
A JAVA LIBRARY FOR EASING THE DISTRIBUTED SIMULATION OF SPACE
SYSTEMS

Alberto Falcone, Alfredo Garro

Department of Informatics, Modeling, Electronics, and Systems Engineering (DIMES), University of Calabria, via P.
Bucci 41C, 87036, Rende (CS), Italy

{alberto.falcone, alfredo.garro}@dimes.unical.it

ABSTRACT
The space flight domain is one of the numerous fields
that involve experts belonging to different scientific
domains such as mathematical, physical, aerospace and
software engineering. Many research efforts are
focusing on the definition of methods, tools and
software libraries, mainly aiming at providing a robust
and flexible way for defining, building and simulating
complex systems in space so as to understand, predict
and optimize their behavior. In this context, the paper
presents a space flight dynamics library, named Java
Space Dynamics Library (JSDL), which offers high
fidelity models and algorithms to manage space systems
according to the SISO Space Reference FOM
standardization initiative.

Keywords: Modeling and Simulation, Space Flight
Dynamics, Distributed Simulations, High Level
Architecture (HLA)

1. INTRODUCTION
Due to the increasing complexity of space systems, and
thus of the related engineering problems (Falcone,
Garro, and Tundis 2014; Fortino et al. 2007; Garro et al.
2015; Garro and Falcone 2015), there is a consistent
investment in the development of new methods, tools
and software libraries able to provide a robust and
flexible way for defining, building and simulating them
(Falcone et al. 2016; Fortino et al. 2006; Ido 2012;
Rogovchenko-Buffoni et al. 2014; San-Juan et al.
2011). These available, commercial and
noncommercial, solutions support one or more of the
phases in the development of space systems such as
flight mechanics, propulsion, orbit controls and data
analysis; however, none of them seems capable of
providing complete coverage of the whole development
process in a flexible way (Pulecchi and Lovera 2006).
In this context, there is an increasing need for efficient
and flexible solutions capable of covering all the steps
in the design and develop of space systems, especially
for supporting system modeling and simulation where
modularity, flexibility and reusability are key features to
provide (Falcone et al. 2016; Falcone et al. 2015;
Pulecchi and Lovera 2006).

To contribute to fill this lack, the paper presents the
Java Space Dynamics Library (JSDL) project,
emphasizing its flexibility and showing the set of
services provided to define and build space systems
such as satellites and spacecrafts. The rest of the paper
is structured as follows: related works are discussed in
Section 2; Section 3 presents the Java Space Dynamics
Library (JSDL) whose architecture and provided
services are discussed in Section 4 and 5 respectively.
Finally, in Section 6 conclusions are drawn and future
research directions are delineated.

2. RELATED WORK
There are several research efforts on the development of
methods, tools and libraries in the astrodynamics field,
mainly aiming at providing a robust and flexible way
for defining, building and simulating complex systems
in space. The most applicable solutions have been
developed after the mid-1960’s when space missions
were the attention of media and computers become
prevalent in academia and industry.
The Java Astrodynamics Toolkit (JAT) is an open
source library of reusable components, distributed under
the GNU General Public License (GLP). It is
implemented in the Java language and helps developers
to create their own application programs and solve
problems in astrodynamics, mission design, spacecraft
navigation, guidance and control. It provides
functionalities that allow the rapid development of
spacecraft simulations including 2D and 3D
visualization capabilities. Possible applications of JAT
include: (i) Design and analysis of space missions,
including trajectory optimization; (ii) Simulation of
spacecraft navigation, guidance and control as well as
its visualization in a 3D environment; and, (iii)
Simulation of the motion for basic rigid and flexible
spacecraft dynamics (Gaylor, Page, and Bradley 2006).
Another software library that enables developers to
effectively define and manage elements in space is
Orbits Extrapolation Kit (Orekit) (CS Communication
& Systémes 2017). Orekit is implemented in the Java
language and aims at providing accurate and efficient
low level standard astrodynamical models (e.g., time,
frames, orbital parameters, orbit propagation, attitude

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

6

and celestial bodies) and algorithms (e.g., time
conversions, propagations and pointing) for the
development of flight dynamics applications. It is
designed to be easily used in very different contexts,
from quick studies up to critical operations. It was
developed in 2002 at CS Systémes d’Information and
was officially released as an open source software,
under the Apache License Version 2.0, in 2008 (CS
Communication & Systémes 2017).
European Space Agency (ESA) engineers have been
developing several spacecraft simulation tools that form
the Mission - Customer Furnished Item (CFI) Software
(Mission CFI). It includes the following products (ESA
2017):

