
A REINFORCEMENT LEARNING APPROACH TO SCHEDULING DUAL-ARMED

CLUSTER TOOLS WITH TIME VARIATIONS

Ji-Eun Roh(a), Tae-Eog Lee(b)

(a),(b)Department of Industrial and Systems Engineering,

Korea Advanced Institute of Science and Technology (KAIST), 305-701 Daejeon,

Republic of Korea

(a)rje0531@kaist.ac.kr, (b)telee@kaist.ac.kr

ABSTRACT

The cluster tool, which consists of multiple process

chambers are widely used in the semiconductor industry.

As the process of wafers becomes more sophisticated,

the operation of cluster tools is also being improved. To

effectively operate cluster tools, several rule-based

schedules, such as the swap sequence have been

developed. However, scheduling in time variance

environment is not fully considered. In this paper, we

propose a cluster tool modeling method, which can

handle time variance in dual-armed cluster tool. Then,

we present a reinforcement learning process based on

the proposed cluster tool model to find new operational

schedules in specific configurations. To measure the

performance of the newly obtained schedule, makespan

is compared under the new policy and the swap policy.

The makespan reduced compared to the conventional

swap policy, which implies that the reinforcement

learning well learned the operation schedule in the time

variance environment.

Keywords: cluster tool, Markov decision process,

scheduling, reinforcement learning

1. INTRODUCTION

Along with the innovative development in the

semiconductor manufacturing industry, quality issues in

the wafer manufacturing process have been discussed.

The technologies of each process have rapidly

developed and improved the production quality of the

wafers. To avoid quality issues due to batch production,

the cluster tool that process one wafer at a time are now

widely used in the semiconductor industry (Lee 2008).

Chambers in cluster tools do not process wafers in units

of batches but process them individually, so they can

meet the quality standard. The cluster tool consists of

usually four to six processing chambers and one

transport robot. In each chamber, only one wafer is

processed at a time, and one of the process steps

specified before the start of the process is processed. In

addition, the transport robot moves the wafers inside the

cluster tool. To start the processes, a wafer enters the

chamber that is responsible for the first process step.

After the process is completed in the chamber, the wafer

is transported to the next chamber by a transport robot.

The transport robot repeats the process of unloading the

processed wafer from the chamber and loading the

wafer in the next appropriate chamber which is in

charge of the next process step. Once all the required

processes are completed with the proper chamber

sequence, the wafer process in the cluster tool finally is

completed.

Such a configuration leads cluster tools to have several

issues in operation. Since cluster tools consist of only

processing chambers and a single transport robot, only

one robot operation is possible at a time. Hence, the

wafers cannot be moved at any time, and can only be

moved when the transport robot moves them. Even if

the multiple chambers are ready for the process,

multiple wafers cannot be delivered at the same time. In

addition, the cluster tools do not contain any buffer

space in their interior space, so the only way to store the

wafers outside the chamber within the cluster tool is to

hold it with the transport robot. When the robot loads a

wafer into the chamber, the chamber starts the process,

and the process ends naturally after the process time.

The chamber processes for a period of time without any

decision. Therefore, we can say that the overall cluster

tool schedule depends on the order decisions of the

transport robot. As the transport robot unloads or loads

the chambers, the status of the cluster tool system has

changed. This can be seen as a discrete event system

because the state of the system changes as the robot

takes action. Petri nets, finite state machines (FSMs),

Markov decision processes (MDPs), etc. are used to

model discrete event systems (Murata 1989; Choi and

Kang 2013; Puterman 2014).

Several studies about cluster tools scheduling have used

a timed Petri net (TPN) model, in which the places or

transitions have a time delay. A TPN is classified into

deterministic and stochastic TPN whether the time

delay is deterministic or stochastic (Murata 1989). Each

of them is a modeling technique that deals with

different kinds of time delays. Many studies have been

conducted on finding policies for the deterministic

environment. For example, (Lee, Lee and Shin 2004,

Zuberek 2004) have modeled analyzed cluster tools by

the deterministic TPNs, and Jung and Lee (2012)

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

153

mailto:rje0531@kaist.ac.kr
mailto:telee@kaist.ac.kr

proposed a mixed integer programming (MIP) model to

find the optimal policies in deterministic TPNs. In

stochastic environment, there also has been several

studies. To deal with time variation in cluster tool, (Kim

and Lee 2008) suggested an extended Petri net and

developed a graph-based procedure to verify the

schedulability condition. Qiao, Wu, and Zhou (2012)

have introduced two-level architecture to deal with time

variation, and proposed some heuristic algorithms to

find a schedule for one of the architectures. Molly (1982)

suggested that the stochastic TPNs are isomorphic to

finite Markov processes under the certain conditions.

