
AN IMPROVED CONVERSIVE HIDDEN NON-MARKOVIAN MODEL-BASED TOUCH
GESTURE RECOGNITION SYSTEM WITH AUTOMATIC MODEL CREATION

Tim Dittmar(a), Claudia Krull(b), Graham Horton(c)

Otto-von-Guericke-University Magdeburg
P.O. Box 4120

39016 Magdeburg, Germany

(a)tim.dittmar@ovgu.de, (b)claudia.krull@ovgu.de, (c)graham.horton@ovgu.de

ABSTRACT
Mobile devices like smartphones and tablets that are
controlled via a multi-touch interface have become
ubiquitous. In previous work a touch gesture
recognition system based on Conversive Hidden non-
Markovian models has been proposed that is able to
recognize similar gestures with different execution
speeds based on recorded examples. With this work, we
improved the system by eliminating the major drawback
of manually and tediously creating models for every
gesture from recorded training data. To achieve this, the
gesture model design has been adapted to include an
additional structure that represents a map of all known
gesture examples. Experiments conducted on two
different datasets show that the new system can
distinguish gestures with different speeds with good
accuracy and fast detection times. Ideas to further
improve the system are discussed and we believe that
such a system could be the basis for a new gesture
authentication system in the future.

Keywords: touch, gesture recognition, CHnMM, mobile

1. INTRODUCTION
The presence of mobile touch devices has become
ubiquitous, especially due to the success of smartphone
and tablet devices, which are primarily operated via the
multi-touch interface they provide. This way of
interaction and these device classes became popular
with the introduction of the Apple iPhone in 2007 and
the Apple iPad in 2010. Due to this development touch
devices and interaction play an important role
nowadays. Two facts that reinforce this are that
Microsoft optimized their Windows Desktop operating
system for touch input and Google adapted their web
page ranking algorithms to consider the mobile (touch)
quality of websites.

Many internet services are accessed from these
mobile touch devices and the user authentication almost
always requires the user to enter his or her username
and a password, which takes significantly more time on
a glass surface than on a physical keyboard (Findlater
2011), especially when it is a long and secure password
with capital letters and special characters. An alternative

authentication method for touch devices that has been
mentioned already is the verification of users by touch
gestures (Sae-Bae 2011, Sherman 2014) which have the
potential to be far more convenient to enter by the user.
But to our knowledge these methods do not consider
differences in temporal dynamics of a gesture execution
and only validate the shape, although the discrimination
of gestures with different temporal dynamics would add
an additional factor of entropy and therefore be more
secure.

With this work, a first step towards such a touch
gesture authentication system that considers temporal
dynamics is taken. Our previous experiments (Bosse
2011, Dittmar 2015) have shown that Hidden non-
Markovian Models (HnMM) and their subclass
Conversive Hidden non-Markovian Models (CHnMM)
are able to distinguish similar gestures also by their
temporal dynamics. But the models in these papers had
to be manually and tediously created by an expert from
a set of training examples, which render these
approaches infeasible for applications in practice. A
system that is feasible in practice would be required to
automatically generate its gesture models from given
example executions, which is currently not efficiently
possible for HnMMs and CHnMMs. While it is possible
with HMMs, these have another weakness. HMMs do
not explicitly incorporate timing information, hence,
they are dependent on a periodic symbol emission that
implicitly adds this information, which is difficult to
achieve if the system is required to support a large set of
different touch devices.

Consequently, we propose a new CHnMM-based
hybrid model for touch gestures that also considers
temporal dynamics. By introducing a new data
structure, the StrokeMap, an automatic creation of the
CHnMM from a set of given examples is facilitated.
Additionally, a prototype gesture recognition and
authentication system is created to evaluate our
proposal.

2. BACKGROUND
In the following sections our previous work, a formal
CHnMM definition and related work are presented to

Proc. of the Int. Conference on Modeling and Applied Simulation 2015,
978-88-97999-59-1; Bruzzone, De Felice, Frydman, Massei, Merkuryev, Solis, Eds.

96

put this paper into context and to increase the
understanding of its contents.

2.1. Previous Work
In this section a short overview of previous work that
this paper relies on is presented to explain some basic
methods and models needed to understand this paper
and our approach. Furthermore, a formal definition of a
CHnMM is given at the end of this section.