• The Earth Observation CFI (EOCFI) software,
which is a collection of multiplatform
precompiled C libraries for timing, coordinate
conversions, orbit propagation, satellite
pointing calculations, and target visibility
calculations, specifically parametrized and
configured for EO satellites;

• The EO Orbit and Attitude Adapter (EO
Adapter), which is part of the Earth
Observation Mission Software Suite. It is a
tool/library to generate Orbit and Attitude files
compliant with EOCFI format using data
extracted from one or more binary files, for
example files containing Telemetry packets
including Orbit and Attitude information;

• The Envisat CFI software, which is a
collection of multiplatform precompiled C
libraries for timing, coordinate conversions,
orbit propagation, satellite pointing
calculations, and target visibility calculations,
specifically parametrized and configured for
the Envisat satellite.

The JSDL project presented in this Section stems from
the SISO Space Reference FOM standardization
initiative carried out by the SISO Space Reference FOM
(SRFOM) Product Development Group (PDG) (Möller
et al. 2016). JSDL aims at supporting the development
of complex space systems by providing high fidelity
models and algorithms to manage them. Differently
from proprietary and commercial solutions that require
tool-specific knowledge and training, JSDL is an open
source project released under the open source policy
Lesser GNU Public License (LGPL) and can be freely
and easily customized and/or extended to cover specific
domain aspects. This license allows anybody to build
both commercial and noncommercial applications
without restrictions or limitations from the use of JSDL.
In the following sections the JSDL project is described
in details by highlighting its architecture and
functionalities.

3. THE JSDL PROJECT
Java Space Dynamics Library (JSDL) is a low-level
space dynamics library that facilitates the design and
development of space systems, such as space vehicles
and satellites. The open source nature of the library

allows developers to investigate and customize the
architecture and functionalities defined in the source
code to fit their own needs.
The JSDL has been designed and developed in the
context of the research activities carried out within the
SMASH-Lab (System Modeling And Simulation Hub -
Laboratory) of the University of Calabria (Italy)
working in cooperation with the SISO Space Reference
FOM (SRFOM) Product Development Group (PDG)
(Möller et al. 2016). The primary goal of JSDL is to
provide high fidelity models and algorithms needed for
defining space systems that are as accurate and robust
as those provided by existing commercial and
government software. It is fully implemented in the
Java programming language and provides a consistent
set of functionalities for developing and running
complex elements in space such as, time scales,
reference frames, orbital parameters, orbit propagation,
and attitude.
The JSDL provides to developers the following
resources: (i) the technical documentation that describes
the library with its philosophy and mission; (ii) the user
guide to support developers in the use of the library;
and (iii) a set of reference examples that show how to
create space systems.
In the following, the attention is focused on the
architecture and services provided by the library.

4. ARCHITECTURE OF THE JSDL
The JSDL library depends only on the Java Standard
Edition version 7 (or above), Apache Commons Math
(Apache Commons 2017) version 3.6 and JDateTime
(Jodd Components 2017) version 3.8 libraries at
runtime. The JSDL provides a set of services, each of
which defines some Java classes and interfaces that
enable specific functionalities. The JSDL architecture is
shown in Figure 1.

Figure 1: Architecture of the JSDL library.

Space Applications. Contains the space applications that
are built using the functionalities provided by the JSDL.
An application can interact with the Apache Commons
Math and JDateTime directly or through the JSDL
library.

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

7

Java Space Dynamics Library (JSDL). It is the core
library for creating Space applications. It provides a set
of features useful for modeling objects in space. The
complexity of the features provided is hidden behind an
intuitive set of APIs.
Apache Commons Math library. It is a standard library
of lightweight, self-contained mathematics and statistics
components addressing the most common practical
problems not immediately available in the Java
programming language (Apache Commons 2017).
JDateTime library. It is a library that offers a very
precise way to track dates and time. It uses well-defined
and proven astronomical algorithms for time
manipulation (Jodd Components 2017).
In the following Sections, the six JSDL services with
their UML Class diagrams are described in detail.

