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ABSTRACT 
We develop a discrete event simulation to complement 
a new optimization tool that establishes inventory levels 
for aviation weapon systems (WS) in the U.S. Navy.  
The optimization seeks cost minimization while 
achieving required readiness rates for hundreds of WS, 
each comprising thousands of indentured parts.  Based 
on work in similar realms, the optimization employs the 
Vari-Metric model to estimate overall WS readiness and 
a variant of a greedy heuristic algorithm to set stock 
levels for all parts.  Our simulation tests the 
assumptions and provides additional metrics for 
decision makers.  We find that the estimates for 
readiness yielded by the optimization tool (a) have no 
systemic bias, and (b) remain within 5% in 53 of 64 WS 
(with an 8% worst-case).  We also test two legacy 
optimization tools currently used by the Navy and find 
they have larger errors in expected readiness.  We also 
identify factors correlated to these differences.  
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1. INTRODUCTION 
The United States Chief of Naval Operations (2011) 
requires the use of “readiness-based sparing (RBS) 
methodology to spares and repair parts allowance 
determination to ensure that prescribed readiness 
thresholds and objectives are achieved at the lowest 
possible cost.” RBS uses advanced analytics to set 
inventory levels for most U.S. Navy parts and sub-parts 
at different locations.   
To guarantee required combat power for the combatant 
commanders of the U.S. Navy (USN), all naval aviation 
Weapon Systems (WS) must maintain specified 
readiness (i.e. availability) rates. The term WS here 
identifies platforms such as the F/A-18 (Hornet) attack 
aircraft, or the MH60 (Seahawk) helicopter, among 
others.  While reliability and maintainability are 
primarily set in the design phase of a WS, supportability 
is a crucial aspect of readiness that can be adjusted 
throughout the lifecycle of the system to achieve desired 
readiness rates.  Supportability is affected by several 
factors; one of the key controllable elements is stock 
levels for spare parts at different echelons of supply. 

Selecting the right mixtures of parts to stock at any 
given site in the USN is a very challenging task in a 
budget-constrained environment.  A naval site contains 
numerous WS of different types and each WS may 
contain thousands of parts each failing at different rates.  
While it may not be possible to identify a provable 
optimal inventory for every site, our goal is to design 
and implement optimization and simulation tools that 
approximate such solutions and provide inventory 
policies that result in significant cost savings and 
improved fleet readiness over alternative solutions.   
Although fill rate is a popular choice for evaluating 
inventory policies, it is problematic in a military setting 
where the ultimate goal is sufficient availability of WS.  
Although improving fill rates or reducing backorders 
will in fact improve readiness, policies developed with 
these metrics alone will be inefficient (Moulder et al. 
2011).  Looking solely at fill rates will inadvertently 
punish more complex WS.  With all other factors such 
as failure rates and mean time to repair (MTTR) being 
equal, a WS with more parts will be requesting more 
parts from supply.  If 95% of the parts are available 
upon request, a WS with more parts will be unavailable 
more often while awaiting parts than a WS with fewer 
parts. 
In order to assist Naval Supply Systems Command 
(NAVSUP) with RBS planning, we develop an RBS 
Simulation (RSIM) to verify the recently developed 
Navy Aviation RBS Model (NAVARM) estimates and 
also compare its performance to the legacy Service 
Planning Optimization (SPO) and Aviation Readiness 
Requirements Oriented to Weapons Replaceable 
Assemblies (ARROWS) tools. 
 