However, new methods for finding good policies in

specific systems are studying nowadays. Reinforcement

learning (RL) is widely used in finding policies in many

fields such as manufacturing systems, autonomous

vehicle control, finance, and games. This reinforcement

learning is one of the solutions to find optimal policies

in MDP models (Sutton and Barto 1998). Hence,

modeling the system behavior by MDPs, then find the

policies for the system by RL is widely used (Moody et

al. 1998; Mnih et al. 2015).

In this paper, we propose a model using MDPs, which

can handle time variations in cluster tools. Then, we

report how we learn the new robot sequence using the

MDP model to minimize the average makespan in time

variation environment, and measure the performance of

the obtained sequence. This study is an attempt to

schedule the cluster tool using reinforcement learning.

Since the model is designed to represent the stochastic

process time of the cluster tool, the schedules obtained

from reinforcement learning can be expected to be well

applied in a stochastic environment.

2. MODELING DUAL-ARMED CLUSTER

TOOLS WITH TIME VARIATIONS

To model dual-armed cluster tools with time variations,

we use a MDP model. After introducing the problem of

configuring the MDP model, the model we proposed is

reported.

2.1. Markov Decision Process

A Markov decision process (MDP) is a tuple

< 𝑆, 𝐴, 𝑃, 𝑟 >, where 𝑆 denotes a set of states, 𝐴 a set of

actions, 𝑃 a state transition probability distribution, and

r a reward function, respectively. The process follows

the Markov property, which means the transition

probability and reward functions depend only on the

current state and the action, not the past history. In this

paper, we address only the stationary environments,

which means the system properties does not change as

time goes by. According to Puterman (2014), at every

decision epoch, a state 𝑠 ∈ 𝑆, which is a representation

of a system, is observed and an action 𝑎 ∈ 𝐴𝑠 has to be

chosen by a decision maker from the set of allowable

actions in the state 𝑠 . As a result of the action, the

system state at the next decision epoch changes by some

transition probability 𝑃 ∶ 𝑆 × 𝐴 × 𝑆 → [0, 1] . 𝑃s,s′
𝑎 is

determined by the current state 𝑠 and the chosen action

𝑎. The decision maker gets a reward 𝑟 ∶ 𝑆 × 𝐴 × 𝑆 → ℝ,

and 𝑟𝑠,𝑠′
𝑎 is determined by the current state 𝑠, action 𝑎,

and the next state 𝑠′ . Here, we have a concept of a

decision rule, which describes a procedure for action

selection in each state. This rule is called a stationary

policy, 𝑑 ∶ 𝑆 → 𝐴𝑠. The decision maker passes through

a sequence of states 𝑠𝑡 , which are determined by

transition probabilities 𝑃s,s′
𝑎 and the actions 𝑎𝑡 = 𝑑(𝑠𝑡)

the decision maker chooses, then the sequence of

reward 𝑟𝑠,𝑠′
𝑎 is obtained. The popular performance

metric is discounted reward, which is the sum of the

discounted reward gained over the entire time horizon

when we allow the specific policy. The discounted

reward of a policy 𝑑 starting at state 𝑖 is defined as

𝐽𝑑(𝑖) ≡ lim
𝑘→∞

Ε [∑ 𝛾(𝑗−1)𝑟𝑠𝑗,𝑠𝑗+1

𝑑(𝑠𝑗)𝑘
𝑗=1 | 𝑠1 = 𝑖] , where γ ∈

[0,1] is a discount factor. By Bertsekas (1995), it is

proved that 𝐽𝑑(𝑖) = [∑ 𝑃
s,s′
𝑑(𝑠)

𝑠′∈𝑆 (𝑟𝑠𝑗,𝑠𝑗+1

𝑑(𝑠𝑗)
+ 𝛾𝐽𝑑(𝑠′))] .

The function 𝐽𝑑 is called the value function for policy 𝑑.

There are many variants of MDP model, and one of the

them is a semi-Markov decision process (semi-MDP).

In semi-MDP, temporal factors are included in the

modeling. The original MDP assumes that each

transition takes the same time through all the states;

however, semi-MDP considers the transition time to

follow arbitrary probability distributions.

2.2. Cluster tool modeling with MDP

If we simply insert the state of the chambers and actions

the robot takes into MDPs as previous studies have

done with deterministic TPN models, the MDPs does

not properly represent the behavior of the cluster tools.