5. SERVICES OF THE JSDL

5.1. Data Structure Service
The Data Structure Service defines functionalities that
ease working with complex data structures. It provides a
very useful set of data structures (tree and queue) to
build and manage Reference Frames and Physical
Entities with their transformations.
The structure of the Data Structure Service is shown in
Figure 2 by using a UML Class Diagram.

Figure 2: The architecture of the Data Structure Service.

The LinkedNTree is a generic class that stores elements
hierarchically where each element has a parent element
and zero or more children elements. It implements the
Tree interface that defines some functionalities to
handle a tree such as height(), depth(), root() and size().
Moreover, all the common traversal schemes for trees

are provided: LevelOrderIterator, PreOrderIterator,
InOrderIterator and PostOrderIterator.
The Queue class provides a queue data structure that
follows the First-in First-out (FIFO) strategy. Elements
can only be added to the end (enqueue) and only be
removed from the front (dequeue). The queue has been
implemented by using a Java standard LinkedList and
provides two methods enqueue() and dequeue() to
perform each task respectively.

5.2. Frame Service
Reference frame is a fundamental concept for
representing when and where a physical entity exists in
time and space (Falcone et al. 2014; Möller et al. 2016).
This representation is referred to as the state of the
entity. In order to represent the state of something, it is
necessary to express that state with respect to some time
scale and some referent coordinate system. This
combination of time and coordinate system is referred
as a Space-Time Coordinate or Reference Frame
(Möller et al. 2016). The structure of the Frame Service
is shown in Figure 3 by using a UML Class Diagram.

Figure 3: The architecture of the Frame Service.

The Frame Service provides functionalities to handle
Reference Frames. It includes the fundamental
ReferenceFrame class that represents a single frame.
Each Reference Frame, as defined in the SISO Space
Reference FOM (Möller et al. 2016), is composed of
three attributes: (i) name, which represents the unique
name of the reference frame; (ii) parent, which is the
parent Reference Frame. If it is NULL, the Reference
Frame is the root frame; and (iii) space-time coordinate
state, which defines through the
SpaceTimeCoordinateState Class a four-dimensional
representation of the space-time coordinate state with
respect to its parent reference frame (Möller et al.
2016). It consists of:

• Translational state information, which
provides through the
ReferenceFrameTranslation class a position
vector 𝑣 from the origin of the parent reference
frame to the origin of the reference frame. It

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

8

also provides a velocity vector 𝑣 for the
motion of the reference frame with respect to
the parent frame. Both of these vectors are
expressed with respect to the parent reference
frame. These vectors can be used to describe
the translational position and motion of a
frame with respect to its parent;

• Rotational state information, which provides
through the ReferenceFrameRotation class an
attitude quaternion 𝑞 that describes the attitude
of the reference frame with respect to its parent
frame. It also provides an angular velocity
vector 𝑤 that describes the rotational motion of
the reference frame with respect to the parent
frame expressed in the subject frame’s
coordinates. 𝑞	and 𝑤 can be used to describe
the attitude and rotational motion of a frame
with respect to its parent.

• Time, which contains information about the
time 𝑡 to which the space-time coordinate state
corresponds.

As shown in Figure 4, all Reference Frames are
organized as a tree that is formed from a single base
root node with directed paths from an arbitrary number
of child nodes.

Figure 4: Tree of ReferenceFrames.

These child nodes can then have directed paths from
other arbitrary sets of child nodes.
The translational and rotational information can be used
to transform a generic vector expressed in a given
reference frame 𝑟'()*+ into a vector expressed in its
parent frame 𝑟,-./01. In turn, the vector 𝑟,-./01 now
expressed in the parent frame can be expressed in the
parent’s parent frame or in another child frame of the
parent frame. Chaining together sequences of
transformations using the relationships established in
the reference frame tree allows for transformation
between any pair of frames in the reference frame tree.
Transformations are defined and managed by the
Transform and ReferenceFrameManager classes. In
particular, a transformation is computed by merging
individual transforms while walking the shortest path
between them. The walking/merging operations are
handled transparently by the library. Developers only
need to select the frames, provide the date and ask for
the transformation, without knowing how the frames are
related to each other. Transformations are defined as
operators that when applied to the coordinates of a

vector expressed in the initial Reference Frame, provide
the coordinates of the same vector expressed in the final
Reference Frame.
Equation 1 gives the transformation of a position vector
expressed in a child reference frame into a position
vector expressed in the parent reference frame (Kuipers
2002),

