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ABSTRACT 

The cluster tool, which consists of multiple process 

chambers are widely used in the semiconductor industry. 

As the process of wafers becomes more sophisticated, 

the operation of cluster tools is also being improved. To 

effectively operate cluster tools, several rule-based 

schedules, such as the swap sequence have been 

developed. However, scheduling in time variance 

environment is not fully considered. In this paper, we 

propose a cluster tool modeling method, which can 

handle time variance in dual-armed cluster tool. Then, 

we present a reinforcement learning process based on 

the proposed cluster tool model to find new operational 

schedules in specific configurations. To measure the 

performance of the newly obtained schedule, makespan 

is compared under the new policy and the swap policy. 

The makespan reduced compared to the conventional 

swap policy, which implies that the reinforcement 

learning well learned the operation schedule in the time 

variance environment. 

 

Keywords: cluster tool, Markov decision process, 

scheduling, reinforcement learning 

 

1. INTRODUCTION 

Along with the innovative development in the 

semiconductor manufacturing industry, quality issues in 

the wafer manufacturing process have been discussed. 

The technologies of each process have rapidly 

developed and improved the production quality of the 

wafers. To avoid quality issues due to batch production, 

the cluster tool that process one wafer at a time are now 

widely used in the semiconductor industry (Lee 2008). 

Chambers in cluster tools do not process wafers in units 

of batches but process them individually, so they can 

meet the quality standard. The cluster tool consists of 

usually four to six processing chambers and one 

transport robot. In each chamber, only one wafer is 

processed at a time, and one of the process steps 

specified before the start of the process is processed. In 

addition, the transport robot moves the wafers inside the 

cluster tool. To start the processes, a wafer enters the 

chamber that is responsible for the first process step. 

After the process is completed in the chamber, the wafer 

is transported to the next chamber by a transport robot. 

The transport robot repeats the process of unloading the 

processed wafer from the chamber and loading the 

wafer in the next appropriate chamber which is in 

charge of the next process step. Once all the required 

processes are completed with the proper chamber 

sequence, the wafer process in the cluster tool finally is 

completed. 

Such a configuration leads cluster tools to have several 

issues in operation. Since cluster tools consist of only 

processing chambers and a single transport robot, only 

one robot operation is possible at a time. Hence, the 

wafers cannot be moved at any time, and can only be 

moved when the transport robot moves them. Even if 

the multiple chambers are ready for the process, 

multiple wafers cannot be delivered at the same time. In 

addition, the cluster tools do not contain any buffer 

space in their interior space, so the only way to store the 

wafers outside the chamber within the cluster tool is to 

hold it with the transport robot. When the robot loads a 

wafer into the chamber, the chamber starts the process, 

and the process ends naturally after the process time. 

The chamber processes for a period of time without any 

decision. Therefore, we can say that the overall cluster 

tool schedule depends on the order decisions of the 

transport robot. As the transport robot unloads or loads 

the chambers, the status of the cluster tool system has 

changed. This can be seen as a discrete event system 

because the state of the system changes as the robot 

takes action. Petri nets, finite state machines (FSMs), 

Markov decision processes (MDPs), etc. are used to 

model discrete event systems (Murata 1989; Choi and 

Kang 2013; Puterman 2014).  

Several studies about cluster tools scheduling have used 

a timed Petri net (TPN) model, in which the places or 

transitions have a time delay. A TPN is classified into 

deterministic and stochastic TPN whether the time 

delay is deterministic or stochastic (Murata 1989). Each 

of them is a modeling technique that deals with 

different kinds of time delays. Many studies have been 

conducted on finding policies for the deterministic 

environment. For example, (Lee, Lee and Shin 2004, 

Zuberek 2004) have modeled analyzed cluster tools by 

the deterministic TPNs, and Jung and Lee (2012) 
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proposed a mixed integer programming (MIP) model to 

find the optimal policies in deterministic TPNs. In 

stochastic environment, there also has been several 

studies. To deal with time variation in cluster tool, (Kim 

and Lee 2008) suggested an extended Petri net and 

developed a graph-based procedure to verify the 

schedulability condition. Qiao, Wu, and Zhou (2012) 

have introduced two-level architecture to deal with time 

variation, and proposed some heuristic algorithms to 

find a schedule for one of the architectures. Molly (1982) 

suggested that the stochastic TPNs are isomorphic to 

finite Markov processes under the certain conditions. 