This is due to characteristics of cluster tools. The cluster

tools are not simply changing the systems by a discrete

event; cluster tools are changing the systems by the time

element. The general MDP assumes that every

transition takes the same time, however, the transitions

in cluster tools cannot be assumed to be the same.

Considering the different transition times between states,

we may think of simple ways to model the cluster tool

system.

1. Model with MDPs which have a constant

transition time, one second. Adjust transition

probabilities to represent the time element.

2. Model with semi-MDPs so we can insert time

information to the transition distribution.

To verify above two methods, we first consider the

example case as shown in Figure 1.

The example represents a status change in a single

chamber, which has two states A and B, and two actions

1 and 2. Consider the case where the environment state

changes from A to B after 50 seconds. By using the first

modeling method listed above, we can set transition

probability to 1/50; thus, the state changes from A to B

occurs after 50 seconds in average. However, the

average cannot express the actual individual transition

time explicitly.

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

154

Figure 1: Simple Example for Cluster Tool System

By using the second modeling method, we can set

transition time distribution as 50 seconds. When using

the second modeling method, we can express that the

transition occurs after 50 seconds in Figure 1 if we set

the transition time distribution to 50 seconds (as a

constant). However, the cluster tool is a tool with

multiple chambers, so the model should reflect changes

in state in other chambers. If 20 seconds have elapsed

while the status changes in another chamber, and so the

chamber of the example now needs to change its state

after 30 seconds, the transition time distribution should

be changed to 30 seconds. Every time the transition

occurs in the other chamber, we have to calculate and

change the distribution; the environment of the system

changes, which does not satisfy the markov property.

The two MDP modeling methods above are not

appropriate for modeling the cluster tool operations in

time variations, since they do not represent the

transition time explicitly or do not satisfy the Markov

property. To satisfy the Markov property, a state should

contain sufficient information, so that the state does not

require past history to obtain the next state or reward.

Therefore, state is designed to contain information

about chamber and robot usage, and the remaining

process time.

In this study, We propose to represent the state

as (𝑊, 𝐶1, 𝐶2, … , 𝐶𝑛 , 𝑅, 𝑆1, 𝑆2, 𝑍1, 𝑍2, … , 𝑍𝑛), where 𝑛 is

the number of processing chambers in cluster tool. 𝑊 is

the number of wafers remaining in the loadlock. 𝐶𝑖 is

the state of the chamber, which represents whether the

𝑖 th chamber is empty (𝐶𝑖 = 0), full (𝐶𝑖 = 1), or

completed processing (𝐶𝑖 = 2) for 𝑖 ∈ {1, 2, … , 𝑛}. 𝑅 is

the number of wafers held by the transport robot. Since

we are dealing with a dual-armed cluster tool, 𝑅 can

have a value of 0, 1, or 2. 𝑆1 𝑎𝑛𝑑 𝑆2 are the next process

steps of the wafers held by the robot. These represent

the process steps that each wafer should visit in the next

step. 𝑍𝑖 is the expected remaining process time of the

𝑖th chamber for 𝑖 ∈ {1, 2, … , 𝑛}. The value is calculated

by subtracting the elapsed time from the initially set

process time, because it is not known what the actual

process time will be in a time variation environment. In

addition, define S to be the state space of the proposed

state.

Hence, the proposed state structure contains the

information about the chamber and the wafer inside it,

and includes information on which chambers the wafers

on the robot should be sent. Finally, it roughly contains

information when the chambers are going to be finished.

Then, the model satisfies the Markov property.

To better understand the structure of the states, we show

state representation of Figure 2 by using the proposed

states structure. Suppose that the black and white wafers

indicate that they are in the first and second process

steps, respectively, and the hatched wafer indicates that

the process is in progress. According to the proposed

structure, the state is (𝑊 = 3, 𝐶1 = 2, 𝐶2 = 1, 𝐶3 =
1, 𝐶4 = 2, 𝑅 = 1, 𝑆1 = 2, 𝑆2 = 0, 𝑍1 = 0, 𝑍2 =
4, 𝑍3 = 4, 𝑍4 = 0). This means that the three wafers are

remained in the loadlock, the process is going on in the

second and the third chambers, whereas the first and the

forth chamber have completed its process. The robot

holds a single wafer waiting to enter the second process

step, and the remaining process times of the chambers

are four for the second and the third chambers.

