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ABSTRACT 

This paper is part of a larger project, which applies a social 

medicine approach to complex Aboriginal health issues 

in Northern Australia.  A major component of this project 

is the c o n s t r u c t i o n  a n d  use of multiplex social 

networks, both with Aboriginal communities and a s soc ia t ed  

health care worker networks. In an attempt to overcome 

difficulties with language diversity and poor survey response, 

a mobile computer game is under development for determination 

of the social networks. This paper discusses simulations of the 

game developed to optimize the server-side processing required 

to elucidate the network. 
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1. INTRODUCTION 

There is increasing interest in the use of social network 

analysis (SNA) to understand patterns of interactions that 

may provide for more efficient health delivery systems.  

This is particularly so when practices and 

communication of prevention can be used by the 

community in conjunction with medical advice and 

treatments (Kothari, Hamel, MacDonald, Meyer, Cohen, 

& Bonnenfant, 2014; Shakya, Christakis, & Fowler, 

2014).  As these papers show, the use of SNA is also 

useful in the design and delivery and health programs in 

developing countries, where existing medical 

infrastructure and public health practices may be lacking.  

A similar issue can also exist in developed economies 

like Australia, where populations have different levels of 

access to medical services and may lack sufficient social 

networks of health prevention and information.  An 

example discussed in this paper is Aboriginal health in 

Northern Australia. 

 

There are several aspects of Aboriginal health, where poor 

outcomes may necessar i ly  are be related to the lack of 

medical technology, drugs or treatment protocols.  They m a y  

arise instead through issues of social medicine, where 

communication shortcomings frustrate prevention and treatment 

goals (see for example Preston-Thomas, Fagan, Nakata, & 

Anderson, 2013).  In this project we focus on social networks, 

specifically network resilience, merging the latest theories 

in social network analysis and computer simulation with 

qualitative research and a leadership-development training 

program.   

Network resilience is the capacity of a network to recover from 

threats and shocks.  However, in the health domain, network 

resilience may have effects that can be positive and/or negative: 
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• It is beneficial when it helps a community to 

support its members, such as in providing food and 

assistance to the sick, or emotional support to those 

who have suffered loss or mental health 

difficulties. 

• It may be harmful if it impairs the reduction of 

social contact needed to control a dangerous 

infection (for example, the Ebola epidemic in 

Africa in 2014) or the drug resistant forms of 

tuberculosis (Andre, Ijaz, Tillinghast, Krebs, Diem, 

Metchock, Crisp, & McElroy, 2007). 

• It may also be harmful if in that it may obstruct 

leadership and community empowerment to break 

adverse social practices/norms (Carsten, Uhl-Bien, West, 

Patera, & McGregor, 2010). 

Young & Burke (2009)  show that social norms may emerge which 

result in some people receiving adverse medical treatment: 

 

...a 75 year old heart patient is more likely to 

receive an invasive treatment either coronary 

angioplasty or bypass surgery in Tallahassee, a city 

with a relatively high pro- portion of younger 

cardiac patients (62 and under), than in Fort 

Lauderdale, a city with a comparatively older 

patient population.  Since surgery becomes riskier 

with age, 75 year olds in Tallahassee are likely to 

have worse outcomes than 75 year olds in Fort 

Lauderdale, even with no differences in the average 

competence of physicians or other quality factors 

across the locations. 
 

Thus social norms, which can be deleterious, are difficult 

to break, and ways of bringing about a tipping point  to 

another more productive norm are eagerly sought (Young & Burke, 

2009)    .  For the spread of epidemics, such as H1N1 Spanish 

Flu, computer simulation has now reached the level of 

modelling every person in a community, 280 million agents 

in the case of the Los Alamos Epicast model for the USA 

(Germann, Kadau, Longini, & Macken, 2006).  We aim 

to construct similar models to those aimed at epidemic 

threats, such as Extensive Drug Resistant TB, for which 

the methodologies are both well established.  Gardy, Johnston, 

Sui, Cook, Shah, Brodkin, Rempel, Moore, Zhao, & Holt (2011) 

concluded that had Social Network Analysis (SNA) been 

conducted in association with historical data screening, TB 

outbreaks could have been prevented. 