𝑟,-./01 = 𝑟3_,-./01	 + 𝑄(𝑟'()*+) (1)

where 𝑟'()*+	is the position vector expressed in the child
reference frame, 𝑄(𝑟'()*+) is the quaternion rotation
operator associated with the attitude quaternion 𝑞 that
defines the attitude of the child reference frame with
respect to the parent reference frame; 𝑟3_,-./01	 is the
vector giving the position of child reference frame
origin with respect to the parent reference frame origin
expressed in parent reference frame coordinates;
𝑟,-./01		 is the position vector of the entity expressed in
parent reference frame coordinates.
With reference to the 𝑄(𝑟'()*+) operation, it is the
canonical way of multiplying a quaternion 𝑞 by a vector
𝑥 as given by expression (2),

𝑄 𝑥 = 𝑞 ∙ 𝑥 ∙ 𝑞∗ (2)

where 𝑞∗ is the conjugate of 𝑞.
The relative motion between a child reference frame
and a parent reference frame is provided by the velocity
𝑣 and angular velocity 𝑤 vectors. Equation 3 gives the
velocity of an entity expressed in the parent reference
frame given the velocity of the entity expressed in the
child reference frame (Kuipers 2002),

𝑣,-./01 = 𝑣3_,-./01 + 𝑄(𝑣'()*+ + (𝑤'()*+	×	𝑟'()*+)) (3)

where 𝑣'()*+ is the velocity vector of an entity
expressed in the child reference frame, 𝑤'()*+ is the
angular velocity vector of the child frame with respect
to the parent frame and expressed in child frame
coordinates, 𝑣=_,-./01 is the velocity of the child frame
with respect to the parent frame expressed in parent
frame coordinates, and 𝑣,-./01 is the velocity of an
entity expressed the parent reference frame.
In most cases, the position and velocity relationships are
sufficient. However, acceleration is sometimes needed
and is included for completeness. Equation 4 gives the
acceleration of an entity expressed in the parent
reference frame given the acceleration of the entity
expressed in the child reference frame (Kuipers 2002),

𝑎,-./01 = 𝑎3_,-./01 + 𝑄 𝑎'()*+ + 𝑤'()*+	×
	 𝑤'()*+	×	𝑟'()*+ + 	 2𝑤'()*+	×	𝑣'()*+ +
	 𝛼'()*+	×	𝑟'()*+ (4)

where 𝑎'()*+ is the acceleration of an entity expressed in
the child reference frame, 𝛼'()*+ is the angular

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

9

acceleration of the child frame with respect to the parent
frame and expressed in child frame coordinates,
𝑎3_,-./01 is the acceleration of the child frame with
respect to the parent frame expressed in parent frame
coordinates, and 𝑎,-./01 is the acceleration of an entity
expressed in the parent reference frame.
Concerning reverse transformations; using the child to
parent vector transformation equations above defined
along with some vector and quaternion algebra, the
resulting equation 5 gives the transformation of a
position vector expressed in a parent reference frame
into a position vector expressed in the child reference
frame (Kuipers 2002),

𝑟'()*+ = 𝑄∗ 𝑟,-./01 − 𝑟3_,-./01 = 	−𝑟3_'()*+ +
𝑄∗ 𝑟,-./01 (5)

where 𝑄∗ 𝑟,-./01 is the conjugate quaternion rotation
operator associated with the attitude quaternion 𝑞 that
defines the attitude of the child reference frame with
respect to the parent reference frame, and 𝑟3_'()*+ is the
vector giving the position of child reference frame
origin with respect to the parent reference frame origin
expressed in child reference frame coordinates (Kuipers
2002).

𝑣'()*+ = 𝑄∗ 𝑣,-./01 − 𝑣3_,-./01 − 𝑤'()*+	×	𝑟'()*+ =
−	𝑣3_'()*+ − 𝑤'()*+	×	𝑟'()*+ + 𝑄∗ 𝑣,-./01 (6)

Similar relationships can be derived for velocity
(Equation 6) and acceleration (Equation 7) (Kuipers
2002).