Figure 2. A Dual-armed Cluster Tool with Four

Chambers

𝐴 is a set of actions that the transport robot can perform,

which is {𝑊𝑎𝑖𝑡, 𝑈𝑗 , 𝐿𝑗 , 𝑆𝑊𝑖} , where 𝑗 ∈
{0 ,1, 2, … , 𝑛} 𝑎𝑛𝑑 𝑖 ∈ {1, 2, … , 𝑛} . They all represent

the robot tasks: 𝑈𝑗 , 𝐿𝑗 , and 𝑆𝑊𝑖 indicate unload, load,

and swap operations on the 𝑗 th or 𝑖 th chamber. The

unload, load, and swap operations are the common

robot tasks in other modeling methods. However, in this

study, 𝑊𝑎𝑖𝑡 action is added. 𝑊𝑎𝑖𝑡 represents the robot

waiting until the state changes, such as finishing the

process in a chamber. To make the model transition

independent on remaining process time, we suggest

Wait to be an action of the robot. If without a 𝑊𝑎𝑖𝑡

action, the state of the cluster tool changes when the

process completes, even if no action is selected.

Furthermore, for all states {𝑊𝑎𝑖𝑡, 𝑈𝑗 , 𝐿𝑗 , 𝑆𝑊𝑖 } can

always be selected as an action; therefore, 3𝑛 + 3

actions are available to be chosen in all states.

Transition probability is denoted by 𝑃𝑠,𝑠′
𝑎 , where 𝑠 is the

current state, 𝑎 is the current action and 𝑠′ is the next

state. It stands for probability for transition to state 𝑠′
when we choose action 𝑎 in state 𝑠. In this study, we do

not consider unexpected event occurrence such as robot

failure, so the system always transposes exactly to the

specified state. Hence, when the action is one of

𝑈𝑖 , 𝐿𝑖 , 𝑎𝑛𝑑 𝑆𝑊𝑖 , 𝑃𝑠,𝑠′
𝑎 has a value of 1 for the

appropriate s′. Here, the appropriate state 𝑠’ is when 𝑠′

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

155

is likely to be the next state in state 𝑠 . Furthermore,

when the 𝑠′ is not likely to be the next state in 𝑠, Ps,s′
𝑎 = 0.

However, when the action is Wait, transition probability

Ps,s′
a does not only have a value of 0 or 1. Assume that

the action is 𝑊𝑎𝑖𝑡 . If at least one chamber is ‘full’,

which stands for 𝐶𝑖 = 1 , the chambers should be

selected which change their state to ‘completed

processing’. In other words, it chooses which chamber

the process ends with. Choosing the chamber with the

shortest remaining process time is the simplest and most

intuitive. However, since we are dealing with a time

variation environment, we cannot say that the process is

finished after 𝑍𝑖 , exactly the expected remaining

process time. Therefore, the chamber selection should

reflect the fact that unexpected chamber processes may

end sooner. In addition to selecting the chamber, the

transition time needed to be stochastically generated to

reflect the time variation environment. In general, the

process of the chamber is completed within a range of

times, including the average time. Therefore, we choose

to generate the transition time using a beta distribution

that can generate the average value within the bounded

range.

Reward function is set to get 1 if a wafer completes all

processes, otherwise, the function is set to get −0.1 in

all transitions except for the 𝑊𝑎𝑖𝑡 actions. When the

𝑊𝑎𝑖𝑡 action is selected, the reward is set to be

−0.1 × (transition time).

Detailed transition rules and reward definitions are

introduced in Sections 3.2 and 3.3.

3. LEARNING POLICIES FOR ROBOT MOVES

IN CLUSTER TOOLS BY REINFORCEMENT

LEARNING

There are various ways to solve MDP. First, when we

know the model, we can define a total return. Then by

dynamic programming, we can find the optimal value

function of Bellman optimality equation (Bellman

1954). However, the proposed model has a time element

in the state, it is not possible to solve the MDP through

dynamic programming due to the curse of

dimensionality. Therefore, we applied reinforcement

learning (RL) to find the policy for the proposed MDP

model. RL requires an environment to interact with. So

we built an interactive environment based on the

proposed MDP model. We then set up tasks to perform

the learning, and learned the robot policy using Q-

learning. After learning, we performed another

experiment to measure the performance of the policy.

3.1. Reinforcement learning

Reinforcement learning (RL) is useful when the

classical dynamic programming is not enough to solve

the MDP problems. Dynamic programming is not

suitable for the problem, when the environment is

difficult to build a perfect model due to its unknown

transition probability (curse of modeling), or when the

environment has too many states to solve (curse of

dimensionality). RL adds the concepts of stochastic

approximation, temporal differences, and function

approximation to classical dynamic programming, so

that it can solve the MDP problem even if the transition

probability is not explicitly represented, and the state

dimension is too large (Gosavi 2014).