In Krull et al. (2009) an extension to the popular
Hidden Markov Model (HMM) (e.g. used in speech-,
gesture- and handwriting recognition (Fink 2014)), has
been presented: the so-called Hidden non-Markovian
models that are more powerful regarding their
modelling capabilities. For example, they incorporate
arbitrary distributions for state sojourn times instead of
only geometric distributions like HMMs do implicitly
by utilizing fixed probabilities and a fixed time step for
state changes. Due to their complex modelling
capabilities the solution algorithms of HnMMs are
complicated and computationally very demanding and
that is why the subclass of CHnMMs was defined and
thoroughly analysed by Buchholz (2012) in his
dissertation. This subclass only slightly limits the
modelling capabilities of HnMMs by requiring an
output symbol for every state change, but this small
change allows much more efficient solution algorithms.
These algorithms (one is utilized in this paper) employ
the Proxel method, which is not further explained in this
paper, but the dissertation by Lazarova-Molnar (2005)
covers this method thoroughly.

In 2011, Bosse et al. (2011) successfully showed
that HnMMs can be used to create a Wiimote gesture
recognition system that is also able to distinguish
between similar gestures with different execution
speeds. Similarly, Dittmar et al. (2015) utilized
CHnMMs to create a touch gesture recognition system
for a multi-touch tabletop, and showed in experiments
the ability of the recognition system to distinguish touch
gestures by their temporal dynamics.

In both experiments the systems have been
compared to an HMM-based recognition system. While
these performed slightly worse than the HnMM- and
CHnMM-system, they also were able to distinguish the
gestures with different execution speeds in most cases,
even though HMMs do not incorporate explicit timing
information. The ability comes from the fact that
implicit timing information is provided due to the
periodic emission of symbols that is used for HMM-
based systems.

Another problem of both approaches is the fact that
the models for the gestures were created and
parameterized manually. A circumstance that renders
the system infeasible in practice, because no user would
be able to create the models on their own and even an
expert needs a long time to create it. With the new
approach presented in this paper we especially want to
eliminate this problem by trying to employ a supervised
learning approach as proposed by Bosse (2012) for
CHnMM-based gesture recognition systems.

2.2. CHnMM – Formal Definition
A CHnMM contains the following elements that are
similar to the elements of HMMs:

• a set of states S of length N
• a set of output symbols V of length M
• an initial probability vector Π=(π1,…,πN)
• an NxN matrix A containing the state change

behaviour, but with more complex elements
aij.

Additionally, a CHnMM contains the set
TR={tr1,tr2,…,trK} of K transitions that define the
model behaviour. Each transition tri is a tuple
consisting of the following three elements:

• dist represents the continuous probability
distribution that specifies the duration of the
transition which causes a discrete state change
on completion.

• b(v) is a function that returns the output
probability of symbol v when the transition
causes a state change. It is the semantic
equivalent of the output probabilities in B for
HMMs, but associated to transitions for
CHnMMs instead of states as in HMMs.

• aging is a boolean value that determines if the
time that the transition has been active is saved
(aging=true) or reset to 0 (aging=false) if
there is a state change deactivating it caused by
another transition, i.e. if the current active
transition is interrupted by the triggering of
another one.

All elements aij in A are either elements of TR or empty
if no transition between states si and sj exist. A
CHnMM model λ is fully defined as a tuple
λ=(S,V,A,TR,Π) that contains all previously described
elements.

In addition to the output symbol ot of the
observations, CHnMMs have a time property pt,
containing the point in time of symbol emission. This
valuable time information is not needed for HMMs
which only get it implicitly by a periodic symbol
emission. An ordered sequence of these observations is
called a trace O. The path Q also contains a sequence of
states qt with associated time stamps.

2.3. Related Work
The idea to use gestures for authentication is not
completely new. A basic and widespread approach that
is similar is the so-called “Pattern Lock” used in the
Android mobile operating system (Shabtai 2010).
Further research that focuses on authentication for
unlocking a certain device includes Sae-Bae et al.
(2012) and Sherman et al. (2014), but none of them
considers temporal dynamics.

The application of HMMs for gesture recognition
in general is very common but quite rare for touch
gesture recognition systems. Two systems that employ

Proc. of the Int. Conference on Modeling and Applied Simulation 2015,
978-88-97999-59-1; Bruzzone, De Felice, Frydman, Massei, Merkuryev, Solis, Eds.

