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ABSTRACT 
The space flight domain is one of the numerous fields 
that involve experts belonging to different scientific 
domains such as mathematical, physical, aerospace and 
software engineering. Many research efforts are 
focusing on the definition of methods, tools and 
software libraries, mainly aiming at providing a robust 
and flexible way for defining, building and simulating 
complex systems in space so as to understand, predict 
and optimize their behavior. In this context, the paper 
presents a space flight dynamics library, named Java 
Space Dynamics Library (JSDL), which offers high 
fidelity models and algorithms to manage space systems 
according to the SISO Space Reference FOM 
standardization initiative. 

Keywords: Modeling and Simulation, Space Flight 
Dynamics, Distributed Simulations, High Level 
Architecture (HLA) 

1. INTRODUCTION
Due to the increasing complexity of space systems, and 
thus of the related engineering problems (Falcone, 
Garro, and Tundis 2014; Fortino et al. 2007; Garro et al. 
2015; Garro and Falcone 2015), there is a consistent 
investment in the development of new methods, tools 
and software libraries able to provide a robust and 
flexible way for defining, building and simulating them 
(Falcone et al. 2016; Fortino et al. 2006; Ido 2012; 
Rogovchenko-Buffoni et al. 2014; San-Juan et al. 
2011). These available, commercial and 
noncommercial, solutions support one or more of the 
phases in the development of space systems such as 
flight mechanics, propulsion, orbit controls and data 
analysis; however, none of them seems capable of 
providing complete coverage of the whole development 
process in a flexible way (Pulecchi and Lovera 2006). 
In this context, there is an increasing need for efficient 
and flexible solutions capable of covering all the steps 
in the design and develop of space systems, especially 
for supporting system modeling and simulation where 
modularity, flexibility and reusability are key features to 
provide (Falcone et al. 2016; Falcone et al. 2015; 
Pulecchi and Lovera 2006). 

To contribute to fill this lack, the paper presents the 
Java Space Dynamics Library (JSDL) project, 
emphasizing its flexibility and showing the set of 
services provided to define and build space systems 
such as satellites and spacecrafts. The rest of the paper 
is structured as follows: related works are discussed in 
Section 2; Section 3 presents the Java Space Dynamics 
Library (JSDL) whose architecture and provided 
services are discussed in Section 4 and 5 respectively. 
Finally, in Section 6 conclusions are drawn and future 
research directions are delineated. 

2. RELATED WORK
There are several research efforts on the development of 
methods, tools and libraries in the astrodynamics field, 
mainly aiming at providing a robust and flexible way 
for defining, building and simulating complex systems 
in space. The most applicable solutions have been 
developed after the mid-1960’s when space missions 
were the attention of media and computers become 
prevalent in academia and industry. 
The Java Astrodynamics Toolkit (JAT) is an open 
source library of reusable components, distributed under 
the GNU General Public License (GLP). It is 
implemented in the Java language and helps developers 
to create their own application programs and solve 
problems in astrodynamics, mission design, spacecraft 
navigation, guidance and control. It provides 
functionalities that allow the rapid development of 
spacecraft simulations including 2D and 3D 
visualization capabilities. Possible applications of JAT 
include: (i) Design and analysis of space missions, 
including trajectory optimization; (ii) Simulation of 
spacecraft navigation, guidance and control as well as 
its visualization in a 3D environment; and, (iii) 
Simulation of the motion for basic rigid and flexible 
spacecraft dynamics (Gaylor, Page, and Bradley 2006). 
Another software library that enables developers to 
effectively define and manage elements in space is 
Orbits Extrapolation Kit (Orekit) (CS Communication 
& Systémes 2017). Orekit is implemented in the Java 
language and aims at providing accurate and efficient 
low level standard astrodynamical models (e.g., time, 
frames, orbital parameters, orbit propagation, attitude 

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017, 
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