However, new methods for finding good policies in 

specific systems are studying nowadays. Reinforcement 

learning (RL) is widely used in finding policies in many 

fields such as manufacturing systems, autonomous 

vehicle control, finance, and games. This reinforcement 

learning is one of the solutions to find optimal policies 

in MDP models (Sutton and Barto 1998). Hence, 

modeling the system behavior by MDPs, then find the 

policies for the system by RL is widely used (Moody et 

al. 1998; Mnih et al. 2015). 

In this paper, we propose a model using MDPs, which 

can handle time variations in cluster tools. Then, we 

report how we learn the new robot sequence using the 

MDP model to minimize the average makespan in time 

variation environment, and measure the performance of 

the obtained sequence. This study is an attempt to 

schedule the cluster tool using reinforcement learning. 

Since the model is designed to represent the stochastic 

process time of the cluster tool, the schedules obtained 

from reinforcement learning can be expected to be well 

applied in a stochastic environment. 

 

2. MODELING DUAL-ARMED CLUSTER 

TOOLS WITH TIME VARIATIONS 

To model dual-armed cluster tools with time variations, 

we use a MDP model. After introducing the problem of 

configuring the MDP model, the model we proposed is 

reported. 

 

2.1. Markov Decision Process 

A Markov decision process (MDP) is a tuple  

< 𝑆, 𝐴, 𝑃, 𝑟 >, where 𝑆 denotes a set of states, 𝐴 a set of 

actions, 𝑃 a state transition probability distribution, and 

r a reward function, respectively. The process follows 

the Markov property, which means the transition 

probability and reward functions depend only on the 

current state and the action, not the past history. In this 

paper, we address only the stationary environments, 

which means the system properties does not change as 

time goes by. According to Puterman (2014), at every 

decision epoch, a state 𝑠 ∈ 𝑆, which is a representation 

of a system, is observed and an action 𝑎 ∈ 𝐴𝑠 has to be 

chosen by a decision maker from the set of allowable 

actions in the state 𝑠 . As a result of the action, the 

system state at the next decision epoch changes by some 

transition probability 𝑃 ∶ 𝑆 × 𝐴 × 𝑆 → [0, 1] . 𝑃s,s′
𝑎  is 

determined by the current state 𝑠 and the chosen action 

𝑎. The decision maker gets a reward 𝑟 ∶ 𝑆 × 𝐴 × 𝑆 →  ℝ, 

and 𝑟𝑠,𝑠′
𝑎  is determined by the current state 𝑠, action 𝑎, 

and the next state 𝑠′ . Here, we have a concept of a 

decision rule, which describes a procedure for action 

selection in each state. This rule is called a stationary 

policy, 𝑑 ∶ 𝑆 → 𝐴𝑠. The decision maker passes through 

a sequence of states 𝑠𝑡 , which are determined by 

transition probabilities 𝑃s,s′
𝑎  and the actions 𝑎𝑡 = 𝑑(𝑠𝑡) 

the decision maker chooses, then the sequence of 

reward 𝑟𝑠,𝑠′
𝑎  is obtained. The popular performance 

metric is discounted reward, which is the sum of the 

discounted reward gained over the entire time horizon 

when we allow the specific policy. The discounted 

reward of a policy 𝑑  starting at state 𝑖  is defined as 

𝐽𝑑(𝑖) ≡ lim
𝑘→∞

Ε [∑ 𝛾(𝑗−1)𝑟𝑠𝑗,𝑠𝑗+1

𝑑(𝑠𝑗)𝑘
𝑗=1 | 𝑠1 = 𝑖] , where γ ∈

[0,1]  is a discount factor. By Bertsekas (1995), it is 

proved that 𝐽𝑑(𝑖) = [∑ 𝑃
s,s′
𝑑(𝑠)

𝑠′∈𝑆 ( 𝑟𝑠𝑗,𝑠𝑗+1

𝑑(𝑠𝑗)
+  𝛾𝐽𝑑(𝑠′))] . 

The function 𝐽𝑑 is called the value function for policy 𝑑. 

There are many variants of MDP model, and one of the 

them is a semi-Markov decision process (semi-MDP). 

In semi-MDP, temporal factors are included in the 

modeling. The original MDP assumes that each 

transition takes the same time through all the states; 

however, semi-MDP considers the transition time to 

follow arbitrary probability distributions.  

