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ABSTRACT 
Mobile devices like smartphones and tablets that are 
controlled via a multi-touch interface have become 
ubiquitous. In previous work a touch gesture 
recognition system based on Conversive Hidden non-
Markovian models has been proposed that is able to 
recognize similar gestures with different execution 
speeds based on recorded examples. With this work, we 
improved the system by eliminating the major drawback 
of manually and tediously creating models for every 
gesture from recorded training data. To achieve this, the 
gesture model design has been adapted to include an 
additional structure that represents a map of all known 
gesture examples. Experiments conducted on two 
different datasets show that the new system can 
distinguish gestures with different speeds with good 
accuracy and fast detection times. Ideas to further 
improve the system are discussed and we believe that 
such a system could be the basis for a new gesture 
authentication system in the future. 
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1. INTRODUCTION 
The presence of mobile touch devices has become 
ubiquitous, especially due to the success of smartphone 
and tablet devices, which are primarily operated via the 
multi-touch interface they provide. This way of 
interaction and these device classes became popular 
with the introduction of the Apple iPhone in 2007 and 
the Apple iPad in 2010. Due to this development touch 
devices and interaction play an important role 
nowadays. Two facts that reinforce this are that 
Microsoft optimized their Windows Desktop operating 
system for touch input and Google adapted their web 
page ranking algorithms to consider the mobile (touch) 
quality of websites. 

Many internet services are accessed from these 
mobile touch devices and the user authentication almost 
always requires the user to enter his or her username 
and a password, which takes significantly more time on 
a glass surface than on a physical keyboard (Findlater 
2011), especially when it is a long and secure password 
with capital letters and special characters. An alternative 

authentication method for touch devices that has been 
mentioned already is the verification of users by touch 
gestures (Sae-Bae 2011, Sherman 2014) which have the 
potential to be far more convenient to enter by the user. 
But to our knowledge these methods do not consider 
differences in temporal dynamics of a gesture execution 
and only validate the shape, although the discrimination 
of gestures with different temporal dynamics would add 
an additional factor of entropy and therefore be more 
secure. 

With this work, a first step towards such a touch 
gesture authentication system that considers temporal 
dynamics is taken. Our previous experiments (Bosse 
2011, Dittmar 2015) have shown that Hidden non-
Markovian Models (HnMM) and their subclass 
Conversive Hidden non-Markovian Models (CHnMM) 
are able to distinguish similar gestures also by their 
temporal dynamics. But the models in these papers had 
to be manually and tediously created by an expert from 
a set of training examples, which render these 
approaches infeasible for applications in practice. A 
system that is feasible in practice would be required to 
automatically generate its gesture models from given 
example executions, which is currently not efficiently 
possible for HnMMs and CHnMMs. While it is possible 
with HMMs, these have another weakness. HMMs do 
not explicitly incorporate timing information, hence, 
they are dependent on a periodic symbol emission that 
implicitly adds this information, which is difficult to 
achieve if the system is required to support a large set of 
different touch devices. 

Consequently, we propose a new CHnMM-based 
hybrid model for touch gestures that also considers 
temporal dynamics. By introducing a new data 
structure, the StrokeMap, an automatic creation of the 
CHnMM from a set of given examples is facilitated. 
Additionally, a prototype gesture recognition and 
authentication system is created to evaluate our 
proposal. 
 
2. BACKGROUND 
In the following sections our previous work, a formal 
CHnMM definition and related work are presented to 
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put this paper into context and to increase the 
understanding of its contents. 
 
2.1. Previous Work 
In this section a short overview of previous work that 
this paper relies on is presented to explain some basic 
methods and models needed to understand this paper 
and our approach. Furthermore, a formal definition of a 
CHnMM is given at the end of this section. 

In Krull et al. (2009) an extension to the popular 
Hidden Markov Model (HMM) (e.g. used in speech-, 
gesture- and handwriting recognition (Fink 2014)), has 
been presented: the so-called Hidden non-Markovian 
models that are more powerful regarding their 
modelling capabilities. For example, they incorporate 
arbitrary distributions for state sojourn times instead of 
only geometric distributions like HMMs do implicitly 
by utilizing fixed probabilities and a fixed time step for 
state changes. Due to their complex modelling 
capabilities the solution algorithms of HnMMs are 
complicated and computationally very demanding and 
that is why the subclass of CHnMMs was defined and 
thoroughly analysed by Buchholz (2012) in his 
dissertation. This subclass only slightly limits the 
modelling capabilities of HnMMs by requiring an 
output symbol for every state change, but this small 
change allows much more efficient solution algorithms. 
These algorithms (one is utilized in this paper) employ 
the Proxel method, which is not further explained in this 
paper, but the dissertation by Lazarova-Molnar (2005) 
covers this method thoroughly. 