 

The project aims to investigate the important relationship 

(for an example see Fuller, Hermeston, Passey, Fallon, & 

Muyambi, 2012) between understanding the complexity of the 

networks within communities and Aboriginal Community 

Health (ACH) Centers and their associated care workers 

(ACHWs) and to elucidate thus understanding that highlight the 

flow of not pathogens, but ideas, information and influence, 

along social networks. It targets widespread health problems, 

such as hepatitis B (increases liver cancer risk), scabies (also 

increases liver cancer risk), renal failure and cardio-

rheumatology.  In all these cases the drugs and treatments are 

well established and cheap, subsidized to make them easily 

accessible. (Preston-Thomas et  a l . ,  2013)  for 

example, highlight the need for “culturally appropriate patient 

education resources” for chronic hepatitis B. Figure 1 shows 

the overall project framework. 

 

 
Figure 1: Project Structure 

 

An essential requirement of the project is to ascertain the 

networks links between community members, ACHWs 

(Associated Health Care Workers) and the cross links between 

the two groups. A new mobile phone game is under 

development for building these networks, and this paper 

describes a simulation model for how it does so. 

 

2. PROJECT BACKGROUND 

 

For infection diseases, such as pandemic flu, and currently 

Ebola,  simulation plays a major role in predicting spread of 

the disease and testing intervention strategies, in the Epicast 

model (Germann et al., 2006) with an computer agent 

for every person in the United States. The network of 

connections among individuals, through schools, shops, public 

transport are explicitly represented to get as accurate estimate 

as possible of the infection trajectory. 

 

2.1. Social network analysis for health 

 

In chronic diseases networks are equally important, but 

they are social networks, where the infective agents are 

not the pathogens, but information and influence.   From 

the early days of network thinking, when Watts (1999) 

introduced small world networks to explain the six 

degrees of separation phenomenon, through the rapid 

growth in understanding scale free networks, introduced 

by (Barabási & Frangos, 2014) to the exponential 

random graphs (Pattison & Robins, 2002) which underlie 

many social phenomena, the structure of networks has 

emerged as a key driver of social dynamics. 

 

Social networks focus on the relational and interactional 

ties between units (Wasserman, 1994). Christakis & 

Fowler (2009) cite numerous examples of network 

effects in medicine, such as the influence of friends of 

friends of friends (three degrees of separation) on 

obesity. Centrality is the key concept from graph theory 

needed in SNA. From the node level point of view can 

be measured in terms of degree (the number of ties to and 

from an actor). Structurally, centrality is measured in 

terms of closeness (the extent to which an actor is close 

to all others in the network) and betweenness (the extent 

to which an actor lies in the shortest path to all others in 
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the network).  So, it is implied that degree centrality 

shows the strength of actors’ communication activity 

while betweenness centrality indicates an actor’s control 

of communication (power and influence) and closeness 

centrality shows actors the minimum time and efficiency 

for communicating with other actors in the network (or 

communication efficiency, see Chung & Hossain, 2010). 

Granovetter (1973) introduced the idea of the strength of 

weak ties, as the first influential study on the importance 

of relations of actors in social networks, arguing that 

individuals obtain new and novel information from weak 

ties rather than from strong ties within the individual’s 

group structure.  If i has a strong tie with j and k, then j 

and k themselves are likely to become friends (the 

homophilly principle). Thus, strong ties will tend to 

cluster into cliques. The bridge ij in Figure 2 is a weak 

tie that brings novel information to each group. 

 

 
 

                             Figure 2: Weak vs.Strong Ties 

 

As an individual’s personal network grows over time, the 

extent of information coming from closely knit clusters 

ends to become redundant (Chung & Hossain, 2010). 

Actors are in a better position to benefit from interactions 

with others, who are not well connected themselves or 

are not well organized.  Based on this idea Burt (2009) 

introduced the idea of structural holes. Holes in the 

network refers to the absence of ties that would otherwise 

connect unconnected clusters together. For instance, as it 

is shown in Figure 3, the network on the left contains 

many structural holes while the one on the right contains 

few. In other words, the lack of connections among 

unconnected nodes in a network form the holes in the 

structure.  Individuals who bridge these holes attain an 

advantageous position that yields information and 

control benefits (Chung & Hossain, 2010). 