 

2.2. Cluster tool modeling with MDP 

If we simply insert the state of the chambers and actions 

the robot takes into MDPs as previous studies have 

done with deterministic TPN models, the MDPs does 

not properly represent the behavior of the cluster tools. 

This is due to characteristics of cluster tools. The cluster 

tools are not simply changing the systems by a discrete 

event; cluster tools are changing the systems by the time 

element. The general MDP assumes that every 

transition takes the same time, however, the transitions 

in cluster tools cannot be assumed to be the same. 

Considering the different transition times between states, 

we may think of simple ways to model the cluster tool 

system. 

 

1. Model with MDPs which have a constant 

transition time, one second. Adjust transition 

probabilities to represent the time element.  

2. Model with semi-MDPs so we can insert time 

information to the transition distribution.  

 

To verify above two methods, we first consider the 

example case as shown in Figure 1.  

The example represents a status change in a single 

chamber, which has two states A and B, and two actions 

1 and 2. Consider the case where the environment state 

changes from A to B after 50 seconds. By using the first 

modeling method listed above, we can set transition 

probability to 1/50; thus, the state changes from A to B 

occurs after 50 seconds in average. However, the 

average cannot express the actual individual transition 

time explicitly. 
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Figure 1: Simple Example for Cluster Tool System 

 

By using the second modeling method, we can set 

transition time distribution as 50 seconds. When using 

the second modeling method, we can express that the 

transition occurs after 50 seconds in Figure 1 if we set 

the transition time distribution to 50 seconds (as a 

constant). However, the cluster tool is a tool with 

multiple chambers, so the model should reflect changes 

in state in other chambers. If 20 seconds have elapsed 

while the status changes in another chamber, and so the 

chamber of the example now needs to change its state 

after 30 seconds, the transition time distribution should 

be changed to 30 seconds. Every time the transition 

occurs in the other chamber, we have to calculate and 

change the distribution; the environment of the system 

changes, which does not satisfy the markov property. 

The two MDP modeling methods above are not 

appropriate for modeling the cluster tool operations in 

time variations, since they do not represent the 

transition time explicitly or do not satisfy the Markov 

property. To satisfy the Markov property, a state should 

contain sufficient information, so that the state does not 

require past history to obtain the next state or reward. 

Therefore, state is designed to contain information 

about chamber and robot usage, and the remaining 

process time. 

In this study, We propose to represent the state  

as  (𝑊, 𝐶1, 𝐶2, … , 𝐶𝑛 , 𝑅, 𝑆1, 𝑆2, 𝑍1, 𝑍2, … , 𝑍𝑛), where 𝑛  is 

the number of processing chambers in cluster tool. 𝑊 is 

the number of wafers remaining in the loadlock. 𝐶𝑖  is 

the state of the chamber, which represents whether the 

𝑖 th chamber is empty ( 𝐶𝑖  = 0), full ( 𝐶𝑖  = 1), or 

completed processing (𝐶𝑖  = 2) for 𝑖 ∈ {1, 2, … , 𝑛}. 𝑅 is 

the number of wafers held by the transport robot. Since 

we are dealing with a dual-armed cluster tool, 𝑅  can 

have a value of 0, 1, or 2. 𝑆1 𝑎𝑛𝑑 𝑆2 are the next process 

steps of the wafers held by the robot. These represent 

the process steps that each wafer should visit in the next 

step. 𝑍𝑖  is the expected remaining process time of the 

𝑖th chamber for 𝑖 ∈ {1, 2, … , 𝑛}. The value is calculated 

by subtracting the elapsed time from the initially set 

process time, because it is not known what the actual 

process time will be in a time variation environment. In 

addition, define S to be the state space of the proposed 

state. 

Hence, the proposed state structure contains the 

information about the chamber and the wafer inside it, 

and includes information on which chambers the wafers 

on the robot should be sent. Finally, it roughly contains 

information when the chambers are going to be finished. 

Then, the model satisfies the Markov property. 