6



and celestial bodies) and algorithms (e.g., time 
conversions, propagations and pointing) for the 
development of flight dynamics applications. It is 
designed to be easily used in very different contexts, 
from quick studies up to critical operations. It was 
developed in 2002 at CS Systémes d’Information and 
was officially released as an open source software, 
under the Apache License Version 2.0, in 2008 (CS 
Communication & Systémes 2017). 
European Space Agency (ESA) engineers have been 
developing several spacecraft simulation tools that form 
the Mission - Customer Furnished Item (CFI) Software 
(Mission CFI). It includes the following products (ESA 
2017): 

• The Earth Observation CFI (EOCFI) software,
which is a collection of multiplatform
precompiled C libraries for timing, coordinate
conversions, orbit propagation, satellite
pointing calculations, and target visibility
calculations, specifically parametrized and
configured for EO satellites;

• The EO Orbit and Attitude Adapter (EO
Adapter), which is part of the Earth
Observation Mission Software Suite. It is a
tool/library to generate Orbit and Attitude files
compliant with EOCFI format using data
extracted from one or more binary files, for
example files containing Telemetry packets
including Orbit and Attitude information;

• The Envisat CFI software, which is a
collection of multiplatform precompiled C
libraries for timing, coordinate conversions,
orbit propagation, satellite pointing
calculations, and target visibility calculations,
specifically parametrized and configured for
the Envisat satellite.

The JSDL project presented in this Section stems from 
the SISO Space Reference FOM standardization 
initiative carried out by the SISO Space Reference FOM 
(SRFOM) Product Development Group (PDG) (Möller 
et al. 2016). JSDL aims at supporting the development 
of complex space systems by providing high fidelity 
models and algorithms to manage them. Differently 
from proprietary and commercial solutions that require 
tool-specific knowledge and training, JSDL is an open 
source project released under the open source policy 
Lesser GNU Public License (LGPL) and can be freely 
and easily customized and/or extended to cover specific 
domain aspects. This license allows anybody to build 
both commercial and noncommercial applications 
without restrictions or limitations from the use of JSDL. 
In the following sections the JSDL project is described 
in details by highlighting its architecture and 
functionalities. 

3. THE JSDL PROJECT
Java Space Dynamics Library (JSDL) is a low-level 
space dynamics library that facilitates the design and 
development of space systems, such as space vehicles 
and satellites. The open source nature of the library 

allows developers to investigate and customize the 
architecture and functionalities defined in the source 
code to fit their own needs. 
The JSDL has been designed and developed in the 
context of the research activities carried out within the 
SMASH-Lab (System Modeling And Simulation Hub - 
Laboratory) of the University of Calabria (Italy) 
working in cooperation with the SISO Space Reference 
FOM (SRFOM) Product Development Group (PDG) 
(Möller et al. 2016). The primary goal of JSDL is to 
provide high fidelity models and algorithms needed for 
defining space systems that are as accurate and robust 
as those provided by existing commercial and 
government software. It is fully implemented in the 
Java programming language and provides a consistent 
set of functionalities for developing and running 
complex elements in space such as, time scales, 
reference frames, orbital parameters, orbit propagation, 
and attitude. 
The JSDL provides to developers the following 
resources: (i) the technical documentation that describes 
the library with its philosophy and mission; (ii) the user 
guide to support developers in the use of the library; 
and (iii) a set of reference examples that show how to 
create space systems. 
In the following, the attention is focused on the 
architecture and services provided by the library. 

4. ARCHITECTURE OF THE JSDL
The JSDL library depends only on the Java Standard 
Edition version 7 (or above), Apache Commons Math 
(Apache Commons 2017) version 3.6 and JDateTime 
(Jodd Components 2017) version 3.8 libraries at 
runtime. The JSDL provides a set of services, each of 
which defines some Java classes and interfaces that 
enable specific functionalities. The JSDL architecture is 
shown in Figure 1.  

Figure 1: Architecture of the JSDL library. 