In 2011, Bosse et al. (2011) successfully showed 
that HnMMs can be used to create a Wiimote gesture 
recognition system that is also able to distinguish 
between similar gestures with different execution 
speeds. Similarly, Dittmar et al. (2015) utilized 
CHnMMs to create a touch gesture recognition system 
for a multi-touch tabletop, and showed in experiments 
the ability of the recognition system to distinguish touch 
gestures by their temporal dynamics. 

In both experiments the systems have been 
compared to an HMM-based recognition system. While 
these performed slightly worse than the HnMM- and 
CHnMM-system, they also were able to distinguish the 
gestures with different execution speeds in most cases, 
even though HMMs do not incorporate explicit timing 
information. The ability comes from the fact that 
implicit timing information is provided due to the 
periodic emission of symbols that is used for HMM-
based systems. 

Another problem of both approaches is the fact that 
the models for the gestures were created and 
parameterized manually. A circumstance that renders 
the system infeasible in practice, because no user would 
be able to create the models on their own and even an 
expert needs a long time to create it. With the new 
approach presented in this paper we especially want to 
eliminate this problem by trying to employ a supervised 
learning approach as proposed by Bosse (2012) for 
CHnMM-based gesture recognition systems. 

2.2. CHnMM – Formal Definition 
A CHnMM contains the following elements that are 
similar to the elements of HMMs: 
 

• a set of states S of length N 
• a set of output symbols V of length M 
• an initial probability vector Π=(π1,…,πN) 
• an NxN matrix A containing the state change 

behaviour, but with more complex elements 
aij. 

 
Additionally, a CHnMM contains the set 
TR={tr1,tr2,…,trK} of K transitions that define the 
model behaviour. Each transition tri is a tuple 
consisting of the following three elements: 
 

• dist represents the continuous probability 
distribution that specifies the duration of the 
transition which causes a discrete state change 
on completion. 

• b(v) is a function that returns the output 
probability of symbol v when the transition 
causes a state change. It is the semantic 
equivalent of the output probabilities in B for 
HMMs, but associated to transitions for 
CHnMMs instead of states as in HMMs. 

• aging is a boolean value that determines if the 
time that the transition has been active is saved 
(aging=true) or reset to 0 (aging=false) if 
there is a state change deactivating it caused by 
another transition, i.e. if the current active 
transition is interrupted by the triggering of 
another one. 

 
All elements aij in A are either elements of TR or empty 
if no transition between states si and sj exist. A 
CHnMM model λ is fully defined as a tuple 
λ=(S,V,A,TR,Π) that contains all previously described 
elements. 

In addition to the output symbol ot of the 
observations, CHnMMs have a time property pt, 
containing the point in time of symbol emission. This 
valuable time information is not needed for HMMs 
which only get it implicitly by a periodic symbol 
emission. An ordered sequence of these observations is 
called a trace O. The path Q also contains a sequence of 
states qt with associated time stamps. 
 
2.3. Related Work 
The idea to use gestures for authentication is not 
completely new. A basic and widespread approach that 
is similar is the so-called “Pattern Lock” used in the 
Android mobile operating system (Shabtai 2010). 
Further research that focuses on authentication for 
unlocking a certain device includes Sae-Bae et al. 
(2012) and Sherman et al. (2014), but none of them 
considers temporal dynamics. 

The application of HMMs for gesture recognition 
in general is very common but quite rare for touch 
gesture recognition systems. Two systems that employ 
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HMMs to learn touch gestures by example are presented 
by Damaraju et al. (2008) and Joselli et al. (2009). The 
first system is able to learn and recognise multi-touch 
gestures performed on a tabletop, while the latter learns 
and detects single stroke gestures on mobile touch 
devices. But in both cases different execution speeds are 
not tested or even considered. 

To our knowledge the recognition of similar 
gestures that differ only in execution speeds has never 
been further investigated (except in our previous work), 
although there exist many HMM-based gesture 
recognition systems that incorporate temporal features 
like the velocity into the output symbols, for example 
(Chen 2003). On the contrary, most papers concentrate 
on tolerating the time variances in gesture executions, 
for example (Hong 2000), and do not try to exploit 
them. 
 