To better understand the structure of the states, we show 

state representation of Figure 2 by using the proposed 

states structure. Suppose that the black and white wafers 

indicate that they are in the first and second process 

steps, respectively, and the hatched wafer indicates that 

the process is in progress. According to the proposed 

structure, the state is (𝑊 = 3, 𝐶1 = 2, 𝐶2 = 1, 𝐶3 =
1, 𝐶4 = 2, 𝑅 = 1, 𝑆1 = 2, 𝑆2 = 0, 𝑍1 = 0,  𝑍2 =
4, 𝑍3 = 4, 𝑍4 = 0). This means that the three wafers are 

remained in the loadlock, the process is going on in the 

second and the third chambers, whereas the first and the 

forth chamber have completed its process. The robot 

holds a single wafer waiting to enter the second process 

step, and the remaining process times of the chambers 

are four for the second and the third chambers. 

 

 
Figure 2. A Dual-armed Cluster Tool with Four 

Chambers 

 

𝐴 is a set of actions that the transport robot can perform, 

which is {𝑊𝑎𝑖𝑡, 𝑈𝑗   , 𝐿𝑗   , 𝑆𝑊𝑖} , where 𝑗 ∈
{0 ,1, 2, … , 𝑛} 𝑎𝑛𝑑 𝑖 ∈ {1, 2, … , 𝑛} . They all represent 

the robot tasks: 𝑈𝑗 , 𝐿𝑗 , and 𝑆𝑊𝑖  indicate unload, load, 

and swap operations on the 𝑗 th or 𝑖 th chamber. The 

unload, load, and swap operations are the common 

robot tasks in other modeling methods. However, in this 

study, 𝑊𝑎𝑖𝑡 action is added. 𝑊𝑎𝑖𝑡 represents the robot 

waiting until the state changes, such as finishing the 

process in a chamber. To make the model transition 

independent on remaining process time, we suggest 

Wait to be an action of the robot. If without a 𝑊𝑎𝑖𝑡 

action, the state of the cluster tool changes  when the 

process completes, even if no action is selected. 

Furthermore, for all states {𝑊𝑎𝑖𝑡, 𝑈𝑗   , 𝐿𝑗   , 𝑆𝑊𝑖 }  can 

always be selected as an action; therefore, 3𝑛 + 3 

actions are available to be chosen in all states. 

Transition probability is denoted by 𝑃𝑠,𝑠′
𝑎 , where 𝑠 is the 

current state, 𝑎 is the current action and 𝑠′ is the next 

state. It stands for probability for transition to state 𝑠′ 
when we choose action 𝑎 in state 𝑠. In this study, we do 

not consider unexpected event occurrence such as robot 

failure, so the system always transposes exactly to the 

specified state. Hence, when the action is one of 

𝑈𝑖 , 𝐿𝑖 , 𝑎𝑛𝑑 𝑆𝑊𝑖 , 𝑃𝑠,𝑠′
𝑎  has a value of 1 for the 

appropriate s′. Here, the appropriate state 𝑠’ is when 𝑠′ 
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is likely to be the next state in state 𝑠 . Furthermore, 

when the 𝑠′ is not likely to be the next state in 𝑠, Ps,s′
𝑎 = 0.  

However, when the action is Wait, transition probability 

Ps,s′
a  does not only have a value of 0 or 1. Assume that 

the action is 𝑊𝑎𝑖𝑡 . If at least one chamber is ‘full’, 

which stands for 𝐶𝑖 = 1 , the chambers should be 

selected which change their state to ‘completed 

processing’. In other words, it chooses which chamber 

the process ends with. Choosing the chamber with the 

shortest remaining process time is the simplest and most 

intuitive. However, since we are dealing with a time 

variation environment, we cannot say that the process is 

finished after 𝑍𝑖 , exactly the expected remaining 

process time. Therefore, the chamber selection should 

reflect the fact that unexpected chamber processes may 

end sooner. In addition to selecting the chamber, the 

transition time needed to be stochastically generated to 

reflect the time variation environment. In general, the 

process of the chamber is completed within a range of 

times, including the average time. Therefore, we choose 

to generate the transition time using a beta distribution 

that can generate the average value within the bounded 

range. 

Reward function is set to get 1 if a wafer completes all 

processes, otherwise, the function is set to get −0.1 in 

all transitions except for the 𝑊𝑎𝑖𝑡  actions. When the 

𝑊𝑎𝑖𝑡  action is selected, the reward is set to be  

−0.1 × (transition time). 

Detailed transition rules and reward definitions are 

introduced in Sections 3.2 and 3.3. 