2. NAVARM AND RSIM 
 

2.1. NAVARM Overview 
NAVARM (Salmeron 2016) embeds a heuristic 
algorithm that approximates the optimal inventory 
quantities for a single-site, multi-indenture problem.  
Specifically, NAVARM recommends reorder quantities 
that minimize the cost of inventory held while 
maintaining pre-specified target availability rates for all 
WS.   
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NAVARM uses an (S-1, S) inventory model for all parts 
and sites.  That is, S is the (maximum) stock level at a 
site determined by NAVARM and an order is placed as 
soon as that level decreases by one (i.e., the reorder 
point is S-1).  This means that each time a part fails, it is 
turned into the system for repair.  If the part cannot be 
repaired, a new part is ordered to replace it.   
Assuming every part i is given a stock level Si, every 
WS has an estimated availability that is calculated as a 
function of the expected backorders (EBOs) of the 
highest indenture parts in the WS.  Naturally, 
backorders for any part in the system are a random 
variable which depends on: (a) the part’s stock level; (b) 
its (possibly different) failure probability distributions 
for all common parts in the same or different WS; and 
(c) the backorder distribution for sub-indentured parts to 
all common parts.  The underlying theory to calculate 
EBOs for a given set of inventory levels Si is known as 
the Vari-Metric model, see Sherbrooke (1986, 2004, pp. 
101-125).  
The Vari-Metric model estimates EBOs under the 
assumption that, even though the number of failures for 
a given part can be approximated using a Poisson 
distribution, the actual number of failures after 
accounting for sub-indentured parts’ failures is 
distributed as a Negative Binomial. 
The multi-indenture structure used to describe WS 
repair with more fidelity complicates the problem 
significantly.  Figure 1 illustrates this idea for three 
hypothetical WS at a site. For simplicity each WS has 
only one first-indenture part. If we are interested, for 
example, in improving the availability of WS 3, we can 
look at ways to decrease backorders of sub-parts “R” 
and “L”.  But, noting that part “L” is common to WS 2, 
its backorders are impacted by parts “M” and “N”, and 
therefore by “G” in WS 2. Moreover, since this is 
common to WS 1, stocks of parts “H” and “I” in WS 1 
will affect backorders of “L” in WS 3.  The fact that 
WS 3 can be influenced by WS 1’s parts (which have 
no direct commonality with parts in WS 3) is a 
challenging aspect of RBS optimization.  
 

 
Figure 1: The Chain of Influence in a Multi-Indenture 
Part Structure 

 
Sherbrooke (2004) points out that while the multi-
indenture structure and the likelihood of common parts 
across WS types “does complicate the computer 
programs substantially … the basic logic is the same.” 

The use of heuristics to approximate the problem of 
satisfying a certain availability at minimum cost is 
justified due to the lack of a closed-form expression for 
expected readiness rates for a given reorder policy. 
The Vari-Metric model suggests using a greedy 
heuristic based on an “effectiveness ratio” that measures 
improvement in EBOs with respect to cost.  Parts with 
higher ratios are chosen until the desired availability is 
met.  Even though this greedy heuristic is not provably 
optimal in a discrete setting (where we cannot order a 
fraction of a part), and counterexamples can be easily 
built, the method appears to work well in practice.   
The matter becomes more complex when there are 
multiple WS with common parts.  This is because if we 
follow the greedy algorithm for one WS at a time, we 
will achieve the desired availability at (approximately) 
minimum cost for, say, WS 1.  But then, we will need 
other parts when working on WS 2.  If some of those 
parts are common to WS 1, we will increase its 
availability unnecessarily above its target. Thus, 
refinements are needed, and NAVARM implements 
some of those, which basically consist of revisiting all 
of the WS above target in order to remove parts and 
reduce cost.       
 
2.2. RSIM Introduction and Scope 
RSIM (Wray 2017) simulates failures at the individual 
part level and then aggregates up to the individual WS 
level and WS type to help assess the accuracy of 
expected backorders and WS availability.  To simulate 
the system of interest, three major classes of entities are 
created: parts, WS and part positions.  Each part has 
attributes that include: 
 

• Status (i.e., functioning or down for 
maintenance),  

• Planned failure time (detailed below), and  
• Position (specifying where the part is installed 

if currently in use)  
 
Each WS has attributes that include: 

• Type (e.g., CH-53 helicopter), 
• Availability status (i.e., up or down), and 
• A list of part positions that comprise the WS 

(e.g., hydraulic pump).   
 