𝑎'()*+ = 𝑄∗ 𝑎,-./01 − 𝑎3_,-./01 − 𝑤'()*+	×
	 𝑤'()*+	×	𝑟'()*+ − 2𝑤'()*+	×	𝑣'()*+ −
𝛼'()*+	×	𝑟'()*+ = 	−	𝑎3_'()*+ − 		 𝑤'()*+	×
	 𝑤'()*+	×	𝑟'()*+ 	− 2𝑤'()*+	×	𝑣'()*+ −
𝛼'()*+	×	𝑟'()*+ + 	𝑄∗ 𝑎,-./01 (7)

5.3. Physical Entity Service
The structure of the Physical Entity Service is shown in
Figure 5 by using a UML Class Diagram.
PhysicalEntity is the highest-level object class in the
JSDL entity hierarchy. This class provides attributes to
describe an entity’s location in time and space. It also
contains attributes to uniquely identify it individually
from all other physical entities.
Physical entities have two intrinsically associated
reference frames: (i) a structural frame; and (ii) a body
frame. These are not registered in the reference frame
tree but are used to place and orient the entity in space
with respect to a reference frame in the tree. The origin
of the structural frame is located at some arbitrary but
known point on the entity (Möller et al. 2016). The
body frame origin is at the entity’s center of mass and is
located with respect to the entity’s structural reference
frame by a vector from the origin of the structural
reference frame to the center of mass of the entity. This

vector is expressed in the entity’s structural reference
frame. The orientation of the entity’s body frame with
respect to the entity’s structural reference frame is
defined by an attitude quaternion.

Figure 5: The architecture of the Physical Entity
Service.

The Physical Entity Service is designed to provide
functionalities for space objects such as satellites,
asteroids and vehicles. The core attributes defined in the
PhysicalEntity class includes the position and
orientation with respect to a defined parent reference
frame, which must be a reference frame instance in the
reference frame tree, and a time tag in a defined time
scale. This information is sufficient to unambiguously
represent an entity in time and space.

5.4. Time Service
The Time Service allows to manage epochs, time scales,
time units and to compare time instants. The structure
of the Time Service is shown in Figure 6 by using a
UML Class Diagram.

Figure 6: The architecture of the Time Service.

The principal class is Time that represents a unique
instant in time defined by specifying a point in a
specific epoch (e.g., J2000, GPS and Julian epoch),
time scale and time unit (Möller et al. 2016). The
TimeScale interface defines a set of predefined time
scales:

• Universal Time (UT). It is a time standard
based on Earth’s rotation, defined as the Mean
Solar Time at the Royal Observatory in
Greenwich, England. There are three variations
of Universal Time. UT0 is the observed mean
solar time. UT1 is UT0 corrected for polar

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

10

motion, the motion of the Earth’s rotational
axis over the surface of the Earth, and UT2 that
is corrected for seasonal variations but today it
is considered obsolete.

• International Atomic Time (TAI). It was
introduced in 1972 and represents a high-
precision atomic coordinate time standard
based on the notional passage of proper time
on Earth’s geoid (Guinot 1986). This time
scale is accurate enough to observe relativistic
effects for clocks in motion or accelerated by a
local gravity field. One advantage of using TAI
is that it is a continuous uniform time scale.
Specifically, the rate of time passage for TAI is
constant unlike the Earth rotation based scales.
This means that the Earth rotation based time
scales diverge from TAI over time due to the
variations in the Earth’s rotation. TAI is
exactly 36 seconds ahead of UTC. The 36
seconds results from the initial difference of 10
seconds at the start of 1972, plus 26 leap
seconds in UTC since 1972.

• Coordinated Universal Time (UTC). It is a 24-
hour time standard that is used to synchronize
world clocks. UTC is defined by the
International Telecommunications Union
Recommendation (ITU-R TF.460-6),
Standard-frequency and time-signal emissions
(Recommendation I., 460-6 2002) and is based
on International Atomic Time (TAI) with leap
seconds added at irregular intervals to
compensate for the slowing of Earth’s rotation.
Leap seconds are inserted as necessary to keep
UTC within 0.9 seconds of universal time,
UT1 (Department T.S., United States Naval
Observatory).

