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ABSTRACT 

Product form queueing networks with multiple 

customer classes and multiple server stations arise in the 

design and performance evaluation of stochastic job-

shop models of manufacturing, warehousing and 

logistic systems. Real-size models of this type cannot be 

solved by the classical Mean Value Analysis (MVA) 

algorithm, due to its exponential computational 

complexity in the number of classes. Consolidated 

(pseudo) polynomial approximation methods have been 

proposed in literature since some decades. They are 

based on the transformation of the recursive MVA 

equations in a system of nonlinear equations to be 

solved iteratively. Unfortunately these contributions do 

not cover the case of stations with multiple servers. A 

new technique based on the idea of class aggregation to 

cope with the latter case, under a first-come-first-served 

policy is presented. Preliminary numerical experiments 

are encouraging upon comparison against the exact 

MVA algorithm. 

 

Keywords: production systems, decision making, 

queueing networks, mean value analysis 

 

1. INTRODUCTION 
Queueing networks are well consolidated as 

performance models of systems where congestion 

phenomena need to be quantified since the earlier stage 

of system design. This allows to address any successive 

choice of design by focusing on a restricted number of 

alternatives. Most consolidated examples of the above 

systems are assembly, machining, warehousing  and 

other modern flexible manufacturing systems (FMS) in 

industrial engineering, (Buzacott and Shantikumar 

1993), (Zijm, Adan, Buitenhek, and van Houtum 2000), 

(Fukunari and Malmborg 2009),  (McGinnis and Wu 

2012). This paper deals with the approximate analytical 

solution of multi-class queueing network models of the 

BCMP type (Baskett, Chandy, Muntz, and Palacios 

1975) as models of dynamic job-shop systems under 

stochastic routing among service stations and stochastic 

duration of services. In this modeling framework, the 

“processor sharing” service discipline also covered by 

BCMP networks is not useful and customers (jobs) 

belonging to different classes are usually serviced 

according to a first-come-first-served (FCFS) rule. 

Moreover, service stations are typically equipped with 

multiple identical servers (Stecke and Kim 1989) (i.e. 

manufacturing machines and/or automated guided 

vehicles) each having a fixed-service rate (i.e. not load-

dependent). Whatever be the number of servers at each 

station, to apply the BCMP modeling framework under 

a FCFS discipline, one has to assume that the average 

service time is the same for all the job classes and it is 

referred to an exponential probability distribution 

function. In the multi-class modeling framework, the 

exponential assumption for service times over all 

classes, at any given station, corresponds to a mixture of 

many short service durations for some classes of jobs 

with a few long service durations for other job classes. 

A sample of such a mixture with an average duration 

equal to one time unit is shown in Figure 1. The 

exponential assumption is considered suitably “safe” for 

a first-order estimation of queueing phenomena in 

automated manufacturing systems where no 

interruptions during service are expected (Hopp and 

Spearman 2000), (Manitz 2015). In such a case, a less 

than exponential variability in service durations is 

typically estimated (Tempelmeier 2003) and this leads 

to a (safe) overestimation of the actual queue lengths. 

 

 
Figure 1: A sample of many short service durations 

mixed with a few long ones 

 

It is well recognized since a long time that the solution 

of a BCMP model of a manufacturing system (Solot and 

Bastos 1988), besides its direct adequateness (Zhuang 

and Hindi 1990), can also be required as a nested step in 

approximate iterative methods for solving more 
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realistic, but non-BCMP models (Jain, Maheshwari, and 

Baghel 2008). One such pioneering example can be 

found in (Legato 1993), where a BCMP network (under 

a FCFS policy) must be solved repeatedly, to estimate 

the time spent by jobs waiting for admission to the 

machine-shop section of the whole job-shop model. 

This reasoning is at the basis of the problem focused in 

this paper. 

In principle, the exact solution of a BCMP model could 

be obtained by the classical MVA algorithm (Reiser and 

Lavenberg 1980), but in practice, computational costs 

become prohibitive for models with more than three or 

four classes and not restricted to a few customers per 

class. This occurs because the recursive MVA algorithm 

is characterized by a dependency between some 

variables being updated at the current iteration and 

some others that have been calculated at the previous 

iteration and whose number rapidly increases with the 

number of classes. Furthermore, let Nc be the number of  

class c customers and N =(N1,…, Nc,…,NC) the network 

population, then the MVA iteration must be repeated 

from (01,…,0C) to (N1,…,NC). Therefore, in a multi-

class queueing network the computational complexity 

of MVA is exponential in both the number of iterations 

and the number of variables. 