3. THE MODEL 
Our new method employs a single model per gesture, 
which is also the case for most HMM-based gesture 
recognition systems (for example (Damaraju 2008)). 
Unlike our previous work (Dittmar 2015), we do not 
solely use a CHnMM to represent a gesture but combine 
it with what we call a StrokeMap, a structure that holds 
all the information about the shape of a gesture stroke. 
The creation of this structure based on example gestures 
is explained in detail in the following section. 

The reason for introducing this new structure is to 
enable supervised learning by separating a gesture into 
known and clearly defined sections. It is also driven by 
the idea that for a gesture authentication system mainly 
the shape and the temporal dynamics of a gesture are 
relevant and the new structure helps to add valuable 
information about the shape to the output symbols. 

The CHnMM represents the temporal dynamics of 
the gesture and is explained in Section 3.2 after the 
StrokeMap. 
 
3.1. Creating the StrokeMap 
As already mentioned and as the name suggests the 
StrokeMap holds all the information about the shape of 
a gesture stroke in the form of circular areas 
representing expected locations of successive points of 
the trace. It is created from all training examples of the 
gesture. 

In Figure 1 all steps involved in creating a 
StrokeMap from training data are visualized with two 
example trials used as training data. The first part of the 
figure shows the recorded points of both examples (1.). 
In the first step of the StrokeMap generation process 
these points are interpolated linearly to get a continuous 
path (2.). The next step is to calculate n spatially 
equidistant points for each example gesture, i.e. a pair 
of adjacent points has the same length of interpolated 
stroke path between them. In the visualized example the 
value n is five but apart from that, n is a parameter or 
setting of the recognition system that is called nArea 
within this paper. In another step the calculated 
equidistant points are grouped together (all first, second, 

third, etc. points) to so called area points to create circle 
shapes around them containing all points of a group 
(4.). These circles represent the area where a gesture 
stroke is expected to be after a certain distance of the 
gesture has been executed. The centre of the circle is 
determined by determining the average of all points of a 
group while the radius is given by the distance from the 
circle centre to the point of the group with the 
maximum distance from the circle centre. As a result 
the created circle contains all the points of the group. 
 

 
Figure 1: StrokeMap Generation Process Demonstration 
 
As a last step, slightly larger circles are calculated for 
each circle representing a tolerance area, as it cannot be 
expected that new and unknown executions of the same 
gesture will go through the already calculated circles, 
especially if only a small number of example gestures is 
available. The radius of the tolerance circle is 
determined by multiplying the original circle radius 
with the factor tolF which is another parameter of the 
recognition system. Eventually, the final StrokeMap 
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consists of the ordered set of circles and their tolerance 
radii (5.). 
 
3.2. Creating the CHnMM 
The design of the CHnMM for a gesture is closely 
connected to the StrokeMap. Each area (a circle and its 
tolerance circle are considered one area) of the 
StrokeMap is represented by a state of the CHnMM. 
Furthermore, a start state is added, hence the set of 
states is S={Start,A1,A2,…,An}. These states are 
linearly connected with transitions TR={T1,T2,…,Tn} 
resulting in a layout that resembles the linear topology 
known from HMMs (Fink 2014). Consequently, the 
elements aij where i=j+1 are mapped to the elements of 
set TR, all other matrix elements are empty. A graphical 
representation of this design is given in Figure 2. 
Further visualized elements are the output symbols 
V={A1_Hit,A1_Tol,…,A2_Hit,A2_Tol,An_Hit,An_Tol} 
and their output probabilities . In this first iteration of 
our new approach b(Ai_Hit) is set to 0.9 and b(Ai_Tol) 
is set to 0.1 to inflict a penalty for gestures that only go 
through the tolerance areas of the StrokeMap. Further 
details on the symbols and their creation and meaning 
are given in Section 3.3. 
 