97

HMMs to learn touch gestures by example are presented
by Damaraju et al. (2008) and Joselli et al. (2009). The
first system is able to learn and recognise multi-touch
gestures performed on a tabletop, while the latter learns
and detects single stroke gestures on mobile touch
devices. But in both cases different execution speeds are
not tested or even considered.

To our knowledge the recognition of similar
gestures that differ only in execution speeds has never
been further investigated (except in our previous work),
although there exist many HMM-based gesture
recognition systems that incorporate temporal features
like the velocity into the output symbols, for example
(Chen 2003). On the contrary, most papers concentrate
on tolerating the time variances in gesture executions,
for example (Hong 2000), and do not try to exploit
them.

3. THE MODEL
Our new method employs a single model per gesture,
which is also the case for most HMM-based gesture
recognition systems (for example (Damaraju 2008)).
Unlike our previous work (Dittmar 2015), we do not
solely use a CHnMM to represent a gesture but combine
it with what we call a StrokeMap, a structure that holds
all the information about the shape of a gesture stroke.
The creation of this structure based on example gestures
is explained in detail in the following section.

The reason for introducing this new structure is to
enable supervised learning by separating a gesture into
known and clearly defined sections. It is also driven by
the idea that for a gesture authentication system mainly
the shape and the temporal dynamics of a gesture are
relevant and the new structure helps to add valuable
information about the shape to the output symbols.

The CHnMM represents the temporal dynamics of
the gesture and is explained in Section 3.2 after the
StrokeMap.

3.1. Creating the StrokeMap
As already mentioned and as the name suggests the
StrokeMap holds all the information about the shape of
a gesture stroke in the form of circular areas
representing expected locations of successive points of
the trace. It is created from all training examples of the
gesture.

In Figure 1 all steps involved in creating a
StrokeMap from training data are visualized with two
example trials used as training data. The first part of the
figure shows the recorded points of both examples (1.).
In the first step of the StrokeMap generation process
these points are interpolated linearly to get a continuous
path (2.). The next step is to calculate n spatially
equidistant points for each example gesture, i.e. a pair
of adjacent points has the same length of interpolated
stroke path between them. In the visualized example the
value n is five but apart from that, n is a parameter or
setting of the recognition system that is called nArea
within this paper. In another step the calculated
equidistant points are grouped together (all first, second,

third, etc. points) to so called area points to create circle
shapes around them containing all points of a group
(4.). These circles represent the area where a gesture
stroke is expected to be after a certain distance of the
gesture has been executed. The centre of the circle is
determined by determining the average of all points of a
group while the radius is given by the distance from the
circle centre to the point of the group with the
maximum distance from the circle centre. As a result
the created circle contains all the points of the group.

Figure 1: StrokeMap Generation Process Demonstration

As a last step, slightly larger circles are calculated for
each circle representing a tolerance area, as it cannot be
expected that new and unknown executions of the same
gesture will go through the already calculated circles,
especially if only a small number of example gestures is
available. The radius of the tolerance circle is
determined by multiplying the original circle radius
with the factor tolF which is another parameter of the
recognition system. Eventually, the final StrokeMap

Proc. of the Int. Conference on Modeling and Applied Simulation 2015,
978-88-97999-59-1; Bruzzone, De Felice, Frydman, Massei, Merkuryev, Solis, Eds.

98

consists of the ordered set of circles and their tolerance
radii (5.).

3.2. Creating the CHnMM
The design of the CHnMM for a gesture is closely
connected to the StrokeMap. Each area (a circle and its
tolerance circle are considered one area) of the
StrokeMap is represented by a state of the CHnMM.
Furthermore, a start state is added, hence the set of
states is S={Start,A1,A2,…,An}. These states are
linearly connected with transitions TR={T1,T2,…,Tn}
resulting in a layout that resembles the linear topology
known from HMMs (Fink 2014). Consequently, the
elements aij where i=j+1 are mapped to the elements of
set TR, all other matrix elements are empty. A graphical
representation of this design is given in Figure 2.
Further visualized elements are the output symbols
V={A1_Hit,A1_Tol,…,A2_Hit,A2_Tol,An_Hit,An_Tol}
and their output probabilities . In this first iteration of
our new approach b(Ai_Hit) is set to 0.9 and b(Ai_Tol)
is set to 0.1 to inflict a penalty for gestures that only go
through the tolerance areas of the StrokeMap. Further
details on the symbols and their creation and meaning
are given in Section 3.3.