• Global Positioning System Time (GPS Time).
GPS Time is the uniform time scale with a
starting epoch at midnight between Saturday
January 5th and Sunday January 6th, 1980
(1980 January 6, 00:00:00 UTC). GPS Time
counts in weeks and seconds of a week from
this instant. The GPS week begins at the
transition between Saturday and Sunday. The
days of the week are numbered sequentially,
with Sunday being 0, Monday 1, Tuesday 2,
etc. The GPS time scale begins at the GPS
starting epoch with GPS week 0. Within each
week, the time is usually denoted as the second
of the week (SOW). This is a number between
0 and 604,800 (60 x 60 x 24 x 7). Sometimes
SOW is split into a day of week (DOW)
between 0 and 6 and a second of day (SOD)
between 0 and 86400. While GPST is a
uniform time scale, it does have rollover. To
limit the size of the numbers used in the data
and calculations, the GPS Week Number is a
ten-bit count in the range 0-1023, repeating
every 1024 weeks. As a result, the week
number ’rolled over’ from 1023 to 0 at

23:59:47 UTC on Saturday, 21st August 1999.
This was before midnight UTC because every
GPS week contains exactly 604,800 seconds,
to keep the calculations consistent. The 13
intervening leap seconds had put UTC behind
GPS system time. The next GPS week rollover
occurs on April 6th, 2019.

• Terrestrial Time (TT). It is an astronomical
time standard defined by the International
Astronomical Union (IAU) used widely for
geocentric and topocentric ephemerides. TT is
defined to run at the same rate as TAI seconds
but with an offset of 32.184 seconds. This
offset is based on preserving continuity with
other historical dynamic time scales.

• Geocentric Coordinated Time (TCG). It is a
coordinate time standard defined in 1991 by
the International Astronomical Union (IAU). It
is primarily used for theoretical developments
based on the Geocentric Celestial Reference
System (GCRS). TCG is a relativistic time
scale and since the reference frame for TCG is
not rotating with the surface of the Earth and
not in the gravitational potential of the Earth,
TCG ticks faster than clocks on the surface of
the Earth by a factor of 6.97 ∙ 10HI3 seconds.
TCG, Barycentric Coordinated Time (TCB)
and Terrestrial Time (TT) are de- fined in a
way that they have the same value on January
1st 1977, 00:00:00 TAI (JD 2443144.5 TAI).

• Barycentric Coordinated Time (TCB). It is a
time scale, defined in 1991 by the International
Astronomical Union (IAU), primarily used for
theoretical developments based on the
Barycentric Celestial Reference System
(BCRS). TCB is a relativistic time scale and
since the reference frame for TCB is not
influenced by the gravitational potential caused
by the Solar system, TCB ticks faster than
clocks on the surface of the Earth by 1.55	 ·
	10HL seconds. TCB, Geocentric Coordinated
Time (TCG) and Terrestrial Time (TT) are
defined in a way that they have the same value
on January 1st 1977, 00:00:00 TAI (JD
2443144.5 TAI).

5.5. Util Service
The Util Service defines a number of useful
functionalities, primarily transformations ones that are
useful for working with Physical Entities in space. This
service should not be considered merely a utility one
that is separate from the rest of JSDL; in fact, JSDL
depends directly on several of the classes defined in it.
Indeed, it provides services needed to define both
Reference Frame and Time objects with their standard
conversions.
The structure of the Util Service is shown in Figure 7 by
using a UML Class Diagram.
The Matrix class represents a mathematical matrix. It
provides methods for creating matrices, operating on

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

11

them arithmetically and algebraically, and determining
their mathematical properties such as trace, rank,
inverse and determinant.

Figure 7: The architecture of the Util Service.

The QuaternionUtil class provides classical methods to
manage quaternions such as conjugate, inverse and
norm. The JulianDate class represents a Julian Date,
which is a universal time used by all astronomers to
ensure that observations are based on a universal
astronomical time. It corresponds to the day, hour and
minute of the observation and is the interval of time in
days since noon at Greenwich on 1 January 4713 BC.
Finally, the TimeConverter and TimeUtility allow to
perform time conversions. Moreover, it is possible to
easily convert a JulianDate to a standard Java Calendar
object to have a date/time representation of it through
the use of the toCalendar(JulianDate jd) method
defined in the TimeConverter class. For example, the
Truncate Julian Date (TJD) 17131.83333333334 can be
converted in a Calendar object with value 2015 April
19, 20:00:00 UTC.

5.6. Logging Service
The Logging Service provides functionalities useful to
both track down any problems or errors occurred during
its use, and understand how the JSDL core services
work. This information is stored into the jsdl_trace.log
file.
The structure of the Logging Service is shown in Figure
8 through the use of a UML Class Diagram.