 
Figure 2: CHnMM Design for a Gesture 

 
All the aforementioned CHnMM elements are 

already determined by the connected StrokeMap. 
Incidentally, the aging element of the transitions is not 
relevant for this design, because there are no competing 
transitions. The remaining dist element for each 
transition of the CHnMM is the part of the model that 
represents the temporal dynamics of the gesture. For T1 
the distribution is always the same as it is deterministic 
because the first symbol always occurs at the very 
beginning, hence, the state change from Start to A1 
happens in an instant. However, it is included in the 
model to incorporate the information of the first symbol 
which would be just a dummy symbol otherwise. For 
the remaining transitions, the calculated area points (3. 
section in Figure 1) are utilized to calculate the required 
time from area Ai to Ai+1 for each training gesture, 
which is possible because every area point also contains 
a time value which is the linearly interpolated 
timestamp. As a result, a list of sample times is created 
for every transition (except T1) that can be utilized to 
estimate a probability distribution. In this paper, a 
uniform distribution was chosen using the minimum 
and maximum of the collected samples as parameters. 

This new process makes it possible to 
automatically create a CHnMM-based gesture model 
from a set of examples, which is the main goal of this 
research. 
 

3.3. Symbol Creation 
The symbol creation process transforms the data of an 
executed gesture to a symbol trace O, which is used to 
classify the gesture. For the proposed system, the output 
symbols are connected to the StrokeMap and the chosen 
symbols (see Section 3.2) contain information about the 
shape of the gesture due to this connection. In detail, a 
given executed gesture is processed in an analogous 
manner to the process described in Section 3.1. Thus, 
area points are determined for the given single gesture 
execution and checked against the corresponding areas 
in the StrokeMap. If an area point lies within the inner 
circle area, the symbol Ai_Hit is emitted, if it lies within 
the tolerance circle it is symbol Ai_Tol and if it lies 
outside of the tolerance circle the trace generation is 
cancelled, as this already indicates that the gesture does 
not fit the StrokeMap. This way the processing of 
gestures that do not fit the gesture model shape-wise 
can be cancelled early. 
 
3.4. Gesture Authentication and Classification 
In a gesture authentication scenario or to be more 
precise in a gesture verification scenario, a user would 
identify himself first, for example with a unique 
username. The recognition system knows the gesture 
model (StrokeMap and CHnMM) that was created for 
this username at registration and to be authenticated, the 
user needs to recreate the gesture. For the inputted 
gesture the symbol creation process is conducted, and if 
all area points at least lie within their respective 
tolerance areas of the StrokeMap a symbol trace O is 
generated as described above. If no trace could be 
created the authentication fails. Otherwise, the so called 
evaluation task is performed on the CHnMM using the 
trace O to calculate P(O|λ), employing the Proxel 
method. With an evaluation value greater than 0 the 
authentication succeeds for a given gesture and 
username. 

For a gesture recognition scenario an executed 
gesture needs to be classified as a gesture from the set 
of trained or known gestures respectively. In this case, 
the newly developed system in this paper creates a trace 
O from the given gesture for each known gesture model. 
This is different to our previous work and most HMM-
based systems, where only one trace is created. For each 
trace O that could be created, which should be the case 
for similarly shaped gestures only, the evaluation task is 
conducted and the gesture model that generated the 
highest value is used as classification result. In case that 
no trace could be generated or that no evaluation value 
was higher than 0, no classification result is returned 
and the inputted gesture is considered to be different 
from all known ones. This represents an important 
difference to most existing gesture recognition systems, 
where every input is classified to the best fitting gesture 
even if they are shaped completely different. 
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4. EXPERIMENTS & RESULTS 
To evaluate the abilities and quality of our system 
different experiments have been conducted. These 
experiments are based on two different datasets. 

4.1. Description of the Datasets 
Dataset1 consists of touch gesture data from ten 
different persons. Each participant was told to think of a 
gesture that he or she could use as a gesture password 
and to perform it twenty times while attempting to use 
the same position, shape and speed. In Figure 3 these 
gestures are visualized by an example of each user. 
 

 
Figure 3: Gestures of Dataset1 

 
Dataset2 has been created to evaluate the ability of the 
recognition system to distinguish gestures with different 
execution speeds and is illustrated in Figure 4. It 
consists of three different shapes namely a circle (C), a 
shape formed like the letter D (D), and a triangle (T), 
which are all performed counter-clockwise and starting 
at the top. These shapes are performed at two different 
speeds, fast (f) and slow (s) and consequently the 
dataset consists of six different gestures each performed 
thirty times. The similarity in shape C and D adds an 
additional challenge for the recognition system. 
 