 

3. LEARNING POLICIES FOR ROBOT MOVES 

IN CLUSTER TOOLS BY REINFORCEMENT 

LEARNING 

There are various ways to solve MDP. First, when we 

know the model, we can define a total return. Then by 

dynamic programming, we can find the optimal value 

function of Bellman optimality equation (Bellman 

1954). However, the proposed model has a time element 

in the state, it is not possible to solve the MDP through 

dynamic programming due to the curse of 

dimensionality. Therefore, we applied reinforcement 

learning (RL) to find the policy for the proposed MDP 

model. RL requires an environment to interact with. So 

we built an interactive environment based on the 

proposed MDP model. We then set up tasks to perform 

the learning, and learned the robot policy using Q-

learning. After learning, we performed another 

experiment to measure the performance of the policy. 

  

3.1. Reinforcement learning 

Reinforcement learning (RL) is useful when the 

classical dynamic programming is not enough to solve 

the MDP problems. Dynamic programming is not 

suitable for the problem, when the environment is 

difficult to build a perfect model due to its unknown 

transition probability (curse of modeling), or when the 

environment has too many states to solve (curse of 

dimensionality). RL adds the concepts of stochastic 

approximation, temporal differences, and function 

approximation to classical dynamic programming, so 

that it can solve the MDP problem even if the transition 

probability is not explicitly represented, and the state 

dimension is too large (Gosavi 2014). 

 

3.2. The environment 

Since we find the robot policy by RL, we need an 

environment that returns the next state and reward for 

action according to state for learning progress. The 

environment required for RL is either an environment 

consisting of real equipment or an environment built by 

computer simulation. The best way to interact with the 

environment is to build the real world environment, 

then conduct the experiments with it. However, using a 

real world cluster tool is nearly impossible due to its 

value. A single tool is so expensive and needs large area 

to install; therefore, even the company is not able to 

arrange enough cluster tools for their manufacturing 

facilities. To replace the real world environment, we 

built a virtual environment, which responds to some 

stimulation.  

The simulation environment mimics the real world; 

however, not fully, only partially. To make the partially 

reflected simulation environment to involve the core 

elements we want, we needed to be careful making the 

simulation environment. We made some assumptions in 

building an environment. First, we do not consider 

machine failure. Process time can vary depending on a 

machine and time; however, we do not handle machine 

failure in this study. Second, the environment is 

stationary, which means system dynamics does not 

change as time goes by. No matter how much time has 

passed, they follow the same distribution. Third, the 

time dynamics of the systems are governed by the rules 

we set; hence, it may not fully reflect the real world 

cluster tool behaviors. 

The simulation environment shows the change of the 

environment depending on the agent’s action. It shows 

the appropriate reward and the next state according to 

the selected action. Some actions are valid only in 

particular states. For example, robots can take a Wait 

action only when more than one chamber are filled with 

the wafer, and are not completed processing, which 

means that chamber 𝑖  with a 𝐶𝑖  value of 1 exists. 

Detailed rules for robot actions are specified in Table 1. 

 

Table 1: Possible Situations for the Robot Actions 

Robot 

Actions 
Possible Situations 

Wait When at least one chamber is filled with a 

wafer has not been completed the process 

Unload When the chamber has a processed wafer, 

but still have the wafer inside in it 

Load When the robot holds some wafers, and one 

of the chambers corresponding to the steps 

that the wafers are going to enter is empty 

Swap When the chamber has a processed wafer, 

but still has the wafer inside in it. At the 

same time, the robot holds only one wafer to 

enter the chamber 

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017, 
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

156



Table 1 shows the possible situations for the action. The 

action is valid only when the right box condition is 

satisfied. If we select an action that is not in those 

possible situations, the state will not change. We set the 

environment to prevent state transitions when 

inappropriate actions are taken. We call an action taken 

in an impossible situation an 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑎𝑐𝑡𝑖𝑜𝑛 , and an 

action taken in a possible situation a 𝑣𝑎𝑙𝑖𝑑 𝑎𝑐𝑡𝑖𝑜𝑛. For 

example, if a chamber has processed wafers but the 

wafers are still in it and at the same time the robot has 

only one wafer in its arm, swap action on the chamber is 

valid action, while the rest actions are not. 

All transitions are treated to be deterministic move 

except for 𝑊𝑎𝑖𝑡  action, as mentioned in Section 2.2. 