Figure 2: CHnMM Design for a Gesture

All the aforementioned CHnMM elements are

already determined by the connected StrokeMap.
Incidentally, the aging element of the transitions is not
relevant for this design, because there are no competing
transitions. The remaining dist element for each
transition of the CHnMM is the part of the model that
represents the temporal dynamics of the gesture. For T1
the distribution is always the same as it is deterministic
because the first symbol always occurs at the very
beginning, hence, the state change from Start to A1
happens in an instant. However, it is included in the
model to incorporate the information of the first symbol
which would be just a dummy symbol otherwise. For
the remaining transitions, the calculated area points (3.
section in Figure 1) are utilized to calculate the required
time from area Ai to Ai+1 for each training gesture,
which is possible because every area point also contains
a time value which is the linearly interpolated
timestamp. As a result, a list of sample times is created
for every transition (except T1) that can be utilized to
estimate a probability distribution. In this paper, a
uniform distribution was chosen using the minimum
and maximum of the collected samples as parameters.

This new process makes it possible to
automatically create a CHnMM-based gesture model
from a set of examples, which is the main goal of this
research.

3.3. Symbol Creation
The symbol creation process transforms the data of an
executed gesture to a symbol trace O, which is used to
classify the gesture. For the proposed system, the output
symbols are connected to the StrokeMap and the chosen
symbols (see Section 3.2) contain information about the
shape of the gesture due to this connection. In detail, a
given executed gesture is processed in an analogous
manner to the process described in Section 3.1. Thus,
area points are determined for the given single gesture
execution and checked against the corresponding areas
in the StrokeMap. If an area point lies within the inner
circle area, the symbol Ai_Hit is emitted, if it lies within
the tolerance circle it is symbol Ai_Tol and if it lies
outside of the tolerance circle the trace generation is
cancelled, as this already indicates that the gesture does
not fit the StrokeMap. This way the processing of
gestures that do not fit the gesture model shape-wise
can be cancelled early.

3.4. Gesture Authentication and Classification
In a gesture authentication scenario or to be more
precise in a gesture verification scenario, a user would
identify himself first, for example with a unique
username. The recognition system knows the gesture
model (StrokeMap and CHnMM) that was created for
this username at registration and to be authenticated, the
user needs to recreate the gesture. For the inputted
gesture the symbol creation process is conducted, and if
all area points at least lie within their respective
tolerance areas of the StrokeMap a symbol trace O is
generated as described above. If no trace could be
created the authentication fails. Otherwise, the so called
evaluation task is performed on the CHnMM using the
trace O to calculate P(O|λ), employing the Proxel
method. With an evaluation value greater than 0 the
authentication succeeds for a given gesture and
username.

For a gesture recognition scenario an executed
gesture needs to be classified as a gesture from the set
of trained or known gestures respectively. In this case,
the newly developed system in this paper creates a trace
O from the given gesture for each known gesture model.
This is different to our previous work and most HMM-
based systems, where only one trace is created. For each
trace O that could be created, which should be the case
for similarly shaped gestures only, the evaluation task is
conducted and the gesture model that generated the
highest value is used as classification result. In case that
no trace could be generated or that no evaluation value
was higher than 0, no classification result is returned
and the inputted gesture is considered to be different
from all known ones. This represents an important
difference to most existing gesture recognition systems,
where every input is classified to the best fitting gesture
even if they are shaped completely different.

Proc. of the Int. Conference on Modeling and Applied Simulation 2015,
978-88-97999-59-1; Bruzzone, De Felice, Frydman, Massei, Merkuryev, Solis, Eds.

99

4. EXPERIMENTS & RESULTS
To evaluate the abilities and quality of our system
different experiments have been conducted. These
experiments are based on two different datasets.

4.1. Description of the Datasets
Dataset1 consists of touch gesture data from ten
different persons. Each participant was told to think of a
gesture that he or she could use as a gesture password
and to perform it twenty times while attempting to use
the same position, shape and speed. In Figure 3 these
gestures are visualized by an example of each user.