 

 
 

Figure 3: Two ego networks with different structures 

 

Network effects on an individual’s ability to perform better 

have been documented in studies on community health, 

communications, sociology and social psychology 

(Coleman, 1988; Guetzkow & Simon, 1955; 

Leavitt, 1951) and actors with a dense social network 

perform better (Oh, Chung, & Labianca, 2004; 

Reagans & McEvily, 2003). Furthermore, actors who are 

rich in structural holes (connections to social clusters or groups 

who are themselves not well connected) are better situated in 

their social network to obtain, control and broker 

information (Burt, 2009) . In the field of medical 

innovation, Social Network Analysis (SNA) proved useful for 

understanding the diffusion of innovation among physicians 

(Coleman, Katz, & Menzel, 1957).  It also proved fruitful for 

understanding the social processes which intervened during the 

initial trials of the drug gammanym, from the time when it was 

adopted by a few local innovators to the time when it was 

ultimately used by the entire medical community. 

 

2.2. Australian Aboriginal health issues 

 

Several major health problems within Aboriginal 

communities are essentially Non-Communicable 

Diseases (NCDs), such as renal failure and liver cancer. The 

primary causal factors include pathogens for which there 

are straightforward treatments and vaccines. The solutions lie 

therefore not in conventional but in social medicine, which 

involves lifestyle choices and effective communication and 

influence.  Thus understanding social networks is essential to 

addressing questions in social medicine. 

In network epidemiology studies traditional SNA has been 

widely used to understand mental health (Perrucci & Targ, 

1982), social network and health status (Seeman, Seeman, & 

Sayles, 1985)  and the spread of HIV disease (Morris, 1993). Little 

is known about how the social immunity and resilience which 

is embedded in social networks of Aboriginal Communities. 

 

Recent developments in network theory surround multiplex 

networks (Bianconi & Dorogovtsev, 2014).  In such a 

network, there is one set of nodes (usually people, but could 

include animals or other agents), but with multiple layers, 

each layer connected by a different mechanism.   So, 

for example, a community may have school, work and sport 

networks, each connecting its members in different ways. 

Such multiplex networks have quite different properties 

compared to single layer networks, and are often more difficult 

to break apart. 

There are five levels of the multiplex network, each targeted 

by a separate mission of the game: 

• The kinship network of family ties 

• The peer network of friends of similar age and 

occupation, such as teenage groups; 

• The cultural / community ties, spreading out 

hierarchically from the community elders. 

• The information links, which defines the trust 

network for data about health risks and treatments. 

 

There are two coupled social networks involved: the networks 

of the Aboriginal Health Care Workers; and the networks of the 

individuals within the communities themselves.  The nature of 

this coupling and the associated dynamics are significant in 

improving existing, and identifying new, interventions. Better 
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health outcomes require changing social norms. We 

propose the use of leadership training will help bring about 

change, with effects continuing beyond the lifetime of the 

project (Evans & Sinclair, 2015). 

 

Building computational models of social systems often 

hits the major difficulty of taking qualitative data from 

interviews, focus groups and other tools, and creating 

quantitative, algorithmic decision procedures to put into the 

computer model. Yet this data flow is critical to building better 

agent-based models of socio-economic systems.  Numerous 

findings, such as Preston-Thomas et al. (2013)  highlight the 

significance of communication and information dissemination 

in Aboriginal Health.  Understanding the way influence travels 

along social networks within Aboriginal communities is 

essential to formulating the most effective leadership training 

protocols.  The overarching project integrates agent-based 

computer modelling and social network analysis, underpinned 

by extensive qualitative research applied to Aboriginal 

health.  It also features the incorporation of the research 

findings into leadership training as its capstone health 

intervention. 

 

3. SIMULATION TO MODEL NORM CHANGE 

 

This project features a new hybrid approach to 

overcoming immunity to change (Keagan & Lahey, 

2009). It will use computer simulation, infused by the 

network data, to determine the drivers and key network 

properties of social norms. It will then simulate various 

interventions to create tipping points (Young & Burke, 

2009) in these norms. Such interventions could range 

from turning an influential individual, to adding financial 

incentives to alternative behaviors.  The computer 

models require a decision process for the agents and a 

network model for the communication between them. 

The latter is inferred from the qualitative and historical 

studies. The decisions use the Quantal response model 

(McKelvey & Palfrey, 1998), common in choice 

modelling. Such models require a utility, ui, 

corresponding to each possible action and temperature 

parameter, T =  1 , which governs how much noise there 

is in the choice.  At high temperatures, the choice is 

random.  At low temperatures, only the choice with 

maximal utility is chosen. A simple implementation, 

where Pi is the probability of making choice i, from a set 

of M choices is: 

 

 

 Pi     =             
exp(βui )

                                 (1) 

           ∑      ki   
exp(βuk )                                        

 

Such models need both verification and validation  (Midgley, 

Marks, & Kunchamwar, 2007).  Verification is the process of 

establishing that the software will perform as required. It will be 

accomplished using: independent code reading by team 

members; testing system level conservation quantities; 

checking for expected trends; and sensitivity analysis.  