A part position has attributes that include: 

• The WS (if currently in use),  
• Parameters describing expected failure times, 

and 
• Parameters describing the time for a working 

part to return to inventory after breaking. 
 
Modeling failures in a manner that closely mirrors 
reality is crucial to attaining realistic outputs.  Expected 
failure rates can be derived from existing databases and 
are broken down into failures that can be repaired at the 
site and failures that cannot.  Some parts have only one 
type of failure or the other while some have both.   
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The type of failure is tracked in RSIM to later develop 
an expected time the part will return to inventory in a 
working status.  To handle the difference in types of 
failures, RSIM first combines the failure rates and 
assigns a failure time based on the rate.  When the 
failure occurs, a random number draw is compared to 
the ratio of repairable and non-repairable failures to 
assign the type.   
While multi-parameter distributions such as the Weibull 
that allow specification of mean and variance are 
generally preferred for detailed modeling of failure 
rates, the databases used for RBS currently provide only 
the mean failure rates.  As a result, the exponential 
distribution is employed by RSIM to generate the next 
failure.  This is also consistent with the assumptions 
established for NAVARM, SPO and ARROWS. 
Failure rates in the database and RSIM are specific to a 
part position on a WS type; a hydraulic pump used on a 
CH-53E utility system may have a different failure rate 
than the same type of hydraulic pump used on an SH-
60S utility system.  In fact, the same pump may be 
installed on different WS types between failures and 
thus have different failure rates assigned based on 
where it is installed.  When a part fails, RSIM removes 
the part from the usable pool for a specified period of 
time until repaired or replaced.   
Although RSIM is best described with an event graph 
(see Figure 2), the basic steps are as follows: 
 

• Read data in from database and instantiate all 
entities specified in the data. 

• Assign parts to fill each WS and assign a first 
failure time stochastically for each part based 
on its specified distribution. 

• When a failure occurs: 
− Assign a time the part will return to 

service. 
− If a part of the correct type is available in 

inventory, place WS in down status for the 
specified MTTR.  If a part is not available, 
add the WS to a first-in, first-out (FIFO) 
queue for that part type. 

• When a part returns to a ready-for-issue status 
at the site, use it to repair the first WS in the 
FIFO queue awaiting that part type.  If no WS 
are awaiting that part type, return the part to 
inventory. 

 
To manage complexity, simplify the verification and 
validation process, and ensure acceptable simulation 
run-time, RSIM tightly scopes the factors considered in 
the simulation while maintaining flexibility to add new 
factors as desired to closer mirror reality or support 
study objectives.   
In its current state, RSIM ingests summary level data on 
flight hours, failure rates, repair times and shipping 
times and most of these factors are treated 
deterministically.  While RSIM could simulate actual 
flight sorties and assign failures based on WS flight 
times, the effect of this added fidelity would likely be 

nominal when considering inventory policies and thus is 
not included.  Likewise, scheduling the repair process at 
intermediate and depot level and including manpower 
and part availability consideration here would also have 
minimal effect on the metrics currently of interest; 
instead, expected values are substituted in lieu of this 
detailed analysis.   
Finally, RSIM could consider the phasing of required 
repairs and how they may coincide with required 
periodic inspections and planned maintenance to 
minimize downtime.  Part failures that render the WS 
partial mission capable could remain on the WS until an 
optimal time to complete the repair.  Again, the effect of 
including this would not shed light on the objectives at 
hand though it may be a worthwhile future enhancement 
to provide decision makers with a fuller sense of what 
to expect if the given NAVARM solution is 
implemented.  
 