For networks with a few service stations and many 

customer classes, there is an MVA variant proposed ten 

years after the classic MVA. It is called the Mean Value 

Analysis by Class (MVAC) algorithm (Conway, de 

Souza e Silva, and Lavenberg 1989). It exhibits 

computational costs much lower than MVA, but, as the 

number of stations increases, MVAC becomes more 

costly than MVA. On the other hand, since the 1980’s, 

several computer scientists have focused on developing 

heuristic approximations to the MVA algorithm for 

BCMP networks aimed at reducing the computational 

complexity. We have critically examined their work 

and, in particular, we show in the appendix that one 

such heuristic algorithm, i.e. the Bard-Schweitzer 

heuristics (Bard 1979, Schweitzer 1979), may be also 

derived by a probabilistic argument, i.e. from the 

assumption that customers circulate within the queueing 

network according to a semi-Markov process. However, 

the main contribution of this paper is the proposal of a 

new approximate, but (pseudo) polynomial MVA 

algorithm covering the multi-server case under FCFS.  

The paper is organized as follows. Background and 

previous work are provided in section 2. The new 

approximate algorithm is presented in section 3. 

Numerical experiments for accuracy validation are 

given in section 4. Conclusions and issues for further 

work are in section 5. 

 

2. BACKGROUND AND PREVIOUS WORK 

To make the paper self-contained, the MVA algorithm 

is first resumed. 

 

2.1. Multi-class multi-server MVA algorithm 

The following notation is used from now on.  

M = number of stations; j =1,...,M  as station index. 

mj = number of servers at station j. 

C = number of classes;  c =1,...,C as class index. 

Nc  = population of class c customers. 

nc = current class c population, from 0 to Nc. 

N  = population vector, i.e. N =(N1,…,Nc,…,NC). 

Vjc = expected number of passages through station j by 

a class c customer in its trip through the network.  

Rj = expected service duration at station j.  

n  = current population vector, n = (n1,…,nc,…,nC). 

n-1c = n with one less customer of class c. 

Djc(n) = expected sojourn time per visit at station j by 

a class c customer, under n. 

Qjc(n) = expected number of customers at station j, 

under n. 

Tc(n)  = expected network throughput for class c 

customers, under n.  

Tjc(n)  = expected station j throughput for class c 

customers, under n.  

Pj(l|n)  = long-run (marginal) probability that l 

customers are present at station j, under n. 

 

MVA algorithm under FCFS discipline: 

 
For j=1 to M Do 

 Qj(01,…,0C)=0, Pj(01,…,0C)=1 

 For l=1 to mj-1 Do 

  Pj(l|01,…,0C)=0 

For n=(01,…,0C) to N=(N1,…,NC) Do 

 For c=1 to C Do 

  For j=1 to M Do 
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It is easy to recognize that both the sojourn time 

equation (1) and the marginal probability equation (4) 

are responsible for the exponential computational 

complexity of MVA. In fact, due to the recursive 

dependence of both Qj(n) and Pj(l|n) from the 

corresponding measures related to the population n with 

one class c customer removed, the complexity of the 

algorithm under just a few servers per station is: 

 

(6)                                          )( ,)1(
1

∏ +⋅⋅
=

C

c
cNCMO  

 

both in time and space requirements. 

Observe that the marginal probabilities are needed for 

computing the expected values of the customer sojourn 

time at each station only in the multi-server case. In the 
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particular case of just one server per station, the sojourn 

time (fundamental) equation (1) of the MVA algorithm 

reduces to the following: 
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whenever the user is not interested in computing 

marginal probabilities, but expected performance 

measures only (e.g. sojourn times, queue lengths and 

throughputs for each station).  

 

2.2 Heuristic relationships 

If we had an approximate relationship between Qjc(n-1c) 

and Qjc(n) and, furthermore, a second relationship 

between Pj(l-1|n-1c) and Pj(l-1|n), then we would be 

able to circumvent the recursive nature of the MVA 

algorithm. This recursion requires the “For 

n=(01,…,0C) to N=(N1,…,NC) Do” loop which, in turn, 

is responsible of the exponential complexity in 

computation. Hence, at the price of introducing an 

approximation, one may collect equations (1), (2), (3) 

and (4) into a set of nonlinear equations to be solved 

simultaneously (Ortega and Rheinboldt 1970) under the 

(fixed) population N. The previous work that appeared 

in literature immediately after the earlier publication of 

the MVA algorithm has been guided by this idea and is 

resumed in a unifying view. Let us start with the 

identity: 
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valid for whatever station-class couple. By introducing 

a measure (δ) of the change in the fraction of the total 

number of customers found in station j resulting from 

the removal of one class c customer out of the (current) 

network population n: 
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a relationship amenable to heuristic particularizations of 

the δ measure is obtained:  