Graphs and networks are visualized with standard software such 

as Pajek and Matlab.  To detect tipping points, however, we 

will get some parameter values where the model is very 

sensitive. To check that these are genuine tipping points 

(as opposed to numerical instabilities or in- felicities),  we 

use a battery of established techniques  (Scheffer ,  

Carpen te r ,  Lenton ,  Bascom pte ,  Brock,  Dakos ,  Van  

De Koppe l ,  Van De Leemput ,  Levin ,  & Van Nes ,  

2012) : increased variatiance; long correlation lengths; 

flickering; and maxima in mutual information and transfer 

entropy (Barnett, Lizier, Harré, Seth, & Bossomaier, 2013; Bossomaier, 

Barnett, & Harre, 2013; Harré & Bossomaier, 2009). 

 

The Community Health Simulation Model (CHSM) embeds the 

social network and the choice mechanism in an Agent Based 

Model (ABM) with one agent per person for at least two 

communities, the associated Aboriginal Health Care Workers 

and other stakeholders. To determine its validity it will simulate 

a range of health outcomes as presently observed and 

parametrization and network structure fine-tuned accordingly. 

The validated model will then be run for various scenarios 

suggested by current health priorities and the data from the 

social network analysis.  It will determine which links need to 

be strengthened or broken in order to achieve better health 

outcomes. 

 

4. THE GAME 

 

This game is single player, but uses a web site and server-side 

processing to elucidate the SNAs. There are three levels. 

Each level corresponds to one of the components of the 

multiplex network. 

 

There are prizes at each level. At the first level, everybody 

wins a small prize, say around $50, typical of the cost for 

an experimental subject. The second level involves a 

smaller number of larger prizes and the third a single new 

smartphone. 

 

The game starts with a random network on the server. Each 

player gets a challenge, to link two faces, say A to C, via other 

faces presented as an option, say, a,b,c,d. The player, 

Leesha, say, has to choose a person which will give the 

shortest path to C. Suppose Leesha chooses b. The server now 

increases the strength of link b, and generates a new set, x,y,z, 

C. Leesha chooses again and again, until she chooses C. 

At the beginning, Leesha gets a score just for completing 

the task, so it’s easy to begin with The server meanwhile 

has added strengthened her links. Future guesses from other 

players get higher scores and the link strength goes up slightly 

super linear with number of hits. Thus the network gets more 

and more realistic as the game progresses. 

 

A strategy already used in games is employed to increase 

engagement.   Everybody is trying to maximize his/her score 

and can see a league table. But everybody effectively has 

to cooperate to open the next level. This would occur when 

the network is stable (details to be worked out about how to 

measure this.) At this point all links which never received 

reinforcement are deleted. To help with this collective goal, the 

growing network could be visualized in the game. 

Proc. of the Int. Conference on Modeling and Applied Simulation 2015,  
978-88-97999-59-1; Bruzzone, De Felice, Frydman, Massei, Merkuryev, Solis, Eds. 

192



 

An important aspect to this: all the people in the game do 
not need to play. In fact, one could restrict players to a 
target age group, so that we get the network as perceived 
by that group. Not sure about whether this is a good 
thing.  The game is only weakly language dependent, 
requiring just a hundred words or so of text at the start 
of the game. This is especially important for remote 
Aboriginal communities where English ma y  
sometimes be  a second, third of fourth language. 
 

 

 

5. SIMULATION MODEL 

 
First we consider the need for the 

simulation model and then go on to 

provide the details.  

 

5.1. Need for the simulation model 

 

Running tests with human players is very time consuming, both 

before during and after the experimental run. Yet there are 

numerous game parameters and algorithmic details to 

optimize: 

• Players can enter a link with various levels of 

certainty, say, definite, strongly believe, and 

unsure.  Each decision needs to assign a lower 

candidate weight to the link. The weights of these 

links determine the ratio of false positive (high weight 

to unsure) and true negative (low weight to unsure). 

• The number of games needs to be set for the 

human trials, or at least some maximum value 

needs to be imposed. But the network will asymptote 

to the correct set of links, so the convergence needs 

to be examined to determine the most effective 

stopping point. 