2.3. RSIM Assumptions 
A number of assumptions are made in the RSIM 
implementation, some of which could significantly 
impact the results.  These assumptions are made for a 
variety of reasons to include limited data availability, 
code simplicity, and reduced run-time.  The inherent 
flexibility in RSIM implementation makes these 
assumptions fairly easy to modify or eliminate through 
code manipulation.  The following are significant 
assumptions currently made in RSIM: 

• Failure rates are accurately represented by an 
exponential distribution: As stated early, 
failure rates would likely be better represented 
with a Gamma or Weibull distribution, but the 
limited failure data provided does not allow for 
such implementation.  The exponential 
distribution is not very well suited to represent 
wear out failures that occur at fairly 
predictable intervals as compared to random 
failures. 

• Failures are independent: Because failure times 
are scheduled into the future on a continuous 
timeline and there are no dependencies in our 
program, simultaneous failures will not occur 
despite real world experiences that suggest 
otherwise. 

• Failures in the simulation should continue to 
happen when the WS is down: While failure 
rates in the database are given per flight hour, 
this data along with average flight hours is 
used to develop expected mean time between 
failures.  Although parts are much less likely to 
fail when the WS is out of service, scheduled 
failures continue to occur in the simulation to 
ensure the expected failure rate is maintained.  
This may result in overlap of delay times for 
backordered parts.  With a higher fidelity data 
set, this could be improved by developing 
conditional probabilities for failures that better 
reflect the empirical data.   

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017, 
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

45



• Expected sub-indentured part failure times are 
not reset when a parent part is changed: This 
assumes that all parts are repaired and that 
when they undergo repair, it does not affect 
reliability of the separate sub components.  
This assumption will fail if the part is replaced 
and sub components are not salvaged, but the 
available data does not delineate how often 
parts are repaired when they go off-site and 
what happens to sub-indentured parts when a 
replacement is necessary for the parent part.  
Of note, this assumption will lead to a 
conservative estimate of availability, though 
the extent of the impact is unknown with the 
data currently available.  

• Demands are FIFO: This assumes that no 
priority will be given to WS of types that are 
below their availability goal or some other 
prioritization scheme. 

• No lateral resupply: There is no cross-leveling 
between sites that have high and low 
inventories (or backorders) for a particular 
part. 

• Cannibalization: While moving working parts 
from a down WS to one that can be returned to 
an up status is practiced in the real world, 
RSIM is conservative in not assuming so.  

• Repair times are independent: RSIM does not 
attempt to simulate backlogs in the repair 
pipeline that would likely occur if multiple 
parts of the same type were in the repair 
pipeline simultaneously.   
 

2.4. RSIM Event Graph and Implementation 
Figure 2 depicts an event graph describing the overall 
model of part failures and subsequent repairs in RSIM.  
This version of the event graph is simplified and 
intended to provide a broad understanding of the flow 
of parts through the system.   
 

 
Figure 2: Simplified RSIM Event Graph 

 
The RSIM event graph depicted in Figure 2 has been 
implemented in the Java programming language using 
the Simkit library (Buss 2002, 2004). Simkit provides 
the necessary support for easily converting the event 
graph into working code. As an open source library, 
Simkit is free of the encumbrances of commercial 
licensing, while providing excellent support for the 
model’s features. An additional open source library, 

UCanAccess (2017), has been used to interact with the 
MS Access database inputs. 
 