Figure 3: Gestures of Dataset1

Dataset2 has been created to evaluate the ability of the
recognition system to distinguish gestures with different
execution speeds and is illustrated in Figure 4. It
consists of three different shapes namely a circle (C), a
shape formed like the letter D (D), and a triangle (T),
which are all performed counter-clockwise and starting
at the top. These shapes are performed at two different
speeds, fast (f) and slow (s) and consequently the
dataset consists of six different gestures each performed
thirty times. The similarity in shape C and D adds an
additional challenge for the recognition system.

Figure 4: Gestures of Dataset2

Both datasets have been recorded on an iPad using

the same user interface where the touch area has a
numbered grid in the background (as seen in Figure 3
and Figure 4) to aid the user in performing the gestures
at the same position. Furthermore, the touch data has
been retrieved in the browser via JavaScript instead of
an application to demonstrate that the recognition
system could be employed in the web.

To increase the expressiveness of our experiments
a cross validation approach is utilized, i.e. the dataset is
split into k subsets of the same size and each subset is
used as a test set while the k-1 remaining subsets are
used to train the recognition system. As a result, k tests
can be conducted with one dataset and the test data will
always be different from the training data.

Furthermore, a parameter variation is performed on
each experiment to analyse the behaviour of the system
for different parameter sets. The parameters and their
ranges are as follows:

• nArea – The number of areas used in the
StrokeMap (range: 10–20, step: 2)

• tolF – The tolerance factor used to determine
the size of the tolerance area (range: 1.1–2.1,
step: 0.1)

• minRadius – The minimal radius of each area
(range: 0.01–0.19, step: 0.2)

As a result, 660 different parameter sets are created
within the parameter variation. The unit used for the
minRadius parameter is related to the employed
interface and its coordinate system. The touch area is
600x600 pixels in size while the x and y values for the
point coordinates range from zero to one. Thus, a
minRadius value of 0.5 would create circles that are as
wide as the touch area (diameter of 1.0).

The recognition system and the experiments were
implemented in C# and all experiments were processed
on a usual laptop with an Intel Core i5 processor
(2410M @ 2.3GHz) and 6GB RAM.

4.2. Basic Gesture Recognition
First, a gesture recognition experiment was conducted
to see if our new recognition system is able to classify
different gestures based on training data. We conducted
a parameter variation and cross validation with four
subsets on Dataset1 and recorded the result of each
gesture classification. With four subsets of twenty
gestures, every gesture is trained with fifteen and tested
with five other gesture examples per subset, resulting in
twenty classification results per parameter set and
gesture. With 660 parameter sets, ten gestures and 20
tests for each gesture, a total of 132000 classifications
have to be processed, including 2640 times of training
the recognition system.

Figure 5: Number of Unclassified Gestures for Different
Parameter Sets (nArea=10) using Dataset1 and 4
Subsets

Proc. of the Int. Conference on Modeling and Applied Simulation 2015,
978-88-97999-59-1; Bruzzone, De Felice, Frydman, Massei, Merkuryev, Solis, Eds.

100

The results of this experiment are very promising
as they prove that our new approach does not fail the
basic task of recognizing different gestures that were
created from examples. The data reveals that not a
single gesture has been classified as another gesture, but
as Figure 5 shows there are cases where the tested
gesture could not be classified at all. This number of
unclassified gestures increases with stricter and more
intolerant parameters and peaks at 78 unclassified
gestures (of 200 executed gestures). But a nearly perfect
result with only one unclassified gesture can be
achieved by setting the parameters more tolerantly.
Consequently, a good setting for this kind of gesture set
would be nArea=10, tolF = 1.6 and minRadius = 0.17
which only had one unclassified gesture, probably
because of a badly executed gesture example, as even
more tolerant settings cannot avoid it. In Figure 6 the
results for nArea=20 are visualized which suggest that
this parameter has only little influence to the general
behaviour but slightly decreases the tolerance as it
raises the number of unclassified gestures which peak at
83 in this case.

Figure 6: Number of Unclassified Gestures for different
Parameter sets (nArea=20) using Dataset1 and four
Subsets

The processing of this experiment (without writing
results to file) was finished after 31 s, proving that the
classification and even training is very fast, because the
average classification time for a gesture is less than
0.24ms.