• AT the outset it is not known what the fine 

structure of the networks will be. They may be 

assortative, homophilic and so, and each network 

will present different learning challenges. Thus the 

server needs to predict and adapt to these structures 

to optimize the presentation of faces for refining 

the links.  These issues can all be addressed by 

simulation. 

 

 

6. DETAILS OF THE GAME AND SIMULATION 

 

The simulation model first generates a network, either random 

or small world, for the community. For each player, it then 

generates a reduced network and adds noise. So each player 

has a network which connects everybody in the community 

(all nodes of the graph), but with varying strength according 

to how well they know somebody. 

 

At each time step each player works out the shortest path 

between the target faces, given their own network knowledge. 

This path is inversely weighted by their certainty of each link. 

So, the shortest path may be longer than the number of 

actually steps needed to get from one node to the other, 

because this reduced number of links has greater uncertainty. 

In more detail, each player has a set of links comprising: 

• Their direct links, which have value 1, since they 

are certain; 

• Their next neighbor links, in other words, the 

links of their friends; these are less certain and 

have a value qnnn , which is set to 5; 

• Their remote links, which are random, but biased 

towards the correct network, which have a weight 

qrem , currently set to 20. 

 

The larger values of the next neighbor and remote links 

means that shortest paths will avoid these links if possible.  

The game is then iterated for a number of rounds, with each 

player playing once in round.  Each time a link is used by a 

player, the learned network is updated on the server. But the 

link strength is updated by the reciprocal of the link value. Thus 

a remote link (player uncertain about it) contributes less to the 

growing network. 

The game simulation is built in Matlab R2012b, using the 

matlabb gl toolbox available from Matlab Central on the 

Mathworks website 

(www.mathworks.com.au/matlabcentral/). 

 

7. RESULTS 

 

The community size was set at 200, as above. The 

number of players, 50, was varied along with the number of 

nodes. Figure 4 shows the results for a random graph. The 

green line shows the number of links correctly identified on 

the server. The red (solid) line shows false positives, which 

increase slowly as the games progress. The blue line 

(major dashed) shows the true negatives, which decrease as 

the game progresses. 

To play a game, defined here as one face set, could probably be 

completed in around 10 seconds. If we say that an average of 5 

are completed per minute, the total time would be 200 minutes, 

which is quite feasible for a play anywhere anytime mobile 

phone game. 

 

 
 

Figure 4: Simulation results showing true positives 

(descending curves) and false positives (rising curves) for 

a random graph. 
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Figure 5 shows the same plots for a small-world (Watts, 

1999) network. The number of direct neighbors was 20 and 

the probability of rewiring 0.1. This gives approximately the 

same number of links as the random graph case.  The two 

networks are quite similar, although the small world is slightly 

easier to learn. This is fortunate, since it is more 

representative of likely community structures.  It is also 

fortunate that the differences are not too great, since it 

suggests the game will be robust to the actual community 

structure. 

 

 

 

 

Figure 5: Simulation results showing true positives 

(descending curves) and false positives (rising curves) for a 

small world network. 

 

 

8. CONCLUSIONS AND FURTHER WORK 

 

The simulation model described here demonstrates that it 

should be possible to get good network estimates within an 

acceptable timeframe.  The next stage of the project is to 

test the effectiveness within actual cohorts of players. Pre-

testing of the game will be carried out on two student cohorts, 

form quite different social structures:  a regional university 

in NSW; and the University of Hong Kong.  The student 

cohorts will contain 200 students matched to similarly sized 

Aboriginal communities. For these cohorts the networks 

determined by the game will be validated by surveys, focus 

groups and interviews. 

 

Furthermore we believe the use of a mobile game 

methodology outline in this paper has much to offer the 

field of SNA.  SNA relies on extensive interviews, where 

respondent ability to describe a network may vary, along 

with other members of that network (Bader & Schuster, 

2015; Gummerus, Liljander, Weman, & Pihlström, 2012; 

Xu, 2011).  The use of secondary information to describe 

social networks, may also be limited in that to what 

extent respondents’ value or actively use a network 

encapsulated by events or online linkages may be 

difficult to determine without directly questioning them.  

In short, the use of the game methodology as outlined in 

this paper may be an important addition to a social 

network analysis, which relates directly back to the 

demonstration of a social network as a communication 

channel of importance to respondents.   
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