Space Applications. Contains the space applications that 
are built using the functionalities provided by the JSDL. 
An application can interact with the Apache Commons 
Math and JDateTime directly or through the JSDL 
library. 
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Java Space Dynamics Library (JSDL). It is the core 
library for creating Space applications. It provides a set 
of features useful for modeling objects in space. The 
complexity of the features provided is hidden behind an 
intuitive set of APIs. 
Apache Commons Math library. It is a standard library 
of lightweight, self-contained mathematics and statistics 
components addressing the most common practical 
problems not immediately available in the Java 
programming language (Apache Commons 2017). 
JDateTime library. It is a library that offers a very 
precise way to track dates and time. It uses well-defined 
and proven astronomical algorithms for time 
manipulation (Jodd Components 2017). 
In the following Sections, the six JSDL services with 
their UML Class diagrams are described in detail. 

5. SERVICES OF THE JSDL

5.1. Data Structure Service 
The Data Structure Service defines functionalities that 
ease working with complex data structures. It provides a 
very useful set of data structures (tree and queue) to 
build and manage Reference Frames and Physical 
Entities with their transformations. 
The structure of the Data Structure Service is shown in 
Figure 2 by using a UML Class Diagram. 

Figure 2: The architecture of the Data Structure Service. 

The LinkedNTree is a generic class that stores elements 
hierarchically where each element has a parent element 
and zero or more children elements. It implements the 
Tree interface that defines some functionalities to 
handle a tree such as height(), depth(), root() and size(). 
Moreover, all the common traversal schemes for trees 

are provided: LevelOrderIterator, PreOrderIterator, 
InOrderIterator and PostOrderIterator. 
The Queue class provides a queue data structure that 
follows the First-in First-out (FIFO) strategy. Elements 
can only be added to the end (enqueue) and only be 
removed from the front (dequeue). The queue has been 
implemented by using a Java standard LinkedList and 
provides two methods enqueue() and dequeue() to 
perform each task respectively. 

5.2. Frame Service 
Reference frame is a fundamental concept for 
representing when and where a physical entity exists in 
time and space (Falcone et al. 2014; Möller et al. 2016). 
This representation is referred to as the state of the 
entity. In order to represent the state of something, it is 
necessary to express that state with respect to some time 
scale and some referent coordinate system. This 
combination of time and coordinate system is referred 
as a Space-Time Coordinate or Reference Frame 
(Möller et al. 2016). The structure of the Frame Service 
is shown in Figure 3 by using a UML Class Diagram. 

Figure 3: The architecture of the Frame Service. 

The Frame Service provides functionalities to handle 
Reference Frames. It includes the fundamental 
ReferenceFrame class that represents a single frame. 
Each Reference Frame, as defined in the SISO Space 
Reference FOM (Möller et al. 2016), is composed of 
three attributes: (i) name, which represents the unique 
name of the reference frame; (ii) parent, which is the 
parent Reference Frame. If it is NULL, the Reference 
Frame is the root frame; and (iii) space-time coordinate 
state, which defines through the 
SpaceTimeCoordinateState Class a four-dimensional 
representation of the space-time coordinate state with 
respect to its parent reference frame (Möller et al. 
2016). It consists of: 

• Translational state information, which
provides through the
ReferenceFrameTranslation class a position
vector 𝑣 from the origin of the parent reference
frame to the origin of the reference frame. It
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also provides a velocity vector 𝑣 for the 
motion of the reference frame with respect to 
the parent frame. Both of these vectors are 
expressed with respect to the parent reference 
frame. These vectors can be used to describe 
the translational position and motion of a 
frame with respect to its parent; 

• Rotational state information, which provides
through the ReferenceFrameRotation class an
attitude quaternion 𝑞 that describes the attitude
of the reference frame with respect to its parent
frame. It also provides an angular velocity
vector 𝑤 that describes the rotational motion of
the reference frame with respect to the parent
frame expressed in the subject frame’s
coordinates. 𝑞	and 𝑤 can be used to describe
the attitude and rotational motion of a frame
with respect to its parent.

• Time, which contains information about the
time 𝑡 to which the space-time coordinate state
corresponds.