 

)]()/)()[(1()( nnn jccjccjc nQnQ δ+−=−
c
1                  (10) 

 

Clearly, the first option consists in setting:  

 

0)( =njcδ                  (11) 

 

thus obtaining a proportionality assumption ((nc-1/nc) as 

proportionality factor) on the relationship between 

Qjc(n-1c) and Qjc(n). This is known as the Bard-

Schweitzer (BS) heuristic relationship (Bard 1979, 

Schweitzer 1979). According to these authors, one has 

to further assume that removing one class c customer 

does not affect the expected queue length of customers 

belonging to different classes, hence: 
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Hence, the BS approximation to equation (7) of the 

exact MVA algorithm for (fixed rate) single server 

stations is obtained: 
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Provided that marginal probabilities are not required but 

only expected performance measures are required, 

formula (13) is all the user needs to define a (fixed-

point) iterative heuristic algorithm (called BS_MVA) 

for queueing networks with fixed-rate single-server 

stations only. This because the expected system 

throughput equation (2) can be inserted in the formula 

for the expected station queue length: 
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thus obtaining the following equation: 
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Equations (13) and (15) are at the basis of a fixed-point 

iteration algorithm. 

The computational complexity of BS_MVA  is O(MC) 

in both space and time (per iteration) requirements. An 

extensive theoretical study on the existence and 

uniqueness of the solution of BS_MVA, as well as on 

convergence, has been carried out in (Pattipati, 

Kostreva, and Teele 1990). In particular, the existence 

of the solution is established for monotonic, but single-

class networks, i.e. networks where the service rates are 

monotonically non decreasing functions of the number 

of customers at the stations. Uniqueness and 

convergence results have been obtained only under the 

limiting condition that the number of customers of each 

class grows to infinity.  

An improvement over BS_MVA may be based on the 

assumption that the change in the fraction of class r 

customers present at station j resulting from the removal 

of one class c customer is constant around the current 

population vector n. This corresponds to replacing the 

null setting (11) by the constant setting: 

 

(16)                                                          )1()( cjcjc −= nn δδ

 

Hence, at the price of introducing a nested fixed-point 

iteration within the BS_MVA (to estimate the constant 

δ measure), the so-called Linearizer heuristics, first 

proposed by Chandy and Neuse (1982), has been 

obtained. The new assumption on the δjc(n) yields an 

improvement over the BS_MVA algorithm (called 

Lin_MVA) at the expense of an acceptable increase of 

the space complexity O(MC
2
) and the time (per 
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iteration) complexity O(MC
3
). Some years later, 

Zahorjan, Eager and Sweillam (1988) proposed working 

with cumulative (i.e. over all classes rather than per 

class) queue lengths in formula (10). This allows 

reducing the space complexity of Lin_MVA from 

O(MC
2
) to O(MC) and time/iteration complexity from 

O(MC
3
) to O(MC

2
), without significantly affecting the 

accuracy of the algorithm. They were not able to 

establish formal convergence results for the original 

Lin_MVA algorithm, nor for their own variant to it. 

Since then, some other variants to both BS_MVA and 

Lin_MVA and more sophisticated implementations 

have been proposed (Wang and Sevcick 2000), (Wang, 

Sevcick, Serazzi, and Wang 2008), but always restricted 

to fixed-rate services in single-server stations.  

To the focus of this paper, (fixed-rate services in multi-

server stations) it is worth mentioning that using the 

following further assumption: 

 
(17)                                        )|1()|1( NN −=− lPlP jcj 1-

 

within equation (4) allows to define a straightforward 

version of Lin_MVA capable of solving networks with 

load-dependent (thus multi-server) service rate stations. 

Unfortunately, this choice has been exploited by 

Krzesinski and Greyling (1983), but indicated as the 

source of several failures for Lin_MVA (i.e. 

convergence failure, convergence errors and numerical 

instabilities). Among more successful proposals, it is 

worth recalling that, before presenting the Linearizer 

heuristics, Neuse and Chandy (1981) introduced the 

SCAT algorithm for the approximate solution of multi-

class queueing networks with load-dependent service 

rate stations. SCAT was based on the idea of 

reconstructing the profile of  the distribution of the 

marginal probability of having one customer at station j 

from the estimate of the mean queue length at the same 

station. To this purpose, Chandy and Neuse were 

assigning the whole marginal probability “mass” to the 

first two integer values neighboring the estimated 

(generally fractional) value of the mean queue length. 