4.3. Temporal Gesture Recognition
For Dataset2 the same experiment approach as in the
previous experiment has been used to evaluate the
gesture recognition quality of the system if the gestures
have different execution speeds. In this case, the dataset
consists of six different gestures whose thirty examples
are divided into five subsets, resulting in a total of
118800 classifications to be processed. Consequently,
each gesture is trained with 24 training and tested with
six gesture examples for each parameter set.

The calculation of the results took 44 s, which is
around 13 seconds more than the first experiment,
although fewer classifications had to be performed. The

reason for this is probably the fact that more training
processes had to be conducted due to the greater
number of subsets. Additionally, the recognition system
presumably cannot benefit from early cancelation as
much as in the first experiment due to the similarity of
most gestures. However, it is still very fast with less
than 0.38ms per gesture on average.

For the recognition quality, the results for one
parameter set (nArea=10, tolF=1.7, minRadius=0.01)
are shown in Table 1, where a decent recognition
quality could be achieved. Only one fast triangle
execution was wrongly classified as slow and four
executed gestures were not classified, leaving 175 out
of 180 gestures that were correctly recognized. In Table
2 the same parameter set has been used but the number
of subsets was reduced to two, resulting in a smaller
training set of 15 gestures instead of 24, and a larger test
set of 15 gestures instead of 6.

Interestingly, no gesture was wrongly classified
this time, but the number of not classified gestures
increased notably to 18 which is especially due to 12
slow circle gesture executions that were not classified.
It is hard to tell why this particular gesture performed so
much worse than the others, but it could be that there is
more variation in the execution due to its length. Future
investigations are necessary to verify this.

Table 1: Experiment Results with nArea=10, tolF=1.7,
minRadius=0.01 and five Subsets

 Classified Gesture
Executed
Gesture

Cf Cs Df Ds Tf Ts None

Cf 30 - - - - - -
Cs - 29 - - - - 1
Df - - 29 - - - 1
Ds - - - 28 - - 2
Tf - - - - 29 1 -
Ts - - - - - 30 -

Table 2: Experiment Results with nArea=10, tolF=1.7,
minRadius=0.01 and two Subsets

 Classified Gesture
Executed
Gesture

Cf Cs Df Ds Tf Ts None

Cf 29 - - - - - 1
Cs - 18 - - - - 12
Df - - 29 - - - 1
Ds - - - 28 - - 2
Tf - - - - 28 - 2
Ts - - - - - 30 -

Another interesting fact is that these results could only
be achieved using a minRadius of 0.01, because higher
values were causing significantly more wrong
classifications, as seen in Table 3 where minRadius is

Proc. of the Int. Conference on Modeling and Applied Simulation 2015,
978-88-97999-59-1; Bruzzone, De Felice, Frydman, Massei, Merkuryev, Solis, Eds.

101

set to 0.05. Some fast gestures were falsely classified as
slow while however the number of not classified
gestures decreased to 0. The results suggest that the
recognition system seems to prefer the slow variants of
a gesture in some cases. The tolF parameter has a
similar influence as in the first experiment as it slightly
reduces the number of not classified gestures the higher
its value and additionally has a slight influence on the
number of false classifications, which is, however,
minor compared to the influence of minRadius.

Table 3: Experiment Results with nArea=10, tolF=1.7,
minRadius=0.05 and five subsets

 Classified Gesture
Executed
Gesture

Cf Cs Df Ds Tf Ts None

Cf 25 5 - - - - -
Cs - 30 - - - - -
Df - - 27 3 - - -
Ds - - - 30 - - -
Tf - - - - 23 7 -
Ts - - - - - 30 -

Based on this experiment, we can conclude that the
system can differentiate gestures that only differ in
execution speed, at least with a minRadius of 0.01, as
with higher values the slow gesture variants seem to be
preferred as a classification result.

4.4. Authentication
Since this paper is motivated by the idea of a gesture
authentication system, a suitable experiment for
evaluating the authentication quality has been
conducted. The approach is similar to the previous
experiments, employing parameter variation and cross
validation. For each gesture a training set is used to
create the gesture model. The test set contains genuine
gestures that should be accepted by the system as they
represent the trained gesture. Furthermore the examples
of all other gestures of the dataset are tested against the
created model to analyse whether the system correctly
rejects them. With this approach it is possible to
calculate a False Acceptance Rate (FAR) and a False
Rejection Rate (FRR) for each parameter set, gesture
and subset.