As shown in Figure 4, all Reference Frames are 
organized as a tree that is formed from a single base 
root node with directed paths from an arbitrary number 
of child nodes. 

Figure 4: Tree of ReferenceFrames. 

These child nodes can then have directed paths from 
other arbitrary sets of child nodes. 
The translational and rotational information can be used 
to transform a generic vector expressed in a given 
reference frame 𝑟'()*+ into a vector expressed in its
parent frame 𝑟,-./01. In turn, the vector 𝑟,-./01 now
expressed in the parent frame can be expressed in the 
parent’s parent frame or in another child frame of the 
parent frame. Chaining together sequences of 
transformations using the relationships established in 
the reference frame tree allows for transformation 
between any pair of frames in the reference frame tree. 
Transformations are defined and managed by the 
Transform and ReferenceFrameManager classes. In 
particular, a transformation is computed by merging 
individual transforms while walking the shortest path 
between them. The walking/merging operations are 
handled transparently by the library. Developers only 
need to select the frames, provide the date and ask for 
the transformation, without knowing how the frames are 
related to each other. Transformations are defined as 
operators that when applied to the coordinates of a 

vector expressed in the initial Reference Frame, provide 
the coordinates of the same vector expressed in the final 
Reference Frame. 
Equation 1 gives the transformation of a position vector 
expressed in a child reference frame into a position 
vector expressed in the parent reference frame (Kuipers 
2002), 

𝑟,-./01 = 𝑟3_,-./01	 + 𝑄(𝑟'()*+) (1) 

where 𝑟'()*+	is the position vector expressed in the child
reference frame, 𝑄(𝑟'()*+) is the quaternion rotation
operator associated with the attitude quaternion 𝑞 that 
defines the attitude of the child reference frame with 
respect to the parent reference frame; 𝑟3_,-./01	 is the
vector giving the position of child reference frame 
origin with respect to the parent reference frame origin 
expressed in parent reference frame coordinates; 
𝑟,-./01		 is the position vector of the entity expressed in
parent reference frame coordinates. 
With reference to the 𝑄(𝑟'()*+) operation, it is the
canonical way of multiplying a quaternion 𝑞 by a vector 
𝑥 as given by expression (2), 

𝑄 𝑥 = 𝑞 ∙ 𝑥 ∙ 𝑞∗ (2) 

where 𝑞∗ is the conjugate of 𝑞.
The relative motion between a child reference frame 
and a parent reference frame is provided by the velocity 
𝑣 and angular velocity 𝑤 vectors. Equation 3 gives the
velocity of an entity expressed in the parent reference 
frame given the velocity of the entity expressed in the 
child reference frame (Kuipers 2002), 

𝑣,-./01 = 𝑣3_,-./01 + 𝑄(𝑣'()*+ + (𝑤'()*+	×	𝑟'()*+)) (3)

where 𝑣'()*+ is the velocity vector of an entity
expressed in the child reference frame, 𝑤'()*+ is the
angular velocity vector of the child frame with respect 
to the parent frame and expressed in child frame 
coordinates, 𝑣=_,-./01 is the velocity of the child frame
with respect to the parent frame expressed in parent 
frame coordinates, and 𝑣,-./01 is the velocity of an
entity expressed the parent reference frame. 
In most cases, the position and velocity relationships are 
sufficient. However, acceleration is sometimes needed 
and is included for completeness. Equation 4 gives the 
acceleration of an entity expressed in the parent 
reference frame given the acceleration of the entity 
expressed in the child reference frame (Kuipers 2002), 