This idea was later refined by Akyildiz and Bolch 

(1988), who proposed to scatter the assignment of 

probability mass to a wider range of neighboring integer 

values. Their scattering was carried out according to a 

(pseudo) normal distribution function. Akyildiz and 

Bolch (1988) were able to achieve significant 

improvements upon the original SCAT in some 

numerical instances. Unfortunately, other numerical 

evidence for not heavy-loaded networks states that the 

profile of marginal queue length probability strongly 

departs from a normal-like one.  

More recently Suri, Sahu and Vernon (2007) have 

pursued the idea of multiplying Qjc(n-1c) by a correction 

factor within the BS formula (13), in order to cope with 

the multi-server case. Their factor is aimed to capture 

the reduction of the expected queue length resulting 

from the presence of many servers instead of one at the 

same station. The above factor is defined as an 

empirical function of both the number of servers and 

their utilization factor for each station at hand. 

Unfortunately, this is not appealing for the applications 

of generic queueing networks in real practice. 

 

3. A NEW APPROXIMATION 

Our approach for reducing the computational 

complexity of the multi-class multi-server MVA from 

exponential to (pseudo) polynomial when computing 

both queue lengths and marginal probability 

distributions in multi-server networks under the FCFS 

discipline is presented in this section. 

Let us introduce Pj(l|N), l=1,…,N as the probability that 

l customers are present at station j under a single class 

population of  N=N1+N2…+NC customers circulating 

within the queueing network. The idea is that of using 

Pj(l-1|N-1) in place of Pj(l-1|N-1c) l=1,…,N to get an 

approximate sojourn time equation for an MVA 

algorithm which adopts the BS approximation for queue 

lengths. To this purpose, the concept of representative 

class is now introduced. 

We associate a single-class network to a multi-class 

queueing network characterized by a population vector 

N=[N1,…,Nc ], a matrix of visits  V = [Vjc, j=1,…,M; 

c=1,…,C] and a vector of service requests R = [Rj, 

j=1,…,M]. The single class, here called “representative 

class”, is defined by the following formulas: 
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The expected throughput values per class, Tc(N), 

required by the (aggregation) formulas (18) to define 

the representative class are computed iteratively by 

Large, a fixed-point procedure based on the BS 

approximation for queue lengths coupled with the 

marginal probabilities w.r.t. the representative class: 

 

Procedure: Large 
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The representative class and the Large procedure are 

used in the iterative algorithm called Approx, presented 

in the following.  

Approx is based on the following reasoning. If we had 

the exact throughput values Tc(N) c=1,…,C then the 

expected number of visits to define the representative 

class would be determined  from (18b) once and for all. 

Instead, since this is not the case and moreover the 

above throughputs depend in turn from the marginal 

probabilities of the representative class, we have to 

resort to a nested fixed-point algorithm where both the 

expected throughputs and the marginal probabilities are 

iteratively refined. Thus, Approx requires an initial 

estimate of the marginal probabilities of the 

representative class at each station and then it iteratively 

updates the initial estimate until convergence is 

achieved. Large operates as a nested “repeat until” 

statement. Given the current estimate of the marginal 

probabilities, Large computes the corresponding 

expected throughput values per class which are needed 

to update the current parameters defining the 

representative class. 

 

Procedure: Approx 

 

Initialize Pj(l-1|N-1),    l=1,…,mj-1; j=1,…,M 

Repeat  

 1. Compute class throughput by Large 

 2. Define the representative class 

 
3. Solve the multi-server network under the representative 

class, by polynomial single class (polynomial) MVA 

 4.Update Pj(l-1|N-1),    l=1,…,mj-1; j=1,…,M 

Until convergence upon  Pj(l-1|N-1),    l=1,…,mj-1; j=1,…,M 

Return expected performance measures per class and station 

 

Returned performance measures for each (original) 

class of customers, e.g. expected throughputs and queue 

lengths at each station, are computed by the following 

formulas: 
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where Djc(N) values, for j=1,…,M and c=1,…,C, are 

those returned by Large after convergence. 

Computational complexity of Approx is that of an exact 

single-class MVA, i.e. O(mjMN), because step 3. is 

more costly than step 1. under the BS approximation. 