3.2. The environment

Since we find the robot policy by RL, we need an

environment that returns the next state and reward for

action according to state for learning progress. The

environment required for RL is either an environment

consisting of real equipment or an environment built by

computer simulation. The best way to interact with the

environment is to build the real world environment,

then conduct the experiments with it. However, using a

real world cluster tool is nearly impossible due to its

value. A single tool is so expensive and needs large area

to install; therefore, even the company is not able to

arrange enough cluster tools for their manufacturing

facilities. To replace the real world environment, we

built a virtual environment, which responds to some

stimulation.

The simulation environment mimics the real world;

however, not fully, only partially. To make the partially

reflected simulation environment to involve the core

elements we want, we needed to be careful making the

simulation environment. We made some assumptions in

building an environment. First, we do not consider

machine failure. Process time can vary depending on a

machine and time; however, we do not handle machine

failure in this study. Second, the environment is

stationary, which means system dynamics does not

change as time goes by. No matter how much time has

passed, they follow the same distribution. Third, the

time dynamics of the systems are governed by the rules

we set; hence, it may not fully reflect the real world

cluster tool behaviors.

The simulation environment shows the change of the

environment depending on the agent’s action. It shows

the appropriate reward and the next state according to

the selected action. Some actions are valid only in

particular states. For example, robots can take a Wait

action only when more than one chamber are filled with

the wafer, and are not completed processing, which

means that chamber 𝑖 with a 𝐶𝑖 value of 1 exists.

Detailed rules for robot actions are specified in Table 1.

Table 1: Possible Situations for the Robot Actions

Robot

Actions
Possible Situations

Wait When at least one chamber is filled with a

wafer has not been completed the process

Unload When the chamber has a processed wafer,

but still have the wafer inside in it

Load When the robot holds some wafers, and one

of the chambers corresponding to the steps

that the wafers are going to enter is empty

Swap When the chamber has a processed wafer,

but still has the wafer inside in it. At the

same time, the robot holds only one wafer to

enter the chamber

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

156

Table 1 shows the possible situations for the action. The

action is valid only when the right box condition is

satisfied. If we select an action that is not in those

possible situations, the state will not change. We set the

environment to prevent state transitions when

inappropriate actions are taken. We call an action taken

in an impossible situation an 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑎𝑐𝑡𝑖𝑜𝑛 , and an

action taken in a possible situation a 𝑣𝑎𝑙𝑖𝑑 𝑎𝑐𝑡𝑖𝑜𝑛. For

example, if a chamber has processed wafers but the

wafers are still in it and at the same time the robot has

only one wafer in its arm, swap action on the chamber is

valid action, while the rest actions are not.

All transitions are treated to be deterministic move

except for 𝑊𝑎𝑖𝑡 action, as mentioned in Section 2.2.

Other actions cause the environment to have the same

response each time a state is entered. However, when a

𝑊𝑎𝑖𝑡 action is chosen, the state transition is performed

stochastically and the transition probability is defined

differently depending on the state. When only one

chamber is in the ‘full’ state, the chamber is selected to

complete the process. However, when more than one

chambers are in ‘full’ state, changes in environment is

determined by the algorithm below.

 With a probability 0.9, the chamber with the

minimum remaining process time completes

the process

 With a probability of 0.1, the selected chamber

completes the process with a probability of

inversely proportional to the remaining process

time

Every time the 𝑊𝑎𝑖𝑡 action is chosen, the transition

time is set to be stochastically selected along the

𝑏𝑒𝑡𝑎(50,50) distribution.

3.3. Task description

In general, a set of 25 wafers becomes a 'wafer cassette',

which is the unit of production for cluster tools.

Therefore, the goal is to quickly finish a single cassette

process rather than a single wafer process. In fact, in

real companies usually produces 100 to 200 wafers once,

which means produces 4~8 wafer cassette without

stopping the operation of the cluster tool. The problem

of minimizing the total makespan can be thought of as a

reduction in the total makespan itself and a reduction in

the makespan of each subtask. When the whole

makespan is continuously measured and returned at the

end, the reward structure is heavily sparse to learn the

policy. Therefore, in this study, we follow the method

of minimizing the makespan of each subtask, which is

completing a single wafer. In addition, we follow the

structure of receiving a reward at the end of each wafer

process. In order for all subtasks to ultimately reduce

the total makespan, the total return is defined as the

discounted reward. So learning is done in the direction

of receiving the reward as soon as possible.