 
Figure 4: Gestures of Dataset2 

 
Both datasets have been recorded on an iPad using 

the same user interface where the touch area has a 
numbered grid in the background (as seen in Figure 3 
and Figure 4) to aid the user in performing the gestures 
at the same position. Furthermore, the touch data has 
been retrieved in the browser via JavaScript instead of 
an application to demonstrate that the recognition 
system could be employed in the web. 

To increase the expressiveness of our experiments 
a cross validation approach is utilized, i.e. the dataset is 
split into k subsets of the same size and each subset is 
used as a test set while the k-1 remaining subsets are 
used to train the recognition system. As a result, k tests 
can be conducted with one dataset and the test data will 
always be different from the training data. 

Furthermore, a parameter variation is performed on 
each experiment to analyse the behaviour of the system 
for different parameter sets. The parameters and their 
ranges are as follows: 
 

• nArea – The number of areas used in the 
StrokeMap (range: 10–20, step: 2) 

• tolF – The tolerance factor used to determine 
the size of the tolerance area (range: 1.1–2.1, 
step: 0.1) 

• minRadius – The minimal radius of each area 
(range: 0.01–0.19, step: 0.2) 

 
As a result, 660 different parameter sets are created 
within the parameter variation. The unit used for the 
minRadius parameter is related to the employed 
interface and its coordinate system. The touch area is 
600x600 pixels in size while the x and y values for the 
point coordinates range from zero to one. Thus, a 
minRadius value of 0.5 would create circles that are as 
wide as the touch area (diameter of 1.0).  

The recognition system and the experiments were 
implemented in C# and all experiments were processed 
on a usual laptop with an Intel Core i5 processor 
(2410M @ 2.3GHz) and 6GB RAM. 
 
4.2. Basic Gesture Recognition 
First, a gesture recognition experiment was conducted 
to see if our new recognition system is able to classify 
different gestures based on training data. We conducted 
a parameter variation and cross validation with four 
subsets on Dataset1 and recorded the result of each 
gesture classification. With four subsets of twenty 
gestures, every gesture is trained with fifteen and tested 
with five other gesture examples per subset, resulting in 
twenty classification results per parameter set and 
gesture. With 660 parameter sets, ten gestures and 20 
tests for each gesture, a total of 132000 classifications 
have to be processed, including 2640 times of training 
the recognition system. 
 

 
Figure 5: Number of Unclassified Gestures for Different 
Parameter Sets (nArea=10) using Dataset1 and 4 
Subsets 
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The results of this experiment are very promising 
as they prove that our new approach does not fail the 
basic task of recognizing different gestures that were 
created from examples. The data reveals that not a 
single gesture has been classified as another gesture, but 
as Figure 5 shows there are cases where the tested 
gesture could not be classified at all. This number of 
unclassified gestures increases with stricter and more 
intolerant parameters and peaks at 78 unclassified 
gestures (of 200 executed gestures). But a nearly perfect 
result with only one unclassified gesture can be 
achieved by setting the parameters more tolerantly. 
Consequently, a good setting for this kind of gesture set 
would be nArea=10, tolF = 1.6 and minRadius = 0.17 
which only had one unclassified gesture, probably 
because of a badly executed gesture example, as even 
more tolerant settings cannot avoid it. In Figure 6 the 
results for nArea=20 are visualized which suggest that 
this parameter has only little influence to the general 
behaviour but slightly decreases the tolerance as it 
raises the number of unclassified gestures which peak at 
83 in this case. 
 

 
Figure 6: Number of Unclassified Gestures for different 
Parameter sets (nArea=20) using Dataset1 and four 
Subsets 
 

The processing of this experiment (without writing 
results to file) was finished after 31 s, proving that the 
classification and even training is very fast, because the 
average classification time for a gesture is less than 
0.24ms. 
 
4.3. Temporal Gesture Recognition 
For Dataset2 the same experiment approach as in the 
previous experiment has been used to evaluate the 
gesture recognition quality of the system if the gestures 
have different execution speeds. In this case, the dataset 
consists of six different gestures whose thirty examples 
are divided into five subsets, resulting in a total of 
118800 classifications to be processed. Consequently, 
each gesture is trained with 24 training and tested with 
six gesture examples for each parameter set. 

The calculation of the results took 44 s, which is 
around 13 seconds more than the first experiment, 
although fewer classifications had to be performed. The 

reason for this is probably the fact that more training 
processes had to be conducted due to the greater 
number of subsets. Additionally, the recognition system 
presumably cannot benefit from early cancelation as 
much as in the first experiment due to the similarity of 
most gestures. However, it is still very fast with less 
than 0.38ms per gesture on average. 