 

3.1 Convergence 

In a large number of numerical experiments we have 

always observed a very robust behavior. Just a few 

iterations (outer iterations) are usually needed to 

determine the marginal probabilities for the 

representative class at each station. Vice versa, for the 

nested procedure (Large), we have observed that at 

most some tens of (inner) iterations are needed, in the 

worst case, to achieve convergence with the initial 

estimate of the marginal probabilities. But, after the first 

updates of the marginal probabilities (i.e. the first outer 

iterations) the number of inner iterations decreases 

significantly. Typically, it ranges from almost ten to no 

more than twenty and it remains constant or decreases 

further during the next few outer iterations. 

Nevertheless, in principle, we cannot exclude the 

existence of some (pathological) cases under heavy-

loaded networks in which inner, outer or both 

convergence conditions are not achieved.  

 

4. NUMERICAL EXAMPLES 

In this section Approx is applied to the solution of the 

two queueing network models of the job-shop systems 

shown in Figure 2 and Figure 3. Each station of the job 

shop is equipped with a pool of identical facilities (see 

the numbered circles) bearing a common input buffer 

whose size is big enough to prevent the occurrence of a 

full buffer. Services are provided according to a FCFS 

discipline and their individual duration cumulated over 

all classes well fits an exponential probability 

distribution. Multiple types of jobs circulate within the 

network according to a routing path described by a 

different Markov chain for each different type of jobs. 

The resulting network configuration is known as 

Central Server Model (CSM) to highlight the role of the 

central station within the network topology.  

 

 
Figure 2: CSM with a pure delay station modelling the 

delay between finished jobs and new jobs 

 

 

 
Figure 3: CSM with two central stations and no delay 

between finished jobs and new jobs 

 

A concrete example of a CSM for an FMS is now given 

according to the authors’ past experience with a German 

automotive industry in Salzgitter. The material handling 

system is represented as the central station whose 

multiple servers are automated guided vehicles (carts) 

which transfer the workpieces (parts) among the 
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manufacturing centers. Each manufacturing center is a 

peripheral station whose servers are the flexible 

machine tools and the queue is the (local) input storage 

area. The (local) output storage areas of the 

manufacturing centers are coalesced into the unique 

queue of the central (transport) station. A multi-class 

model must be used when different types of parts have 

non-compatible geometrical properties and, thus, 

require different types of support devices (pallets). The 

parts are mounted on pallets and carried by carts. They 

follow different routes in the network, according to the 

class to which they belong. Finally, a fixed number of 

circulating pallets is assumed and modeled as the fixed 

multi-class population of customers of the queueing 

network. The model is closed since no pallet enters the 

system from outside, nor leaves it; rather, a finished part 

is removed from the pallet and immediately replaced by 

a new (raw) part or after some delay. In the latter case, 

the related average delay is captured by the pure delay 

station in the CSM (see Figure 2); in the former, the 

pure delay station is short-circuited. 

The numerical results presented in the next two 

subsections refer to CSM configurations under a few 

stations and a few classes with a limited number of 

customers per class. This allows a relatively fast exact 

solution by the MVA algorithm. Moreover, from the 

probabilistic argument at the basis of the derivation of 

our approximation in the Appendix, it should be clear 

that our experiments under a low-moderate load 

condition at the central station coupled with a heavy 

load at one or more peripheral stations should 

correspond to a worst-case validation.  

 

4.1 Results from the first model 

The first set of numerical results presented here is 

referred to the CSM with a finite source of customers 

(Figure 1). There are 3 peripheral stations (station 3, 

station 4 and station 5), 1 central station (station 2) and 

3 classes of customers. The population of class 1 is 12, 

15 for class 2 and 18 for class 3; therefore, 45 servers 

are at the pure delay station (station 1), which is visited 

only once per customer passage through the system. 

The average delay time differs per class (40 t.u. for 

class 1, 60 t.u. for class 2 and 80 t.u. for class 3). The 

central station is equipped with 5 servers, the first 

peripheral with 2, the second peripheral with 4 and the 

last peripheral with 3. Using the average number of 

visits and the average service time per visit shown in 

Table 1, we tune (by output results) a set of (server) 

utilization factors ranging from 67% at the first 

peripheral station (station 3) to 95% at the second 

peripheral station (station 4). The expected queue 

lengths per class and the expected throughput per class 

at each station are reported in Tables 3a-3c. The same 

performance indices computed by the exact solution of 

the queueing network returned by the classical MVA 

algorithm are in these tables as well. The comparison 

between approximate and exact results for the average 

queue lengths shows a level of accuracy which is 

widely acceptable in practice; this accuracy is even 

higher for the throughput results.  