Furthermore, after 100 ~ 200 wafers are produced in

real world, the equipment configuration may be

changed. In the case of an episodic task that ends after

the production of a certain number of wafers, the whole

process can be divided into start-up, steady, and close-

down cycles (Kim, Lee and Kim 2016). However, in

this study, we examine whether there is a policy change

when the environment changed from deterministic to

stochastic in the steady cycle. Therefore, we consider

the learning task as a continuous task to learn a steady

cycle.

The most important goal of this problem is to learn to

choose an action that maximizes the total return. But we

should learn to prevent the system from selecting a

behavior that makes it deadlock and learn to prevent

invalid actions.

3.4. Learning procedure

The cluster tool behavior was learned by computer

simulation-based reinforcement learning. Learning is

achieved through the interaction of agents and

environments. The agent repeats the process of selecting

the action, receiving the corresponding response, and

updating the Q value for the state and the action. The

action selection and Q value update follow the

traditional Q-learning method (Sutton and Barto 1998).

The algorithm for Q-learning is illustrated in Figure 3.

We used an ε-greedy policy to select an action from the

current state, where the ε decreased over the time steps.

Even if using the same learning method, depending on

how the environment is set, the selectable action set

changes and the response to the action changes. In this

study, we set the environment to have two chambers,

and a wafer flow pattern (1,1) with all process times to

be 4 seconds. Here, the wafer flow pattern refers to the

number of parallel chambers in each process. The initial

state is set to be full loaded, so all the chambers are

filled with wafers that have not yet begun to process.

Since we only deal with the steady state, we only used

(𝐶1, 𝐶2, 𝑅, 𝑆1, 𝑆2, 𝑍1, 𝑍2) as the state. With this

environment settings, the agent continued learning

using Q-learning in the direction of maximizing the

total return.

Figure 3: Q-Learning Algorithm

However, there are other issues that need to be taken

care of by agents: deadlock actions and invalid actions.

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

157

We want to ensure that when an agent chooses an action

in the current state, it does not choose an invalid action

and a deadlock action that causes the next state to

become deadlock. The agent goes through the process

of defining possible action sets for the current state by a

two-step look ahead method. To remove the invalid

actions for the current state, the agent requests the

environment for the results for all the actions, then

saves only which actions are valid (one-step look ahead).

For an action that is valid for current state, a second

look ahead is needed to check if the deadlock occurs. It

is time-consuming to always have a two-step look

ahead in every learning step. To further speed up the

procedures, we followed the deadlock prevention rules

to the second look ahead procedure. As we apply the

rules, deadlock action checking is needed only when all

of the loading actions for the current state are invalid

and the number of the holding wafer (𝑅) is 1. In

addition, only unloading actions among valid actions

need to be checked. If any of the loading actions are

valid, the agent does not need to do a deadlock check. A

way to check if a given unloading action is a deadlock

is to request a response for an appropriate loading

action. If the unloaded wafer has a process step 𝑘 to be

visited, check that it is possible to load to the chambers

that are in charge of the 𝑘th process step. If any of the

loading actions are valid, the given unloading action is

not a deadlock action, otherwise, the given unloading

action is a deadlock action.

For example, consider the case illustrated in Figure 2,

where chamber size (𝑛) is 4 , the current state is

(3, 2, 1, 1, 2, 1, 2, 0, 0, 4, 4, 0) , and the wafer flow

pattern is (2,2). Since the value of 𝑛 is 4, the cardinality

of the available action sets for all states is 15, which is

the value of 3𝑛 + 3. Among these 15 actions, the agent

has to avoid invalid actions and deadlock actions. The

agent first removes the invalid actions from the action

set, and then removes the deadlock actions from the

remaining action set. Through interaction with the

environment, the agent gets the invalid actions and

stores only the valid actions, which is {𝑊𝑎𝑖𝑡, 𝑈0, 𝑈1, 𝑈4,
𝑆𝑊4}. Since there is no loading action among the valid

actions, actions {𝑈0, 𝑈1, 𝑈4} become the candidates for

the deadlock actions, by the deadlock checking rule that

we mentioned above.

Therefore, the agent needs to check the validity of the

appropriate loading actions for states (b), (c), and (d) in

Figure 4. In state (b), unloaded wafer has to visit the 1st

process step; hence, request responses for actions

{𝐿0, 𝐿1}, which are in charge of the 1st process step. In

this way, responses for actions {𝐿2, 𝐿3} and {𝐿4} are

requested to check the deadness of the state (c) and (d),

respectively. Then, the agent gets that any loading

actions are not valid for state (b) and (c), and {𝐿4} is

valid for state (d). Therefore, the unloading actions

corresponding to the state (b) and (c) are the deadlock

actions, so the actions {𝑈0, 𝑈1} should be removed from

the remaining valid action set, {𝑊𝑎𝑖𝑡, 𝑈0, 𝑈1, 𝑈4, 𝑆𝑊4}.

