yu and Lee (2017). Fig. 8 shows 

Petri net models for both schedules. The model has a 

different net shape and token marking vectors depending 

on the tool configuration and the cleaning period. The 

earliest starting rule is applied in the analysis. 

 In this experiment, we do not consider any exceptions in 

our analysis of the impact of the cleaning period and time 

on the performance of each TM schedule. 
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Table 6: Initial States for Backward and Backward(z) 

Sequences 

 
  

 
Figure 8: Petri Net Models for the Backward and the 

Backward(z) Sequences 

 

5.2. Experiment Results 

In the experiments, we computed the average cycle times 

of the backward and backward(z) sequences for the SCFs 

that we created for diverse tool configuration and both 

TM schedules.  

Problem instances for the experiment and the results are 

shown in Table 7. In the table, the wafer flow pattern 

[𝑚1, … ,𝑚𝑛] means that there exist 𝑚𝑖 parallel PMs for 

the i-th process step. This is similar to the process times 

[𝑝1, … , 𝑝𝑛]  and the cleaning times [𝑐1, … , 𝑐𝑛] . The 

cleaning periods are assumed to have the same value for 

all PMs; this value is larger than one. Since the average 

cycle time indicates that the average time elapsed to 

produce a wafer, a lower average cycle time means better 

performance. The gap shows how the average cycle time 

of the backward(z) sequence is lower than the average 

cycle time of the backward sequence. Thus, the negative 

gap means that the backward sequence yields better 

performance.  

From Table 7, we can see that, for the most cases, the 

backward(z) sequence provides better performance than 

the backward sequence. Particularly, the gap becomes 

larger when the PMs have a short cleaning period and 

long cleaning times. This indicates that the greater the 

influence of the PM cleaning processes on the tool 

operation, the better the productivity of the backward(z) 

sequence. However, the backward sequence provides 

better performance for several cases with long cleaning 

period and short cleaning times. Therefore, in order to 

increase the productivity, it is important to apply an 

appropriate schedule according to the tool configuration, 

the cleaning time, and the cleaning period. Since adaptive 

scheduling is possible in response to environment 

changes and time-disruptive exceptions, the suggested 

open architecture scheduling system for the cluster tool 

will be competitive. 

Table 7: Performance Analysis of the Backward and Backward(z) Sequences. 

 

Wafer Flow Pattern Process Times Cleaning Times Cleaning Periods Backward Backward(z) Gap (%)

2 190 150.5 20.8

3 169.7 141.5 16.6

2 199.5 168.8 15.4

3 178.6 161.33 9.7

2 152.8 164.5 -7.7

3 129.1 164.5 -27.4

2 221.2 181.5 17.9

3 188.4 171.8 8.8

2 168 148.4 11.7

3 150.7 148.4 1.5

2 275.6 154.9 43.8

3 215.5 147.3 31.6

2 298 268.5 9.9

3 278 238.7 14.1

2 459.1 279.5 39.1

3 385 250.8 34.9

2 158.3 164.5 -3.9

3 144.7 164.5 -13.7

2 241.4 191.2 20.8

3 203 182 10.3

Tool Configuration Average Cycle Time

[4]
[100]

[100]

[50]

[100]

[1, 3] [70, 300]

[35, 150]

[70, 300]

[35, 200]

[70, 400]
[70, 400]

[75, 150]

[150, 300]

[25, 150, 75]

[50, 300, 150]

[150, 300][2, 3]

[1, 3, 2] [50, 300, 150]

[1, 4]
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6. CONCLUSION 

We have suggested a framework of an open architecture 

scheduling system for a single-armed cluster tool with 

PM cleaning operations. In the system, the tool scheduler 

refers to SCFs and performs scheduling. SCFs can be 

freely replaced from outside. To apply the framework, 

we have developed a VCT similar to the actual cluster 

tool. The scheduler, the module manager, the PMs, and 

the TM are modeled to describe the VCT. Using the VCT, 

we have also conducted performance analysis on the 

backward and backward(z) sequences for a single-armed 

cluster tool with multi-period PM cleaning operations. 

As a result, we found that the open architecture 

scheduling system that can modify or change the tool 

schedules based on various tool environments is effective 

at increasing productivity. 

In future works, we will specify SCFs to enable 

scheduling of various tool structures and operational 

constraints. Furthermore, exception-handling techniques 

for various exceptions will be examined. 
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