The results of this experiment for Dataset1 are
rather uninteresting as it performs analogously to the
first experiment and therefore achieves an average FAR
of 0 and an average FRR of 0.05 for the same parameter
set as in the first experiment. Presumably, the FRR is
again caused by the badly performed gesture.

The results for Dataset2 are shown in Figure 7
where five subsets were used for the cross validation.
Consequently, 3088800 gesture examples were
authenticated and 19800 times a gesture model has been
generated from 24 examples, and the process finished
after 68 s. Thus, the average time to process a gesture is
below 0.02ms. However, it has to be noted that the

majority of the authentication attempts were fraudulent
ones that benefit from early cancellation.

A quite good parameter set (nArea=10, tolF=1.5,
minRadius=0.03) achieved an average FAR of 2% and
an average FRR of 4%, which is marked with a red
circle in Figure 7. This is a very good result for a
prototype but especially the FAR value could not be
accepted in real world applications where sensitive data
and information need to be protected from unauthorized
persons. The influence of the parameters is as expected.
A higher tolerance (tolF and/or minRadius is increased)
causes improved (smaller) FRR values, because more
variants of a gesture are accepted. Simultaneously, the
FAR values get worse (increase), because also
fraudulent inputs are more likely to be accepted. The
reason that the FAR and FRR values are worse than for
Dataset1 is due to the fact that Dataset2 has gestures
that only differ in their execution speeds and their
discrimination only seems to work well for rather
intolerant parameter sets.

Figure 7: Average FAR & FRR for Dataset2 with
Different Parameter Sets (NOTE: the minRadius scale
has been reversed for a better visualization in the lower
image)

The results show that the system can recognize

different gestures by different users. The worse
performance in the second experiment is due to the

Proc. of the Int. Conference on Modeling and Applied Simulation 2015,
978-88-97999-59-1; Bruzzone, De Felice, Frydman, Massei, Merkuryev, Solis, Eds.

102

gesture examples being very simple (and similar) and
therefore not a good choice for authentication gestures.
This suggests that there should be rules for the choosing
of secure gestures, as there are for secure passwords,
such as for example a minimum length of the gesture
stroke.

5. CONCLUSION
With this paper we presented a prototype of a new
CHnMM-based gesture recognition system that unlike
our previous systems is able to automatically generate
touch gesture models from given gesture examples and
that is able to perform gesture recognition and
authentication tasks. Hence, the goal of removing the
tedious and difficult manual creation and
parameterization process for CHnMM based systems
could be achieved. The results show that the system
works very well in recognizing different gestures by
different users. Even the discrimination of gestures that
only differ in execution speed achieved respectable
results.

As a summary, the following list gives an
overview of some special properties of the new
recognition system that could be advantageous for
different application:

• Gestures are defined by examples
• The tolerance and accuracy of the recognition

system is configurable with parameters
• The training and recognition processes are

computationally very fast
• The gesture model creation and the recognition

is independent of the touch data frequency and
therefore independent of the device and
platform used (unlike HMM-based systems)

• The system does not attempt to always classify
an executed gesture, hence, only gestures that
really are represented by a gesture model are
detected

• Due to the early cancelation abilities of the
system, it has the potential to work with good
performance even on very large gesture sets

Of course, there are also some current limitations

to the system, for example the current prototype is not
translation, rotation or scaling invariant, although
translation invariance could be easily achieved by using
coordinates relative to the start of the gesture. However,
it is not clear if these invariances are desirable in
authentication scenarios.

Since the implementation of the system is only a
prototype there are still many aspects that need to be
investigated, for example:

• More sophisticated approaches to define the
size of the tolerance areas should be employed
that also consider the number of examples
(more examples  smaller tolerance area)

• The circle generation could calculate the
smallest circle enclosing all area points

• Different area shapes like a polygon could be
employed

• More specific probability distributions
depending on the use case

• Instead of a fixed number of areas, an area
point could be generated every time a certain
distance of the gesture trace is reached, to
better cope with different lengths of the
example gestures

• The output probabilities for symbols could be
adapted according to the number of example
gestures

The proposed idea of using a StrokeMap and a

CHnMM to model touch gestures, which is presented in
this paper, could be easily extended to a more general
concept where paths and trajectories are modelled that
are subject to variations in their execution and can differ
in their temporal dynamics, which is the case for many
human movements. Therefore, the presented approach
could also be used for gestures that are performed with
a stylus device or, in combination with image
recognition techniques, it could also be applied for
gesture recognition from camera-recorded movements.
The concept is also easily extendable to three
dimensional paths and trajectories (e.g. for Wiimote or
Kinect gestures) and also multi-path abilities are a
subject of future research, hence the applications could
be manifold.