It is well known that queueing approximations are less 

accurate in the case of a specific station acting as a 

strong system bottleneck within an unbalanced and 

heavily loaded system. So, we show in Tables 4a-4c a 

second set of results obtained under the condition that 

the second peripheral station is utilized at 99% while 

the first is around 83%. The new condition has been 

obtained by reducing to a half the expected delay per 

class at the pure delay station. From Tables 4a-4c one 

may recognize that the only significant loss of accuracy 

(about 10%) arises in the evaluation of the average 

queue length at station 4. This is the station that has 

been forced, by our input data setting, to become a very 

strong bottleneck (utilization level = 99%) for the entire 

network. Fortunately, we believe that in this case a 

more accurate analytical evaluation of the average 

queue length is unnecessary under a similar system 

bottleneck. 

 

Table 1: Remaining data of the first model 

Class ci 
Service time per station si case 1/case 2 

s1 s2 s3 s4 s5 

c1 40/20 0.5 1.0 2.0 1.5 

c2 60/30 0.5 1.0 2.0 1.5 

c3 80/40 0.5 1.0 2.0 1.5 

Class ci Visits per station 

c1 1 9 1 3 4 

c2 1 7 3 2 1 

c3 1 5 1 2 1 

 

Table 2: Remaining data of the second model 

Station 
Visits per class ci Service times 

c1 c2 c3 c4 case 1 case 2 

1 5 7 0 0 0.10 0.35 

2 0 0 12 11 0.25 0.25 

3 1 3 4 2 0.70 0.50 

4 2 1 4 3 0.50 0.30 

5 1 2 3 5 0.20 0.20 

 

Table 3a: Class 1 results of the first model – case 1 

Station 
Throughput Queue length 

exact approx exact approx 

1 0.1982 0.1977 7.9294 7.9105 

2 1.7841 1.7798 0.9079 0.9026 

3 0.1982 0.1977 0.2575 0.2583 

4 0.5947 0.5932 1.4780 1.4910 

5 0.7929 0.7910 1.4269 1.4374 

 

Table 3b: Class 2 results of the first model – case 1 

Station 
Throughput Queue length 

exact approx exact approx 

1 0.2019 0.2016 12.115 12.098 

2 1.4134 1.4115 0.7199 0.7197 

3 0.6057 0.6049 0.7757 0.7810 

4 0.4038 0.4032 1.0161 1.0247 

5 0.2019 0.2016 0.3726 0.3759 
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Table 3c: Class 3 results of the first model – case 1 

Station 
Throughput Queue length 

exact approx exact approx 

1 0.1983 0.1981 15.868 15.853 

2 0.9918 0.9908 0.5055 0.5071 

3 0.1983 0.1981 0.2582 0.2596 

4 0.3967 0.3963 1.0008 1.0094 

5 0.1983 0.1981 0.3663 0.3699 

 

Table 4a: Class 1 results of the first model – case 2 

Station 
Throughput Queue length 

exact approx exact approx 

1 0.2334 0.2266 4.6688 4.5325 

2 2.1009 2.0396 1.1349 1.0640 

3 0.2334 0.2266 0.4368 0.4162 

4 0.7003 0.6798 3.5357 3.8191 

5 0.9337 0.9065 2.2236 2.1680 

 

Table 4b: Class 2 results of the first model – case 2 

Station 
Throughput Queue length 

exact approx exact approx 

1 0.2886 0.2837 8.6592 8.5112 

2 2.0204 1.9859 1.0918 1.0399 

3 0.8659 0.8511 1.5433 1.5344 

4 0.5772 0.5674 2.9824 3.2166 

5 0.2886 0.2837 0.7231 0.6977 

 

Table 4c: Class 3 results of the first model – case 2 

Station 
Throughput Queue length 

exact approx exact approx 

1 0.3135 0.3088 12.543 12.352 

2 1.5679 1.5440 0.8490 0.8123 

3 0.3135 0.3088 0.5817 0.5677 

4 0.6271 0.6176 3.2411 3.5072 

5 0.3135 0.3088 0.7847 0.7601 

 

4.2 Results from the second model 

In the second model (Figure 3) the pure delay station 

has been eliminated (i.e. short-circuited), two central 

stations (station 1 and station 2) are coupled with three 

peripheral stations (stations 3-5) and the number of  

customer classes has been increased from 3 to 4. Class 1 

population is 12, class 2 is 10, class 3 is 6 and class 4 is 

8. There are 3 servers in each of the two central stations, 

4 at the first peripheral, 3 at the second and 2 at the last 

one. All the customers visit all the peripheral stations, 

but only class 1 and class 2 customers visit the first 

central station and, in turn, only class 3 and class 4 

customers visit the second central station. In terms of 

the FMS of reference, this means that some carts are 

dedicated to some types of parts and other carts to other 

types of parts.  