Finally, actions {𝑊𝑎𝑖𝑡, 𝑈4, 𝑆𝑊4} can be chosen from

the current state 𝑆0.

Figure 4: Checking Deadlock Action Candidates

We conducted Q-learning based on the above action

selection rule. The agent always chooses a non-invalid

and non-deadlock action, regardless of the exploration

rate ε. The reason for constructing this additional action

selection part before the action selection part in Q-

learning is the learning time. In the cluster tool, there

are too many invalid or deadlock actions in the whole

action. If we do not forbid those inappropriate actions, a

computation expense to explore for unnecessary action

occurs and unnecessary learning time occurs. Therefore,

by adding hand-crafted adjustments specific to this

system, learning time has been shortened.

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

158

3.5. Performance measurement

After the learning is performed based on the proposed

MDP model, 𝑄(𝑠, 𝑎) values for every state 𝑠 ∈ 𝑆 and

action 𝑎 ∈ 𝐴, are obtained. The policy we obtained is a

greedy policy that selects the action with the highest Q-

value in each state, i.e., 𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎) . To report the

policy, we have to list the selected actions for states as

shown in Table 2. However, there are too many states to

list all of them as a table, and it is difficult to intuitively

understand what actions to take in some cases.

Therefore, after we obtained the policy, we used the

measures that represent the performance of the policies,

then compared the performance of the acquired policy

against the existing swap sequence.

Through learning, 𝑄(𝑠, 𝑎) for ∀𝑠 ∈ 𝑆, ∀𝑎 ∈ 𝐴 is

continuously updated; define 𝑄(𝑠, 𝑎) for each thousand

wafers produced as 𝑞0, 𝑞1, . . . , 𝑞𝑡 ∈ ℝ|𝑆|×|𝐴| . However,

we do not use all 𝑞0, 𝑞1, . . . , 𝑞𝑡 to get the policy; we only

use the 𝑄(𝑠, 𝑎) value after the convergence. To verify

the convergence of a sequence 𝑞0, 𝑞1, . . . , 𝑞𝑡 , |𝑞𝑘 −
𝑞𝑘−1| for 𝑘 ∈ {1, … , 𝑡} was checked. If all elements in

the matrix |𝑞𝑘 − 𝑞𝑘−1| is relatively small, the 𝑞𝑘 can be

considered to be converged. Figure 5 shows the

maximum element in matrix |𝑞𝑘 − 𝑞𝑘−1| for 𝑘 ∈
{1, … ,543}. The value converges to 0, which means the

sequence 𝑞0, 𝑞1, . . . , 𝑞𝑡 converged. We used the

converged 𝑄(𝑠, 𝑎) value after the 543th iteration, i.e.,

used 𝑞543 to obtain the policy.

To indicate the performance of the obtained policy, the

time it takes to process 50 wafers, makespan, is used.

Makespan is measured in the same environment as the

learning period. We used two processing chambers,

wafer flow pattern (1,1), average process time of four,

and the chamber process time is set to follow the

𝑏𝑒𝑡𝑎(50,50) distribution. Because the process time is

randomly generated, makespan can be measured

differently, even if the measurement is implemented

under the same policy. Therefore, we measured

makespan a thousand times under the designated

policies and compared the averages.

Figure 5: Q-value difference maximum value

4. ANALYSIS OF ROBOT POLICY OBTAINED

BY LEARNING

Figure 6 represents the average q-values of the obtained

policy and the swap policy. Figure 7 and Table 3

represent the makespan differences of the two policies

as a histogram and a table, respectively. 𝑀𝑝 and 𝑀𝑠

represent makespan under the obtained policy and the

swap policy.

We confirmed that the makespan of the policy obtained

through Q-learning based on the proposed MDP model

Table 2: Q-values for Some States

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

159

is on average shorter than the swap policy as shown in

Figure 6.

Figure 6: Average Q-values of Two Policies

Except for 2.3% cases, the others acquired the same or

shorter makespan with the obtained policy. This means

that the above reinforcement learning has found a good

robot sequence and obtained a slightly better policy than

the widely used swap policy. The average of makespan

is not significantly different as illustrated in Figure 6. It

seems that the small difference is due to the settings, the

average process time and the number of the chambers in

our learning environment. Both of the settings may have

reduced the time variation effect to the environment. If

we were to increase the average process time and

number of chambers as much as the actual cluster tool,

then the time variance would have increased, and the

difference in makespan may have increased.