Other actions cause the environment to have the same 

response each time a state is entered. However, when a 

𝑊𝑎𝑖𝑡 action is chosen, the state transition is performed 

stochastically and the transition probability is defined 

differently depending on the state. When only one 

chamber is in the ‘full’ state, the chamber is selected to 

complete the process. However, when more than one 

chambers are in ‘full’ state, changes in environment is 

determined by the algorithm below. 

 

 With a probability 0.9, the chamber with the 

minimum remaining process time completes 

the process 

 With a probability of 0.1, the selected chamber 

completes the process with a probability of 

inversely proportional to the remaining process 

time  

 

Every time the 𝑊𝑎𝑖𝑡  action is chosen, the transition 

time is set to be stochastically selected along the 

𝑏𝑒𝑡𝑎(50,50) distribution. 

 

3.3. Task description 

In general, a set of 25 wafers becomes a 'wafer cassette', 

which is the unit of production for cluster tools. 

Therefore, the goal is to quickly finish a single cassette 

process rather than a single wafer process. In fact, in 

real companies usually produces 100 to 200 wafers once, 

which means produces 4~8 wafer cassette without 

stopping the operation of the cluster tool. The problem 

of minimizing the total makespan can be thought of as a 

reduction in the total makespan itself and a reduction in 

the makespan of each subtask. When the whole 

makespan is continuously measured and returned at the 

end, the reward structure is heavily sparse to learn the 

policy. Therefore, in this study, we follow the method 

of minimizing the makespan of each subtask, which is 

completing a single wafer. In addition, we follow the 

structure of receiving a reward at the end of each wafer 

process. In order for all subtasks to ultimately reduce 

the total makespan, the total return is defined as the 

discounted reward. So learning is done in the direction 

of receiving the reward as soon as possible.  

Furthermore, after 100 ~ 200 wafers are produced in 

real world, the equipment configuration may be 

changed. In the case of an episodic task that ends after 

the production of a certain number of wafers, the whole 

process can be divided into start-up, steady, and close-

down cycles (Kim, Lee and Kim 2016). However, in 

this study, we examine whether there is a policy change 

when the environment changed from deterministic to 

stochastic in the steady cycle. Therefore, we consider 

the learning task as a continuous task to learn a steady 

cycle.  

The most important goal of this problem is to learn to 

choose an action that maximizes the total return. But we 

should learn to prevent the system from selecting a 

behavior that makes it deadlock and learn to prevent 

invalid actions. 

 

3.4. Learning procedure 

The cluster tool behavior was learned by computer 

simulation-based reinforcement learning. Learning is 

achieved through the interaction of agents and 

environments. The agent repeats the process of selecting 

the action, receiving the corresponding response, and 

updating the Q value for the state and the action. The 

action selection and Q value update follow the 

traditional Q-learning method (Sutton and Barto 1998). 

The algorithm for Q-learning is illustrated in Figure 3. 

We used an ε-greedy policy to select an action from the 

current state, where the ε  decreased over the time steps.  

Even if using the same learning method, depending on 

how the environment is set, the selectable action set 

changes and the response to the action changes. In this 

study, we set the environment to have two chambers, 

and a wafer flow pattern (1,1) with all process times to 

be 4 seconds. Here, the wafer flow pattern refers to the 

number of parallel chambers in each process. The initial 

state is set to be full loaded, so all the chambers are 

filled with wafers that have not yet begun to process. 

Since we only deal with the steady state, we only used 

(𝐶1,  𝐶2,  𝑅, 𝑆1,  𝑆2, 𝑍1,  𝑍2)  as the state. With this 

environment settings, the agent continued learning 

using Q-learning in the direction of maximizing the 

total return.  

 

 

Figure 3: Q-Learning Algorithm 

 

However, there are other issues that need to be taken 

care of by agents: deadlock actions and invalid actions. 
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We want to ensure that when an agent chooses an action 

in the current state, it does not choose an invalid action 

and a deadlock action that causes the next state to 

become deadlock. The agent goes through the process 

of defining possible action sets for the current state by a 

two-step look ahead method. To remove the invalid 

actions for the current state, the agent requests the 

environment for the results for all the actions, then 

saves only which actions are valid (one-step look ahead). 