𝑎,-./01 = 𝑎3_,-./01 + 𝑄 𝑎'()*+ + 𝑤'()*+	×
	 𝑤'()*+	×	𝑟'()*+ + 	 2𝑤'()*+	×	𝑣'()*+ +
	 𝛼'()*+	×	𝑟'()*+ (4) 

where 𝑎'()*+ is the acceleration of an entity expressed in
the child reference frame, 𝛼'()*+ is the angular
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acceleration of the child frame with respect to the parent 
frame and expressed in child frame coordinates, 
𝑎3_,-./01 is the acceleration of the child frame with
respect to the parent frame expressed in parent frame 
coordinates, and 𝑎,-./01 is the acceleration of an entity
expressed in the parent reference frame. 
Concerning reverse transformations; using the child to 
parent vector transformation equations above defined 
along with some vector and quaternion algebra, the 
resulting equation 5 gives the transformation of a 
position vector expressed in a parent reference frame 
into a position vector expressed in the child reference 
frame (Kuipers 2002), 

𝑟'()*+ = 𝑄∗ 𝑟,-./01 − 𝑟3_,-./01 = 	−𝑟3_'()*+ +
𝑄∗ 𝑟,-./01 (5) 

where 𝑄∗ 𝑟,-./01  is the conjugate quaternion rotation
operator associated with the attitude quaternion 𝑞 that
defines the attitude of the child reference frame with 
respect to the parent reference frame, and 𝑟3_'()*+ is the
vector giving the position of child reference frame 
origin with respect to the parent reference frame origin 
expressed in child reference frame coordinates (Kuipers 
2002). 

𝑣'()*+ = 𝑄∗ 𝑣,-./01 − 𝑣3_,-./01 − 𝑤'()*+	×	𝑟'()*+ =
−	𝑣3_'()*+ − 𝑤'()*+	×	𝑟'()*+ + 𝑄∗ 𝑣,-./01  (6)

Similar relationships can be derived for velocity 
(Equation 6) and acceleration (Equation 7) (Kuipers 
2002). 

𝑎'()*+ = 𝑄∗ 𝑎,-./01 − 𝑎3_,-./01 − 𝑤'()*+	×
	 𝑤'()*+	×	𝑟'()*+ − 2𝑤'()*+	×	𝑣'()*+ −
𝛼'()*+	×	𝑟'()*+ = 	−	𝑎3_'()*+ − 		 𝑤'()*+	×
	 𝑤'()*+	×	𝑟'()*+ 	− 2𝑤'()*+	×	𝑣'()*+ −
𝛼'()*+	×	𝑟'()*+ + 	𝑄∗ 𝑎,-./01 (7) 

5.3. Physical Entity Service 
The structure of the Physical Entity Service is shown in 
Figure 5 by using a UML Class Diagram. 
PhysicalEntity is the highest-level object class in the 
JSDL entity hierarchy. This class provides attributes to 
describe an entity’s location in time and space. It also 
contains attributes to uniquely identify it individually 
from all other physical entities. 
Physical entities have two intrinsically associated 
reference frames: (i) a structural frame; and (ii) a body 
frame. These are not registered in the reference frame 
tree but are used to place and orient the entity in space 
with respect to a reference frame in the tree. The origin 
of the structural frame is located at some arbitrary but 
known point on the entity (Möller et al. 2016). The 
body frame origin is at the entity’s center of mass and is 
located with respect to the entity’s structural reference 
frame by a vector from the origin of the structural 
reference frame to the center of mass of the entity. This 

vector is expressed in the entity’s structural reference 
frame. The orientation of the entity’s body frame with 
respect to the entity’s structural reference frame is 
defined by an attitude quaternion. 

Figure 5: The architecture of the Physical Entity 
Service. 

The Physical Entity Service is designed to provide 
functionalities for space objects such as satellites, 
asteroids and vehicles. The core attributes defined in the 
PhysicalEntity class includes the position and 
orientation with respect to a defined parent reference 
frame, which must be a reference frame instance in the 
reference frame tree, and a time tag in a defined time 
scale. This information is sufficient to unambiguously 
represent an entity in time and space. 

5.4. Time Service 
The Time Service allows to manage epochs, time scales, 
time units and to compare time instants. The structure 
of the Time Service is shown in Figure 6 by using a 
UML Class Diagram. 

Figure 6: The architecture of the Time Service. 