However, the fact that makespan is reduced in most

cases means that as a policy run in a time variance

environment, the policy obtained through learning in a

time variance environment is better than the policy

obtained in a deterministic environment.

Figure 7: Histogram Graph Showing the Q-value

Differences

Table 3: Frequency Distribution of the Q-value

Difference

5. CONCLUSIONS

Cluster tool scheduling has been usually studied under

the deterministic environment. In this paper, we

modeled dual-armed cluster tool behaviors as a Markov

decision process in the time variance environment, then

applied reinforcement learning to obtain robot policies.

The newly obtained robot policies reduces the

makespan of 50 wafer processes compare to the

conventional swap sequence in most cases. From this

study, it seems that the proposed MDP models can

adequately express the cluster tool behaviors in time

variance environment. This kind of view makes it

possible to look at the cluster tool from a slightly

different perspective; hence we can continue to try

scheduling cluster tools through reinforcement learning.

However, since the above model includes the remaining

time in the state in order to consider the time variance,

the state space can be very large. Furthermore, the

environment settings we used in learning couldn’t fully

express the real world cluster tool behaviors. Therefore,

the learning with more general environment settings is

needed. To conduct such learning in further research,

functional approximation seems to be applied due to the

time elements in the states.

ACKNOWLEDGMENTS

This research was supported by the Basic Science

Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of

Education, Science and Technology

(2015R1D1A1A01057131).

REFERENCES

Bellman, R., 1954. The theory of dynamic

programming (No. RAND-P-550). RAND CORP

SANTA MONICA CA.

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

160

Bertsekas, D. P., 1995. Dynamic programming and

optimal control (Vol. 1, No. 2). Belmont, MA:

Athena scientific.

Choi, B. K., & Kang, D., 2013. Modeling and

simulation of discrete event systems. John Wiley

& Sons.

Gosavi, A., 2003. Simulation-based optimization.

parametric optimization techniques and

reinforcement learning.

Jung, C., & Lee, T. E., 2012. An efficient mixed integer

programming model based on timed Petri nets for

diverse complex cluster tool scheduling problems.

IEEE Transactions on Semiconductor

Manufacturing, 25(2), 186-199.

Kim, D. K., Lee, T. E., & Kim, H. J., 2016. Optimal

scheduling of transient cycles for single-armed

cluster tools with parallel chambers. IEEE

Transactions on Automation Science and

Engineering, 13(2), 1165-1175.

Kim, J. H., & Lee, T. E., 2008. Schedulability analysis

of time-constrained cluster tools with bounded

time variation by an extended Petri net. IEEE

Transactions on Automation Science and

Engineering, 5(3), 490-503.

Lee, T. E., Lee, H. Y., & Shin, Y. H., 2004, December.

Workload balancing and scheduling of a single-

armed cluster tool. In Proceedings of the 5th

APIEMS Conference (pp. 1-15). Gold Coast,

Australia.

Lee, T. E., 2008, December. A review of scheduling

theory and methods for semiconductor

manufacturing cluster tools. In Proceedings of the

40th conference on winter simulation (pp. 2127-

2135). Winter Simulation Conference.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,

Veness, J., Bellemare, M. G., ... & Petersen, S.,

2015. Human-level control through deep

reinforcement learning. Nature, 518(7540), 529-

533.

Molloy, M. K., 1982. Performance analysis using

stochastic Petri nets. IEEE Transactions on

computers, 31(9), 913-917.

Moody, J., Wu, L., Liao, Y., & Saffell, M., 1998.

Performance functions and reinforcement learning

for trading systems and portfolios. Journal of

Forecasting, 17(56), 441-470.

Murata, T.,1989. Petri nets: Properties, analysis and

applications. Proceedings of the IEEE, 77(4), 541-

580.

Puterman, M. L., 2014. Markov decision processes:

discrete stochastic dynamic programming. John

Wiley & Sons.

Qiao, Y., Wu, N., & Zhou, M., 2012. Real-time

scheduling of single-arm cluster tools subject to

residency time constraints and bounded activity

time variation. IEEE Transactions on Automation

Science and Engineering, 9(3), 564-577.

Sutton, R. S., & Barto, A. G., 1998. Reinforcement

learning: An introduction (Vol. 1, No. 1).

Cambridge: MIT press.

Zuberek, W. M., 2004. Cluster tools with chamber

revisiting-modeling and analysis using timed Petri

nets. IEEE Transactions on semiconductor

manufacturing, 17(3), 333-344.

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

161