For an action that is valid for current state, a second 

look ahead is needed to check if the deadlock occurs. It 

is time-consuming to always have a two-step look 

ahead in every learning step. To further speed up the 

procedures, we followed the deadlock prevention rules 

to the second look ahead procedure. As we apply the 

rules, deadlock action checking is needed only when all 

of the loading actions for the current state are invalid 

and the number of the holding wafer ( 𝑅 ) is 1. In 

addition, only unloading actions among valid actions 

need to be checked. If any of the loading actions are 

valid, the agent does not need to do a deadlock check. A 

way to check if a given unloading action is a deadlock 

is to request a response for an appropriate loading 

action. If the unloaded wafer has a process step 𝑘 to be 

visited, check that it is possible to load to the chambers 

that are in charge of the 𝑘th process step. If any of the 

loading actions are valid, the given unloading action is 

not a deadlock action, otherwise, the given unloading 

action is a deadlock action. 

For example, consider the case illustrated in Figure 2, 

where chamber size (𝑛)  is 4 , the current state is 

(3, 2, 1, 1, 2, 1, 2, 0, 0, 4, 4, 0) , and the wafer flow 

pattern is (2,2). Since the value of 𝑛 is 4, the cardinality 

of the available action sets for all states is 15, which is 

the value of 3𝑛 + 3. Among these 15 actions, the agent 

has to avoid invalid actions and deadlock actions. The 

agent first removes the invalid actions from the action 

set, and then removes the deadlock actions from the 

remaining action set. Through interaction with the 

environment, the agent gets the invalid actions and 

stores only the valid actions, which is {𝑊𝑎𝑖𝑡, 𝑈0, 𝑈1, 𝑈4, 
𝑆𝑊4}. Since there is no loading action among the valid 

actions, actions {𝑈0, 𝑈1, 𝑈4} become the candidates for 

the deadlock actions, by the deadlock checking rule that 

we mentioned above. 

Therefore, the agent needs to check the validity of the 

appropriate loading actions for states (b), (c), and (d) in 

Figure 4. In state (b), unloaded wafer has to visit the 1st 

process step; hence, request responses for actions 

{𝐿0, 𝐿1}, which are in charge of the 1st process step. In 

this way, responses for actions {𝐿2, 𝐿3}  and {𝐿4}  are 

requested to check the deadness of the state (c) and (d), 

respectively. Then, the agent gets that any loading 

actions are not valid for state (b) and (c), and {𝐿4} is 

valid for state (d). Therefore, the unloading actions 

corresponding to the state (b) and (c) are the deadlock 

actions, so the actions {𝑈0, 𝑈1} should be removed from 

the remaining valid action set,  {𝑊𝑎𝑖𝑡, 𝑈0, 𝑈1, 𝑈4, 𝑆𝑊4}. 

Finally, actions  {𝑊𝑎𝑖𝑡, 𝑈4,   𝑆𝑊4}  can be chosen from 

the current state 𝑆0. 

 

 

Figure 4: Checking Deadlock Action Candidates 

 

We conducted Q-learning based on the above action 

selection rule. The agent always chooses a non-invalid 

and non-deadlock action, regardless of the exploration 

rate ε. The reason for constructing this additional action 

selection part before the action selection part in Q-

learning is the learning time. In the cluster tool, there 

are too many invalid or deadlock actions in the whole 

action. If we do not forbid those inappropriate actions, a 

computation expense to explore for unnecessary action 

occurs and unnecessary learning time occurs. Therefore, 

by adding hand-crafted adjustments specific to this 

system, learning time has been shortened. 
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3.5. Performance measurement 

After the learning is performed based on the proposed 

MDP model, 𝑄(𝑠, 𝑎)  values for every state 𝑠 ∈ 𝑆  and 

action 𝑎 ∈ 𝐴, are obtained. The policy we obtained is a 

greedy policy that selects the action with the highest Q-

value in each state, i.e., 𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎) . To report the 

policy, we have to list the selected actions for states as 

shown in Table 2. However, there are too many states to 

list all of them as a table, and it is difficult to intuitively 

understand what actions to take in some cases. 

Therefore, after we obtained the policy, we used the 

measures that represent the performance of the policies, 

then compared the performance of the acquired policy 

against the existing swap sequence. 