For the recognition quality, the results for one 
parameter set (nArea=10, tolF=1.7, minRadius=0.01) 
are shown in Table 1, where a decent recognition 
quality could be achieved. Only one fast triangle 
execution was wrongly classified as slow and four 
executed gestures were not classified, leaving 175 out 
of 180 gestures that were correctly recognized. In Table 
2 the same parameter set has been used but the number 
of subsets was reduced to two, resulting in a smaller 
training set of 15 gestures instead of 24, and a larger test 
set of 15 gestures instead of 6. 

Interestingly, no gesture was wrongly classified 
this time, but the number of not classified gestures 
increased notably to 18 which is especially due to 12 
slow circle gesture executions that were not classified. 
It is hard to tell why this particular gesture performed so 
much worse than the others, but it could be that there is 
more variation in the execution due to its length. Future 
investigations are necessary to verify this. 
 
Table 1: Experiment Results with nArea=10, tolF=1.7, 
minRadius=0.01 and five Subsets 

 Classified Gesture 
Executed 
Gesture 

Cf Cs Df Ds Tf Ts None 

Cf 30 - - - - - - 
Cs - 29 - - - - 1 
Df - - 29 - - - 1 
Ds - - - 28 - - 2 
Tf - - - - 29 1 - 
Ts - - - - - 30 - 

 
Table 2: Experiment Results with nArea=10, tolF=1.7, 
minRadius=0.01 and two Subsets 

 Classified Gesture 
Executed 
Gesture 

Cf Cs Df Ds Tf Ts None 

Cf 29 - - - - - 1 
Cs - 18 - - - - 12 
Df - - 29 - - - 1 
Ds - - - 28 - - 2 
Tf - - - - 28 - 2 
Ts - - - - - 30 - 

 
Another interesting fact is that these results could only 
be achieved using a minRadius of 0.01, because higher 
values were causing significantly more wrong 
classifications, as seen in Table 3 where minRadius is 
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set to 0.05. Some fast gestures were falsely classified as 
slow while however the number of not classified 
gestures decreased to 0. The results suggest that the 
recognition system seems to prefer the slow variants of 
a gesture in some cases. The tolF parameter has a 
similar influence as in the first experiment as it slightly 
reduces the number of not classified gestures the higher 
its value and additionally has a slight influence on the 
number of false classifications, which is, however, 
minor compared to the influence of minRadius. 
 
Table 3: Experiment Results with nArea=10, tolF=1.7, 
minRadius=0.05 and five subsets 

 Classified Gesture 
Executed 
Gesture 

Cf Cs Df Ds Tf Ts None 

Cf 25 5 - - - - - 
Cs - 30 - - - - - 
Df - - 27 3 - - - 
Ds - - - 30 - - - 
Tf - - - - 23 7 - 
Ts - - - - - 30 - 

 
Based on this experiment, we can conclude that the 
system can differentiate gestures that only differ in 
execution speed, at least with a minRadius of 0.01, as 
with higher values the slow gesture variants seem to be 
preferred as a classification result. 
 
4.4. Authentication 
Since this paper is motivated by the idea of a gesture 
authentication system, a suitable experiment for 
evaluating the authentication quality has been 
conducted. The approach is similar to the previous 
experiments, employing parameter variation and cross 
validation. For each gesture a training set is used to 
create the gesture model. The test set contains genuine 
gestures that should be accepted by the system as they 
represent the trained gesture. Furthermore the examples 
of all other gestures of the dataset are tested against the 
created model to analyse whether the system correctly 
rejects them. With this approach it is possible to 
calculate a False Acceptance Rate (FAR) and a False 
Rejection Rate (FRR) for each parameter set, gesture 
and subset. 

The results of this experiment for Dataset1 are 
rather uninteresting as it performs analogously to the 
first experiment and therefore achieves an average FAR 
of 0 and an average FRR of 0.05 for the same parameter 
set as in the first experiment. Presumably, the FRR is 
again caused by the badly performed gesture. 