The principal class is Time that represents a unique 
instant in time defined by specifying a point in a 
specific epoch (e.g., J2000, GPS and Julian epoch), 
time scale and time unit (Möller et al. 2016). The 
TimeScale interface defines a set of predefined time 
scales: 

• Universal Time (UT). It is a time standard
based on Earth’s rotation, defined as the Mean
Solar Time at the Royal Observatory in
Greenwich, England. There are three variations
of Universal Time. UT0 is the observed mean
solar time. UT1 is UT0 corrected for polar
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motion, the motion of the Earth’s rotational 
axis over the surface of the Earth, and UT2 that 
is corrected for seasonal variations but today it 
is considered obsolete. 

• International Atomic Time (TAI). It was
introduced in 1972 and represents a high-
precision atomic coordinate time standard
based on the notional passage of proper time
on Earth’s geoid (Guinot 1986). This time
scale is accurate enough to observe relativistic
effects for clocks in motion or accelerated by a
local gravity field. One advantage of using TAI
is that it is a continuous uniform time scale.
Specifically, the rate of time passage for TAI is
constant unlike the Earth rotation based scales.
This means that the Earth rotation based time
scales diverge from TAI over time due to the
variations in the Earth’s rotation. TAI is
exactly 36 seconds ahead of UTC. The 36
seconds results from the initial difference of 10
seconds at the start of 1972, plus 26 leap
seconds in UTC since 1972.

• Coordinated Universal Time (UTC). It is a 24-
hour time standard that is used to synchronize
world clocks. UTC is defined by the
International Telecommunications Union 
Recommendation (ITU-R TF.460-6), 
Standard-frequency and time-signal emissions
(Recommendation I., 460-6 2002) and is based
on International Atomic Time (TAI) with leap
seconds added at irregular intervals to
compensate for the slowing of Earth’s rotation.
Leap seconds are inserted as necessary to keep
UTC within 0.9 seconds of universal time,
UT1 (Department T.S., United States Naval
Observatory).

• Global Positioning System Time (GPS Time).
GPS Time is the uniform time scale with a
starting epoch at midnight between Saturday
January 5th and Sunday January 6th, 1980
(1980 January 6, 00:00:00 UTC). GPS Time
counts in weeks and seconds of a week from
this instant. The GPS week begins at the
transition between Saturday and Sunday. The
days of the week are numbered sequentially,
with Sunday being 0, Monday 1, Tuesday 2,
etc. The GPS time scale begins at the GPS
starting epoch with GPS week 0. Within each
week, the time is usually denoted as the second
of the week (SOW). This is a number between
0 and 604,800 (60 x 60 x 24 x 7). Sometimes
SOW is split into a day of week (DOW)
between 0 and 6 and a second of day (SOD)
between 0 and 86400. While GPST is a
uniform time scale, it does have rollover. To
limit the size of the numbers used in the data
and calculations, the GPS Week Number is a
ten-bit count in the range 0-1023, repeating
every 1024 weeks. As a result, the week
number ’rolled over’ from 1023 to 0 at

23:59:47 UTC on Saturday, 21st August 1999. 
This was before midnight UTC because every 
GPS week contains exactly 604,800 seconds, 
to keep the calculations consistent. The 13 
intervening leap seconds had put UTC behind 
GPS system time. The next GPS week rollover 
occurs on April 6th, 2019. 

• Terrestrial Time (TT). It is an astronomical
time standard defined by the International
Astronomical Union (IAU) used widely for
geocentric and topocentric ephemerides. TT is
defined to run at the same rate as TAI seconds
but with an offset of 32.184 seconds. This
offset is based on preserving continuity with
other historical dynamic time scales.

• Geocentric Coordinated Time (TCG). It is a
coordinate time standard defined in 1991 by
the International Astronomical Union (IAU). It
is primarily used for theoretical developments
based on the Geocentric Celestial Reference
System (GCRS). TCG is a relativistic time
scale and since the reference frame for TCG is
not rotating with the surface of the Earth and
not in the gravitational potential of the Earth,
TCG ticks faster than clocks on the surface of
the Earth by a factor of 6.97 ∙ 10HI3 seconds.
TCG, Barycentric Coordinated Time (TCB)
and Terrestrial Time (TT) are de- fined in a
way that they have the same value on January
1st 1977, 00:00:00 TAI (JD 2443144.5 TAI).