Through learning, 𝑄(𝑠, 𝑎) for ∀𝑠 ∈ 𝑆, ∀𝑎 ∈ 𝐴 is 

continuously updated; define 𝑄(𝑠, 𝑎) for each thousand 

wafers produced as 𝑞0, 𝑞1, . . . , 𝑞𝑡 ∈ ℝ|𝑆|×|𝐴|  . However, 

we do not use all 𝑞0, 𝑞1, . . . , 𝑞𝑡  to get the policy; we only 

use the 𝑄(𝑠, 𝑎) value after the convergence. To verify 

the convergence of a sequence 𝑞0, 𝑞1, . . . , 𝑞𝑡 , |𝑞𝑘 −
𝑞𝑘−1| for 𝑘 ∈ {1, … , 𝑡} was checked. If all elements in 

the matrix |𝑞𝑘 − 𝑞𝑘−1| is relatively small, the 𝑞𝑘 can be 

considered to be converged. Figure 5 shows the 

maximum element in matrix |𝑞𝑘 − 𝑞𝑘−1|  for 𝑘 ∈
{1, … ,543}. The value converges to 0, which means the 

sequence 𝑞0, 𝑞1, . . . , 𝑞𝑡  converged. We used the 

converged 𝑄(𝑠, 𝑎)  value after the 543th iteration, i.e., 

used 𝑞543 to obtain the policy. 

To indicate the performance of the obtained policy, the 

time it takes to process 50 wafers, makespan, is used. 

Makespan is measured in the same environment as the 

learning period. We used two processing chambers, 

wafer flow pattern (1,1), average process time of four,  

 

and the chamber process time is set to follow the  

𝑏𝑒𝑡𝑎(50,50) distribution. Because the process time is 

randomly generated, makespan can be measured 

differently, even if the measurement is implemented 

under the same policy. Therefore, we measured 

makespan a thousand times under the designated 

policies and compared the averages.  

 

 

Figure 5: Q-value difference maximum value 

 

4. ANALYSIS OF ROBOT POLICY OBTAINED 

BY LEARNING 

Figure 6 represents the average q-values of the obtained 

policy and the swap policy. Figure 7 and Table 3  

represent the makespan differences of the two policies 

as a histogram and a table, respectively. 𝑀𝑝  and 𝑀𝑠 

represent makespan under the obtained policy and the 

swap policy. 

We confirmed that the makespan of the policy obtained 

through Q-learning based on the proposed MDP model 

Table 2: Q-values for Some States 
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is on average shorter than the swap policy as shown in 

Figure 6. 

 

 

Figure 6: Average Q-values of Two Policies 

 

Except for 2.3% cases, the others acquired the same or 

shorter makespan with the obtained policy. This means 

that the above reinforcement learning has found a good 

robot sequence and obtained a slightly better policy than 

the widely used swap policy. The average of makespan 

is not significantly different as illustrated in Figure 6. It 

seems that the small difference is due to the settings, the 

average process time and the number of the chambers in 

our learning environment. Both of the settings may have 

reduced the time variation effect to the environment. If 

we were to increase the average process time and 

number of chambers as much as the actual cluster tool, 

then the time variance would have increased, and the 

difference in makespan may have increased. 

However, the fact that makespan is reduced in most 

cases means that as a policy run in a time variance 

environment, the policy obtained through learning in a 

time variance environment is better than the policy 

obtained in a deterministic environment. 

 

 
Figure 7: Histogram Graph Showing the Q-value 

Differences 

 

 

 

 

 

 

 

Table 3: Frequency Distribution of the Q-value 

Difference  

 
 

5. CONCLUSIONS 

Cluster tool scheduling has been usually studied under 

the deterministic environment. In this paper, we 

modeled dual-armed cluster tool behaviors as a Markov 

decision process in the time variance environment, then 

applied reinforcement learning to obtain robot policies. 

The newly obtained robot policies reduces the 

makespan of 50 wafer processes compare to the 

conventional swap sequence in most cases. From this 

study, it seems that the proposed MDP models can 

adequately express the cluster tool behaviors in time 

variance environment. This kind of view makes it 

possible to look at the cluster tool from a slightly 

different perspective; hence we can continue to try 

scheduling cluster tools through reinforcement learning.  

However, since the above model includes the remaining 

time in the state in order to consider the time variance, 

the state space can be very large. Furthermore, the 

environment settings we used in learning couldn’t fully 

express the real world cluster tool behaviors. Therefore, 

the learning with more general environment settings is 

needed. To conduct such learning in further research, 

functional approximation seems to be applied due to the 

time elements in the states.  
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