Figure 8: The architecture of the Logging Service.

6. CONCLUSION
In the space flight dynamics domain, many research
efforts are focusing on the definition of methods, tools
and software libraries, mainly aiming at providing a
robust and flexible way for defining, building and
simulating complex systems in space.
As discussed in the paper, due to the increasing
complexity of space systems and thus of the related
engineering problems; new methods, tools and software

libraries have been developed in each of these
organizations primarily for specific needs and later
generalized so as to make them modular, flexible and
reusable. The available, commercial and
noncommercial, solutions support one or more of the
phases in the development of space systems such as
flight mechanics, propulsion, orbit controls and data
analysis, however none of them seems capable of
providing complete coverage of the whole development
process of space simulations. To overcome this issue,
the Java Space Dynamics Library (JSDL) has been
created.
The Java Space Dynamics Library (JSDL) stems from
the SISO Space Reference FOM standardization
initiative carried out by the SISO Space Reference FOM
(SRFOM) Product Development Group (PDG) (Möller
et al. 2016). JSDL is still evolving and aims at
supporting the development of complex space systems
by providing high fidelity models and algorithms to
manage them.

ACKNOWLEDGMENTS
The authors would like to thank all the members of the
SISO Space Reference FOM (SRFOM) Product
Development Group (PDG) and, in particular, Dr.
Edwin Z. Crues (NASA JCS) for their precious advice
and suggestions in the development of the Java Space
Dynamics Library (JSDL).

REFERENCES
Apache Commons, 2017. Apache Commons Math

home page. Available from: https://commons.
apache.org/proper/commons-math/ [accessed 20
Feb 2017].

Rogovchenko-Buffoni, L., Tundis, A., Hossain, M.Z.,
Nyberg, M., and Fritzson, P., 2014. An integrated
toolchain for model based functional safety
analysis. Journal of Computational Science, 5(3),
pp. 408-414.

CS Communication & Systémes, 2017. Orbits
Extrapolation Kit (Orekit) home page. Available
from: https://www.orekit.org/ [accessed 20 Feb
2017].

Department T.S., United States Naval Observatory.
Leap Seconds home page. Retrieved 17 July 2011.
Available from: http://tycho.usno.navy.mil/
[accessed 20 Feb 2017].

ESA, 2017. The Mission CFI software home page.
Available from: http://eop-cfi.esa.int/index.php/
mission-cfi software [accessed 20 Feb 2017].

Falcone, A., Garro, A., and Tundis, A., 2014. Modeling
and Simulation for the performance evaluation of
the on-board communication system of a metro
train. In Proceedings of the 13th International
Conference on Modeling and Applied Simulation
(MAS 2014), pp. 20-29. September 10-12,
Bordeaux (France).

Falcone, A., Garro, A., Longo, F., and Spadafora, F.,
2014. Simulation exploration experience: A
communication system and a 3D real time

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

12

visualization for a moon base simulated scenario.
In Proceeding of the 18th IEEE/ACM
International Symposium on Distributed
Simulation and Real-Time Applications, DS-RT
‘2014, pp. 113-120, October 1-3, Toulouse,
France. IEEE Computer Society.

Falcone, A., Garro, A., Taylor, S. J. E., Anagnostou, A.,
Chaudhry, N. R., and Salah, O., 2016. Experiences
in simplifying distributed simulation: The HLA
Development Kit Framework. Journal of
Simulation, 1-20. ISSN: 1747-7786, DOI:
10.1057/s41273-016-0039-4. Palgrave Macmillan
UK.

Falcone, A., Garro, A., Anagnostou, A., Chaudhry, N.
R., Salah, O., and Taylor, S. J. E., 2015. Easing the
development of HLA Federates: the HLA
Development Kit and its exploitation in the SEE
Project. In Proceedings of the 19th IEEE/ACM
International Symposium on Distributed
Simulation and Real-Time Applications, DS-RT
‘2015, pp. 50-57. October 14-16, Chengdu, China.
IEEE Computer Society.

Fortino, G., Garro, A., Mascillaro, S., and Russo, W.,
2007. ELDATool: A Statecharts-based Tool for
Prototyping Multi-Agent Systems. In Proceeding
of the 8th AI*IA/TABOO Joint Workshop "From
Objects to Agents": Agents and Industry:
Technological Applications of Software Agents,
WOA ‘2007, pp. 14-19, September 24-25,
Genova, Italy.