Using the data in Table 2, a double strong bottleneck 

condition in a heavily loaded system is obtained. In fact, 

the first and second peripheral stations result to be 

utilized both at 99% and the less loaded station (central 

station 1) is at 72%. The results in Tables 5a-5d confirm 

the good accuracy achieved in practice by our 

approximate algorithm. Finally, we eliminate one server 

from each of the two central stations and modify service 

times as shown in Table 2 (case 2 column). This leads 

to moving the double bottleneck condition from the two 

peripheral stations to the two central stations (the first 

central at 99% and the second at 97%, the first 

peripheral at 83% and the second at 69%). Results are 

in Tables 6a-6d. As expected, the accuracy does not 

depend from the position of the bottleneck stations but, 

more importantly, no further loss of accuracy is 

observed w.r.t. the previously discussed results from the 

first model (where only one bottleneck station was 

forced to exist by our input data tuning). 

 

Table 5a: Class 1 results of the second model – case 1 

Station 
Throughput Queue length 

exact approx exact approx 

1 7.0665 6.9051 0.7665 0.7288 

2 0.0000 0.0000 0.0000 0.0000 

3 1.4133 1.3810 4.4237 4.2038 

4 2.8266 2.7620 6.3748 6.6603 

5 1.4133 1.3810 0.4348 0.4069 

 

Table 5b: Class 2 results of the second model – case 1 

Station 
Throughput Queue length 

exact approx exact approx 

1 5.7237 5.4921 0.6218 0.5802 

2 0.0000 0.0000 0.0000 0.0000 

3 2.4530 2.3537 6.7243 7.0202 

4 0.8176 0.7845 2.1540 1.9390 

5 1.6353 1.5691 0.4996 0.4605 

 

Table 5c: Class 3 results of the second model – case 1 

Station 
Throughput Queue length 

exact approx exact approx 

1 0.0000 0.0000 0.0000 0.0000 

2 2.7426 2.7246 0.8472 0.8336 

3 0.9142 0.9082 2.7259 2.7475 

4 0.9142 0.9082 2.2157 2.2180 

5 0.6856 0.6811 0.2111 0.2007 

 

Table 5d: Class 4 results of the second model – case 1 

Station 
Throughput Queue length 

exact approx exact approx 

1 0.0000 0.0000 0.0000 0.0000 

2 4.8636 4.8405 1.4846 1.4632 

3 0.8843 0.8801 2.7220 2.6814 

4 1.3264 1.3201 3.1335 3.2170 

5 2.2107 2.2002 0.6599 0.6382 

 

Table 6a: Class 1 results of the second model – case 2 

Station 
Throughput Queue length 

exact approx exact approx 

1 3.1715 3.1429 10.474 10.567 

2 0.0000 0.0000 0.0000 0.0000 

3 0.6343 0.6285 0.3374 0.3306 

4 1.2686 1.2571 0.4091 0.4006 

5 0.6343 0.6285 0.7787 0.7008 
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Table 6b: Class 2 results of the second model – case 2 

Station 
Throughput Queue length 

exact approx exact approx 

1 2.5427 2.5287 8.4283 8.5155 

2 0.0000 0.0000 0.0000 0.0000 

3 1.0897 1.0837 0.5776 0.5661 

4 0.3632 0.3612 0.1176 0.1159 

5 0.7264 0.7224 0.8764 0.8023 

 

Table 6c: Class 3 results of the second model – case 2 

Station 
Throughput Queue length 

exact approx exact approx 

1 0.0000 0.0000 0.0000 0.0000 

2 3.5358 3.4282 3.9019 4.1091 

3 1.1786 1.1427 0.6233 0.5910 

4 1.1786 1.1427 0.3799 0.3610 

5 0.8839 0.8570 1.0947 0.9387 

 

Table 6d: Class 4 results of the second model – case 2 

Station 
Throughput Queue length 

exact approx exact approx 

1 0.0000 0.0000 0.0000 0.0000 

2 4.3407 4.2689 4.9401 5.1395 

3 0.7892 0.7761 0.4199 0.4060 

4 1.1838 1.1642 0.3826 0.3695 

5 1.9730 1.9404 2.2572 2.0848 

 

 

5. CONCLUSIONS 

The proposed fixed-point algorithm seems to be a 

practical alternative to the classical MVA algorithm for 

large multi-class queueing networks with multi-server 

stations. It applies under a FCFS discipline for the 

exponentially distributed service durations. It does not 

require restrictive assumptions on the probabilistic 

shape of the marginal queue length at each station, nor 

complicated tuning of empirical functions. This should 

encourage using it in real practice.  