The results for Dataset2 are shown in Figure 7 
where five subsets were used for the cross validation. 
Consequently, 3088800 gesture examples were 
authenticated and 19800 times a gesture model has been 
generated from 24 examples, and the process finished 
after 68 s. Thus, the average time to process a gesture is 
below 0.02ms. However, it has to be noted that the 

majority of the authentication attempts were fraudulent 
ones that benefit from early cancellation. 

A quite good parameter set (nArea=10, tolF=1.5, 
minRadius=0.03) achieved an average FAR of 2% and 
an average FRR of 4%, which is marked with a red 
circle in Figure 7. This is a very good result for a 
prototype but especially the FAR value could not be 
accepted in real world applications where sensitive data 
and information need to be protected from unauthorized 
persons. The influence of the parameters is as expected. 
A higher tolerance (tolF and/or minRadius is increased) 
causes improved (smaller) FRR values, because more 
variants of a gesture are accepted. Simultaneously, the 
FAR values get worse (increase), because also 
fraudulent inputs are more likely to be accepted. The 
reason that the FAR and FRR values are worse than for 
Dataset1 is due to the fact that Dataset2 has gestures 
that only differ in their execution speeds and their 
discrimination only seems to work well for rather 
intolerant parameter sets. 
 

 
Figure 7: Average FAR & FRR for Dataset2 with 
Different Parameter Sets (NOTE: the minRadius scale 
has been reversed for a better visualization in the lower 
image) 

 
The results show that the system can recognize 

different gestures by different users. The worse 
performance in the second experiment is due to the 
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gesture examples being very simple (and similar) and 
therefore not a good choice for authentication gestures. 
This suggests that there should be rules for the choosing 
of secure gestures, as there are for secure passwords, 
such as for example a minimum length of the gesture 
stroke. 
 
5. CONCLUSION 
With this paper we presented a prototype of a new 
CHnMM-based gesture recognition system that unlike 
our previous systems is able to automatically generate 
touch gesture models from given gesture examples and 
that is able to perform gesture recognition and 
authentication tasks. Hence, the goal of removing the 
tedious and difficult manual creation and 
parameterization process for CHnMM based systems 
could be achieved. The results show that the system 
works very well in recognizing different gestures by 
different users. Even the discrimination of gestures that 
only differ in execution speed achieved respectable 
results. 

As a summary, the following list gives an 
overview of some special properties of the new 
recognition system that could be advantageous for 
different application: 
 

• Gestures are defined by examples 
• The tolerance and accuracy of the recognition 

system is configurable with parameters 
• The training and recognition processes are 

computationally very fast 
• The gesture model creation and the recognition 

is independent of the touch data frequency and 
therefore independent of the device and 
platform used (unlike HMM-based systems) 

• The system does not attempt to always classify 
an executed gesture, hence, only gestures that 
really are represented by a gesture model are 
detected 

• Due to the early cancelation abilities of the 
system, it has the potential to work with good 
performance even on very large gesture sets 

 
Of course, there are also some current limitations 

to the system, for example the current prototype is not 
translation, rotation or scaling invariant, although 
translation invariance could be easily achieved by using 
coordinates relative to the start of the gesture. However, 
it is not clear if these invariances are desirable in 
authentication scenarios. 

Since the implementation of the system is only a 
prototype there are still many aspects that need to be 
investigated, for example: 
 

• More sophisticated approaches to define the 
size of the tolerance areas should be employed 
that also consider the number of examples 
(more examples  smaller tolerance area) 

• The circle generation could calculate the 
smallest circle enclosing all area points 

• Different area shapes like a polygon could be 
employed 

• More specific probability distributions 
depending on the use case 

• Instead of a fixed number of areas, an area 
point could be generated every time a certain 
distance of the gesture trace is reached, to 
better cope with different lengths of the 
example gestures 

• The output probabilities for symbols could be 
adapted according to the number of example 
gestures 

 
The proposed idea of using a StrokeMap and a 

CHnMM to model touch gestures, which is presented in 
this paper, could be easily extended to a more general 
concept where paths and trajectories are modelled that 
are subject to variations in their execution and can differ 
in their temporal dynamics, which is the case for many 
human movements. Therefore, the presented approach 
could also be used for gestures that are performed with 
a stylus device or, in combination with image 
recognition techniques, it could also be applied for 
gesture recognition from camera-recorded movements. 
The concept is also easily extendable to three 
dimensional paths and trajectories (e.g. for Wiimote or 
Kinect gestures) and also multi-path abilities are a 
subject of future research, hence the applications could 
be manifold. 
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