Fortino, G., Garro, A., Russo, W., Caico, R.,
Cossentino, M., and Termine, F., 2006.
Simulation-driven development of multi-agent
systems. In Proceedings of the 4th International
Industrial Simulation Conference, ISC ‘2006, pp.
17-24, June 5-7, Palermo, Italy. EUROSIS.

Gaylor, D., Page, R. and Bradley, K., 2006. Testing of
the java astrodynamics toolkit propagator. In
AIAA/AAS Astrodynamics Specialist Conference
and Exhibit, p. 6754.

Garro, A., and Falcone, A., 2015. On the integration of
HLA and FMI for supporting interoperability and
reusability in distributed simulation. In
Proceedings of the Symposium on Theory of
Modeling and Simulation - DEVS Integrative
M&S Symposium, DEVS 2015, Part of the 2015
Spring Simulation Multi-Conference, SpringSim
2015, pp. 9-16. April 12-15, Alexandria, USA,.
Society for Computer Simulation International.

Garro, A., Falcone, A., Chaudhry, N. R., Salah, O. A.,
Anagnostou, A., and Taylor, S. J., 2015. A
prototype HLA development kit: results from the
2015 simulation exploration experience. In
Proceedings of the 3rd ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation,
pp. 45-46, June 10-12, London, UK. IEEE
Computer Society.

Guinot, B., 1986: Is the international atomic time tai a
coordinate time or a proper time? Celestial
mechanics 38(2), pp. 155–161.

Ido, H., 2012. Space Flight Dynamics as a Service.
Jodd Components, 2017. JDateTime home page.

Available from: http://www.jodd.org/doc/jdate
time.html [accessed 20 Feb 2017]

Möller, B., Garro, A., Falcone, A., Crues, E. Z. and
Dexter, D. E., 2016. Promoting a-priori
interoperability of HLA-based Simulations in the
Space domain: the SISO Space Reference FOM
initiative. Proceedings of the 20th IEEE/ACM
International Symposium on Distributed
Simulation and Real Time Applications DS-RT
2016, pp. 100-107. September 21-23, London,
UK. IEEE Computer Society.

Kuipers, J., 2002. Quaternions and Rotation Sequences:
A Primer with Applications to Orbits, Aerospace
and Virtual Reality.

Pulecchi, T. and Lovera, M., 2006. A modelica library
for space flight dynamics. In Proceedings of the
5th International Modelica Conference.

San-Juan, J. F., Lara, M., López, R., López, L. M.,
Folcik, Z. J., Weeden, B. and Cefola, P. J., 2011.
Using the DSST semi-analytical orbit propagator
package via the NonDyWebTools/
AstroDyWebTools open science environment.
RdM, 6(1), 2π.

Recommendation, I.: 460-6, 2002. Standard-frequency
and time-signal emissions (questionitu-r 102/7).
ITU-R Recommendations: Time Signals and
Frequency Standards Emission, Geneva,
International Telecommunications Union, Radio-
communication Bureau.

AUTHORS BIOGRAPHY
Alberto Falcone
Alberto Falcone is a PhD student in Information and
Communication Engineering for Pervasive Intelligent
Environments at University of Calabria (Italy). In 2016,
he was Visiting Researcher at NASA Johnson Space
Center (JSC), working with the Software, Robotics, and
Simulation Division (ER). He is a member of the
Executive Committee as Student Team Coordinator of
the Simulation Exploration Experience (SEE) project.

Alfredo Garro
Alfredo Garro is an Associate Professor of Computer
and Systems Engineering at the Department of
Informatics, Modeling, Electronics and Systems
Engineering (DIMES) of the University of Calabria
(Italy). In 2016, he was Visiting Professor at NASA
Johnson Space Center (JSC), working with the
Software, Robotics, and Simulation Division (ER). He
is vice chair of the Space Reference Federation Object
Model (SRFOM) Product Development Group (PDG)
of SISO. He is the Technical Director of the “Italian
Chapter” of INCOSE. He is involved as an IEEE senior
member in the activities of the IEEE Computer Society,
IEEE Reliability Society and IEEE Aerospace and
Electronic Systems Society.

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

13