Preliminary validation experiments against the exact 

solution provided by the MVA algorithm state a good 

accuracy on queueing network models of job-shop 

systems. The complete exact results of our instances 

highlight that accuracy lies in the slight variability of 

the customer sojourn time per class, under a FCFS 

discipline. The different number of visits to the same 

station by customers belonging to different classes is 

responsible for the variability of the waiting time per 

class. The different average number of visits per class 

produces different sampling patterns according to which 

the queue length at that station is observed and suffered 

by arriving customers.  

Polynomial complexity per iteration has been obtained 

by aggregating all the customer classes into a unique 

representative class. Marginal queue length probabilities 

are computed for the representative class at each station 

by using the (polynomial) single-class MVA algorithm. 

After a disaggregation step, the expected performance 

measures per customer class are obtained. A formal 

proof of convergence seems difficult and even unlikely, 

considering the past efforts put into this type of iterative 

schema. Failure in convergence cannot be excluded for 

pathological instances yet to be classified.  Refinements 

of the algorithm and extensive numerical experiments 

are also the subject of a future work. 

 

APPENDIX 

Here a probabilistic argumentation on the BS heuristics 

for queue lengths is provided. 

Introducing PFjc(N) as the probability of finding one 

class c customer at station j (i.e. one out of class c 

population) given that it circulates in a network together 

with other N1, N2, …Nc-1, …NC other customers, we 

assume that:  

 

.,...,1;,...,1,)()()( MjCcPFQQ jccjcjc ==+−= NNN 1  

(24) 

Relationship (24) lies on the hypothesis that adding a 

unique class c customer to a network population N-1c 

does not produce the effect of redistributing preexisting 

customers in station j among other stations and, 

therefore, it does not affect the preexisting average 

queue lengths. Rather, on the long run we expect a very 

limited and purely additive marginal contribution to 

queue lengths. Precisely, this contribution is uniquely 

determined by the average proportion of the time spent 

at each queue with respect to the average time spent 

within the entire network by the (marginal) customer 

just added. 

At this point, we estimate PFjc(N) as follows: 

 

.,...,1;,...,1,)(/)()(
1

MjCcDVDVPF
M

i

icicjcjcjc === ∑
=

NNN  

(25) 

The approximation underlying relationship (25) consists 

in evaluating the average time spent over all visits at 

station j by a class c customer as the product of the 

average number of visits multiplied by the average time 

spent per visit. This is not exact, unless the customer 

circulates within the network according to a semi-

Markov process (Cinlar 1975) and, as a consequence, 

the sojourn time per visit by any customer at any given 

station is independent from the specific visit (e.g. the 

first, the second…or the last). Only under this 

independence assumption the numerator of formula (25) 

corresponds to the exact evaluation of the cumulative 

(i.e. over all visits) sojourn time spent by a class c 

customer at station j during its lifetime within the 

queueing network, while the denominator corresponds 

to the average sojourn time within the entire network. 

Otherwise the correlation among the sojourn time per 

visit arises, thus reducing formula (25) to an 

approximation formula.  Actually, we have verified by 

simulation experiments that a significant correlation 

may exist among the sojourn times experienced by a 

class c customer at station j. This qualifies our semi-

Markov assumption as an approximation, but at the 

same time, it indicates the way to improve our 

approximation. To give some details, by simulating the 

CSM model in Figure 2, we have observed point 
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estimates of the correlation factor among sojourn times 

experienced by a specific (sample) customer at the 

second peripheral station (station 4). They typically 

range from 0.15 to 0.25 under a very high-loaded 

central station coupled with a moderate-loaded station 

4. On the other hand, the same correlation factor 

typically ranges from 0.55 to 0.80 under a moderate-

loaded central station coupled with a high-loaded 

station 4. 

After this discussion, the BS heuristics is derived here 

using some algebra.  

By our approximate relationship: 

 

),(,)(/)()()(
1

cjDVDVQQ
M

i
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=

NNNN 1
 

(26) 

recalling the sojourn time equation of MVA for a (fixed 

rate) single-server station under FCFS: 
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we assume the following: 
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Hence, it suffices inserting first (26) in (27): 
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and then repeating equation (15), with reference to 

population N: 
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in equation (29) to obtain the BS heuristic 

approximation: 
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This concludes our alternative derivation of the BS 

heuristics based on the core assumption that customer 

travel through any sequence of network stations is 

described by a semi-Markov process. 
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