3. RESULTS 
 

3.1. Introduction    
In its current configuration, RSIM outputs several 
metrics by WS and part type to allow comparison to 
other RBS optimization software (i.e., NAVARM, SPO, 
and ARROWS).  Additionally, it provides decision 
makers with a more comprehensive understanding of 
what to expect if a certain inventory policy is 
implemented.  For each WS type, RSIM provides the 
mean number of WS available, the corresponding 
readiness rate, and the percent of simulated time the WS 
type was at or above its given readiness goal.  For each 
part type, RSIM outputs the mean inventory level, mean 
number of backorders, and the fill rate. 
The primary metric of interest is the readiness rate by 
WS type.  Given the crucial nature of having required 
force levels available at any given time, NAVSUP must 
ensure the inventory quantities selected will enable this 
objective.  RSIM, NAVARM, SPO, and ARROWS 
each have assumptions built in that may not be accurate, 
but a comparison of the outputs can be helpful in 
assessing the validity of the readiness estimates. 
The data used for the analysis below is generated using 
Dell Inspiron I5378 laptop running Windows 10 with an 
Intel Core i7-7500U 2.7 GHz CPU and 8 GB of RAM.  
RSIM is implemented in JDK 1.8 and utilizes the 64-bit 
Simkit version 1.4.6 and UCanAccess version 4.0.1.  
Based on steady state analysis conducted for several 
sites, we use a warmup period of 3,000 simulated days 
before collecting 7,000 simulated days of data for 30 
replications at each site analyzed.  These settings result 
in less than 1% margin of error for readiness levels of 
all WS tested.  Run times range between 2.5 and 59 
minutes for the seven sites analyzed.  NAVARM runs 
are conducted on the same laptop described above using 
the 32-bit version of Microsoft Excel 2016.  While there 
are several NAVARM setting that can significantly 
affect the run time, standard settings result in run times 
ranging between 30 seconds and 18 minutes. 
 
3.2. RSIM Compared to NAVARM  
We have run RSIM on seven representative USN sites 
to compare expected WS availability rates and expected 
backorder rates for a given allowancing to those 
anticipated by NAVARM.  The number of WS types at 
these Naval sites ranges from 3 to 23 with a mean of 
just over 9 WS types per site and a mean of 111 
individual WS per site.   
Figure 3 shows the summary histogram of the 
differences in expected availability for the 64 WS types 
tested.  Out of the 64 WS types analyzed, 53 have 
expected readiness levels within 5% and the mean 
difference for all WS types in this sample is .2% with 
no systemic bias to over or under estimate readiness 
noted. 
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Figure 3: Differences in Expected Availability between 
NAVARM and RSIM 

 
3.3. Comparison to Legacy RBS Tools  
As NAVSUP considers whether to switch RBS 
optimization tools, it is crucial for the decision makers 
to assess the accuracy of the NAVARM expected 
readiness calculations and compare its accuracy to the 
SPO and ARROWS tools currently in use.  Because 
RSIM models the system at the part and WS level, its 
method of observing readiness rates through the course 
of a simulation provides an independent observation to 
compare against the optimization tool estimates 
available.  SPO, ARROWS, and NAVARM have been 
run at a representative site with seven different WS 
types and a total of 62 WS.  Their recommended 
inventory policies have been simulated in RSIM in 
order to compare the expected readiness rates for each 
WS type.  Figure 4 shows a summary of the resulting 
differences in estimates.  In this case, it becomes clear 
that NAVARM’s estimated readiness rates are much 
closer to RSIM than SPO or ARROWS estimates are. 
 

 
Figure 4: Absolute % Difference between Available 
Optimization Tools and RSIM Readiness Estimates by 
WS Type at a Single Site 

 
3.4. Analysis of Attributes Affecting Performance 
While the difference between expected readiness given 
by RSIM and NAVARM is likely acceptable in the 
current versions, we have tried to identify key drivers of 
any differences found in the hope of further explaining 
the differences and ideally reducing the errors.  First, 
we consider attributes of the WS type that may 
complicate calculations for availability in the models.  
The factors of interest by WS type are: 

 
• Quantity per application (QPA): Some part 

types are found on a WS multiple times at the 
same indenture level.  In these cases, the part 
type is represented with a single line in the 
database and the number of parts used is given 
as QPA.  While QPA implementation is  
straightforward in simulation, its use in the 
readiness estimation for NAVARM  has been 
debated.   

• Commonality: This is a measure of how often 
the same part type is used throughout the site.  
This adds a layer of complexity in the 
optimization model as changes in inventory 
can affect numerous WS types.  

• Number of parts: The number of parts tracked 
on a given WS type in our data sets ranged 
from 80 to over 8,000.  

• Indenture depth level: Assumptions are made 
in both RSIM and NAVARM regarding the 
impact of indenture depth level on part failure 
rates and readiness. 
 