REFERENCES

Bosse S., Krull C., Horton G., 2011. MODELING OF

GESTURES WITH DIFFERING EXECUTION
SPEEDS: Are Hidden non-Markovian Models
Applicable for Gesture Recognition. Proceedings
of the 10th International Conference on Modelling
& Applied Simulation (MAS). 189–194. 12th-14th
September. Rome, Italy.

Bosse S., Krull C., Horton G., 2012. SUPERVISED
TRAINING OF CONVERSIVE HIDDEN NON-
MARKOVIAN MODELS: increasing usability for
gesture recognition. The 11th International
Conference on Modeling and Applied Simulation,
106–111, Vienna

Buchholz R., 2012. Conversive Hidden non-Markovian
Models. Dissertation. Otto-von-Guericke-
Universität Magdeburg.

Chen F., Fu C., Huang C., 2003. Hand gesture
recognition using a real-time tracking method and
hidden Markov models. Image and Vision
Computing, Volume 21. 745–758

Damaraju S., Kerne A., 2008. Multitouch Gesture
Learning and Recognition System. Interface
Ecology Lab at Texas A&M University.

Dittmar T., Krull C., Horton G., 2015. A new approach
for touch gesture recognition: Conversive Hidden
non-Markovian Models. Journal of Computational
Science. Available from:

Proc. of the Int. Conference on Modeling and Applied Simulation 2015,
978-88-97999-59-1; Bruzzone, De Felice, Frydman, Massei, Merkuryev, Solis, Eds.

103

http://dx.doi.org/10.1016/j.jocs.2015.03.002
[accessed 16 March 2015

Findlater L., Wobbrock J. O., Wigdor D., 2011. Typing
on flat glass: examining ten-finger expert typing
patterns on touch surfaces. In Proceedings of the
2011 annual conference on Human factors in
computing systems. 2453–2462. New York

Fink G. A., 2014. Hidden Markov Models. In: Markov
Models for Pattern Recognition. Springer, 71–106

Hong P., Turk M., Huang T. S., 2000. Gesture modeling
and recognition using finite state machines. In
Automatic face and gesture recognition,
proceedings. fourth ieee international conference
on. 410–415

Joselli M., Clua E., 2009. gRmobile: A Framework for
Touch and Accelerometer Gesture Recognition for
Mobile Games. Games and Digital Entertainment
(SBGAMES), 2009 VIII Brazilian Symposium on.
141–150. Rio de Janeiro

Krull C., Horton G., 2009. Hidden non-Markovian
Models: Formalization and solution approaches.
Proceedings of 6th Vienna International
Conference on Mathematical Modelling. Vienna.

Lazarova-Molnar S., 2005. The Proxel-Based Method:
Formalisation, Analysis and Applications.
Dissertation. Otto-von-Guericke-Universität
Magdeburg.

Sae-Bae N., Ahmed K., Isbister K., Memon N., 2012.
Biometric-Rich Gestures: A Novel Approach to
Authentication on Multi-touch Devices.
Proceedings of the 2012 ACM annual conference
on Human Factors in Computing Systems – CHI.
New York

Shabtai A., Fledel Y., Kanonov U., Elovici Y., Dolev
S., Glezer C., 2010. Google Android: A
Comprehensive Security Assessment. IEEE
Security and Privacy 8: 35–44

Sherman M., Clark G., Yang Y., Sugrim S., Modig A.,
Lindqvist J., Oulasvirta A., Roos T., 2014. User-
generated free-form gestures for authentication:
Security and memorability. Proceedings of the
12th annual international conference on Mobile
systems, applications, and services. 176–189

Proc. of the Int. Conference on Modeling and Applied Simulation 2015,
978-88-97999-59-1; Bruzzone, De Felice, Frydman, Massei, Merkuryev, Solis, Eds.

104