• Barycentric Coordinated Time (TCB). It is a
time scale, defined in 1991 by the International
Astronomical Union (IAU), primarily used for
theoretical developments based on the
Barycentric Celestial Reference System
(BCRS). TCB is a relativistic time scale and
since the reference frame for TCB is not
influenced by the gravitational potential caused
by the Solar system, TCB ticks faster than
clocks on the surface of the Earth by 1.55	 ·
	10HL seconds. TCB, Geocentric Coordinated
Time (TCG) and Terrestrial Time (TT) are
defined in a way that they have the same value
on January 1st 1977, 00:00:00 TAI (JD
2443144.5 TAI).

5.5. Util Service 
The Util Service defines a number of useful 
functionalities, primarily transformations ones that are 
useful for working with Physical Entities in space. This 
service should not be considered merely a utility one 
that is separate from the rest of JSDL; in fact, JSDL 
depends directly on several of the classes defined in it. 
Indeed, it provides services needed to define both 
Reference Frame and Time objects with their standard 
conversions. 
The structure of the Util Service is shown in Figure 7 by 
using a UML Class Diagram. 
The Matrix class represents a mathematical matrix. It 
provides methods for creating matrices, operating on 
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them arithmetically and algebraically, and determining 
their mathematical properties such as trace, rank, 
inverse and determinant. 

Figure 7: The architecture of the Util Service. 

The QuaternionUtil class provides classical methods to 
manage quaternions such as conjugate, inverse and 
norm. The JulianDate class represents a Julian Date, 
which is a universal time used by all astronomers to 
ensure that observations are based on a universal 
astronomical time. It corresponds to the day, hour and 
minute of the observation and is the interval of time in 
days since noon at Greenwich on 1 January 4713 BC. 
Finally, the TimeConverter and TimeUtility allow to 
perform time conversions. Moreover, it is possible to 
easily convert a JulianDate to a standard Java Calendar 
object to have a date/time representation of it through 
the use of the toCalendar(JulianDate jd) method 
defined in the TimeConverter class. For example, the 
Truncate Julian Date (TJD) 17131.83333333334 can be 
converted in a Calendar object with value 2015 April 
19, 20:00:00 UTC. 

5.6. Logging Service 
The Logging Service provides functionalities useful to 
both track down any problems or errors occurred during 
its use, and understand how the JSDL core services 
work. This information is stored into the jsdl_trace.log 
file. 
The structure of the Logging Service is shown in Figure 
8 through the use of a UML Class Diagram. 

Figure 8: The architecture of the Logging Service. 

6. CONCLUSION
In the space flight dynamics domain, many research 
efforts are focusing on the definition of methods, tools 
and software libraries, mainly aiming at providing a 
robust and flexible way for defining, building and 
simulating complex systems in space. 
As discussed in the paper, due to the increasing 
complexity of space systems and thus of the related 
engineering problems; new methods, tools and software 

libraries have been developed in each of these 
organizations primarily for specific needs and later 
generalized so as to make them modular, flexible and 
reusable. The available, commercial and 
noncommercial, solutions support one or more of the 
phases in the development of space systems such as 
flight mechanics, propulsion, orbit controls and data 
analysis, however none of them seems capable of 
providing complete coverage of the whole development 
process of space simulations. To overcome this issue, 
the Java Space Dynamics Library (JSDL) has been 
created. 
The Java Space Dynamics Library (JSDL) stems from 
the SISO Space Reference FOM standardization 
initiative carried out by the SISO Space Reference FOM 
(SRFOM) Product Development Group (PDG) (Möller 
et al. 2016). JSDL is still evolving and aims at 
supporting the development of complex space systems 
by providing high fidelity models and algorithms to 
manage them. 
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