Each of the above factors has been examined compared 
to the difference in readiness estimates produced by 
NAVARM and RSIM.  None of the correlations are 
significantly strong, with total number of parts being the 
highest (0.49), indenture depth level and mean number 
of common parts slightly lower (0.43 and 0.40, 
respectively), and QPA being clearly non-significant 
(0.02).  
 
3.5. Comparison of EBO Outputs  
Because EBOs play an integral part in the NAVARM 
calculations of expected readiness, we configure 
NAVARM and RSIM to output EBOs for every part 
position to compare expected EBO levels.  At the 
sample site described above, there are over 11,000 part 
positions tracked.  Of these, approximately 6,400 part 
positions are expected to have some backorders based 
on their failure rate and stock level.  The magnitude of 
the difference is generally negligible with only a 2% 
difference in the sum of EBOs for NAVARM and 
RSIM and an average difference of less than .0003 per 
part.   Figure 5 shows a histogram comparison of EBOs.  
Parts with extremely low EBO levels will not 
significantly impact overall WS readiness.  Of note, the 
counts are nearly identical for EBOs above .001.   
We consider the same abovementioned factors as 
potential drivers in the difference in EBO levels 
between NAVARM and RSIM, but again neither of 
these factors demonstrates strong correlation with the 
differences in EBO levels.  Specifically, the fact that 
indenture depth does not strongly influence availability 
or EBO differences suggests that the Vari-Metric 
assumption of negative binomial distribution for 
modeling EBOs of sub-indentured parts is reasonable. 
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Figure 5: Observed RSIM EBO Levels Compared to 
NAVARM Expected EBO Levels at a Single Site 
 
 

 
3.6. Additional RSIM Insights 
In addition to verifying NAVARM outputs and 
providing an independent comparison of the three 
available RBS optimization tools, RSIM can provide 
additional insights not available with the optimization 
output.  One example of this is the expected readiness 
levels.  While the optimization tools only provide the 
expected readiness levels overall, RSIM provides 
metrics that include percentage of time above the stated 
readiness goal and the readiness levels observed at the 
beginning of each simulated day.   
For example, Figure 6 shows a histogram of observed 
daily readiness levels over a period of 7,000 simulated 
days for a single WS type with 22 WS at a single site.  
Even though the most important output of RSIM is the 
expected readiness achieved (in this case 60.7%, 
slightly below the 63% goal), additional valuable 
information can be gleaned: In this simulation run, 
48.2% of the simulated time had readiness rates above 
the goal.  A decision maker may be more interested in 
worst-case scenarios to ensure that assumptions made 
for contingency planning are realistic.  The fact that we 
expect less than 50% readiness during 11% of the time 
may be of interest. 
 

 
Figure 6: Histogram of Daily Readiness Rates in RSIM 
for 7,000 Simulated Days of a Single WS Type 
 
In addition to providing useful metrics for decision 
makers, RSIM provides metrics that may be used to 
improve recommended inventory levels calculated by 
NAVARM.  Table 1 shows a small sample of output 

from RSIM for six part types at a single site.  The mean 
backorder level, mean inventory level, number of 
failures over the period of the simulation and the fill 
rate are output for each part type.  The full output will 
contain thousands of entries, but an analyst could sort 
this list to help identify areas where inventory levels 
could be manually adjusted to incorporate other factors 
not accounted for in the NAVARM optimization, such 
as those due to modeling assumptions described in 
Section 2.3.  This process could be automated and take 
advantage of both NAVARM and RSIM to evaluate the 
changes.  Moreover, RSIM could be extended to 
implement its own adjustments and become a 
complement to NAVAIR’s optimization.  
 

Table 1: Sample RSIM Output by Part Type 

 
 
Simulation lends itself well to the collection of 
numerous metrics.  Here we have presented several 
metrics that may be useful to the decision makers or 
analysts.  As our understanding of the problem 
continues to develop, we expect to modify the RSIM 
assumptions and metrics accordingly.  
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