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ABSTRACT 
An important issue in a supply chain is to manage 
carefully replenishment cycles of stored items because 
of its strong impact both on production and stock 
management costs. The literature offers several papers 
debating this issue with a recent focus on the possibility 
to offset the items inventory cycles in order to reduce 
the maximum required space. A genetic algorithm (GA) 
is proposed in order to determine the optimal offsetting 
inventory cycles of items stored in the same warehouse. 
The heuristics was validated through the comparison 
with the most adopted and cited methodology, showing 
the effectiveness of the GA, able to provide better 
results than those previously presented in the literature. 
The GA was finally applied to a realistic case of a 
production system, showing a minimization of the 
maximum peak in the time horizon without relevant 
additional costs, together with a higher and more 
regular saturation of the warehouse. 
 
Keywords: Offsetting, Genetic Algorithm, Inventory 
Management, Warehouse. 

 
1. INTRODUCTION 
The JRP (Joint Replenishment Problem) is one of the 
fundamental problem in the inventory management and 
its classic assumptions are similar to the EOQ 
(Economic Order Quantity) model: the problem 
includes deterministic and uniform demand, no 
shortages allowed, no quantity discounts and linear 
holding costs. The purpose of JRP is to minimize the 
total costs incurred per unit time: generally the 
considered cost terms include setup costs and inventory 
holding costs. A decision maker may ignore the 
warehouse-space restrictions and then he/she may apply 
the conventional heuristics developed over the years to 
solve the JRP, but he/she will often find that the 
obtained solutions are not applicable in a real case 
because the maximum required warehouse-space is 
greater than available. The JRP, in fact, does not 
evaluate the existence of space constraints, therefore, 
several researchers have already proposed an extension 
of the JRP that presented warehouse-space restrictions. 
It is known in literature also as “staggering problem” or 

“inventory cycle offsetting problem (ICOP)” and 
consists of offsetting the replenishment cycles of a large 
number of items stored in the same warehouse with the 
aim to minimize the peak usage of the aforementioned 
resource. To solve this problem, or at least try to reduce 
the maximum peak in stock, it is necessary to determine 
the optimal offsetting of many items’ replenishment 
cycles, develop methodologies able to do it and, 
therefore, minimize the maximum volume peak. This 
issue has assumed considerable importance in research 
as early as the 80s and Gallego, Shaw and Simchi-Levi 
(1992) showed that the class of complexity of the 
problem is NP-complete: it justifies the efforts that have 
been made to develop appropriate heuristics that can 
lead to tangible improvements in practical cases. 
This research was focused to study how to offset the 
inventory cycles of many products stored in the 
warehouse in order to minimize the maximum 
warehouse-space. In particular, a genetic algorithm 
(GA) was proposed to search the optimal replenishment 
schedule.  
The paper is organized as follows. 
Section 2 presents a review of existing relevant 
literature. Section 3 shows firstly the description of the 
problem, secondly the mathematical formulation of the 
problem and, finally, a short description of the generic 
genetic algorithms and their characterizing parameters. 
Section 4 presents the heuristics developed in this paper 
for the specific issue. Section 5 shows the validation of 
the genetic algorithm through its application to a 
benchmark example (Murthy, Benton, and Rubin 2003) 
and reveals the superiority of the obtained results both 
compared to Murthy et al.’s procedure and a heuristics 
later proposed by Moon, Cha, and Kim (2008). 
Furthermore, the algorithm is applied to a case of a 
production system, and also in this case, its application 
leads to a considerable reduction of the maximum peak 
observed in the time horizon. Finally, section 6 presents 
the conclusions of the work.  
 
2. LITERATURE REVIEW 
The JRP has been studied over thirty years, a lot of 
heuristics may be used for solving it and many 
researches addressed their efforts to lot sizing problems 
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with limited warehouse-space, namely “the staggering 
problem”: Goyal (1975) introduced the JRP with one 
resource constraint and developed a heuristic algorithm 
using the Lagrangian multiplier; Silver (1976)  
developed a simply methodology to determine the order 
quantity of each product in the warehouse, whose 
demand is supposed constant, and discussed the 
advantage and disadvantage of coordinating 
replenishments; Kaspi and Rosenblatt (1983) have 
made an improvement to the algorithm previously 
developed by Silver (1976), showing that the errors of 
the algorithm can be reduced, on average, of an order of 
magnitude; later Kaspi and Rosenblatt (1991) proposed 
an approach based on trying several values of the basic 
cycle time between a minimum and a maximum value, 
then they ran the heuristic of Kaspi and Rosenblatt 
(1983) for each value of the basic cycle time and they 
showed that their procedure (called RAND) 
outperforms all available heuristics; Gallego, Shaw, and 
Simchi-Levi (1992) showed that “the staggering 
problem” is NP-complete even if only one item has a 
different reorder interval and, thus, it is not possible to 
find an optimal solution but it must use a heuristic 
technique, then this problem is not solvable by 
polynomial-time algorithms. Other studies have been 
made by Hariga and Jackson (1995) and by Hall (1998), 
that examined the case in which all cycle lengths are 
equal, and showed that the problem is NP-hard. Khouja, 
Michalewicz and Satoskar (2000) applied the GA 
approach to the basic JRP and compared the 
performance of their GA with Kaspi and Rosenblatt’s 
heuristic algorithm (1991). Murthy, Benton, and Rubin 
(2003) considered the presence of space constraints and 
presented an interesting heuristics for offsetting 
independent and unrestricted ordering cycles for items 
on the time axis to minimize their joint storage 
requirements over an infinite time horizon when 
warehouse-space is limited. Given that the 
aforementioned procedure represents the benchmark of 
many subsequent works in this field, for simplicity,  
from now on we will call the method as MBRP, stands 
for Murthy, Benton and Rubin Procedure. Moon and 
Cha (2006) were focused on the development of two 
algorithms to solve the JRP with resource restrictions: 
firstly they modified the existing RAND algorithm, then 
they developed a GA for the JRP with resource 
restriction; Yao (2007) conducted a research, focused 
on JRP with warehouse-space restrictions, establishing 
the lot size of each item, with the aim to minimize the 
total cost per unit of time and generate a program 
supply for many products without exceeding the 
available space: he has proposed a hybrid genetic 
algorithm. Yao and Chu (2008) conducted theoretical 
analysis based on Fourier series and Fourier transforms, 
proposing a procedure to calculate maximum warehouse 
space requirement; then, they employed this procedure 
in a genetic algorithm showing improvements, 
compared to the MBRP. In the same year Moon, Cha, 
and Kim (2008) proposed a Mixed Integer 
Programming (MIP), based on the same assumptions 

imposed by MBRP, and a GA, realizing that both led to 
the same results and, by comparison with the example 
presented by Murthy, Benton and Rubin (2003), which 
from now on we will call MBRE, were able to obtain 
better results; furthermore, they implemented a MIP for 
a finite time horizon and applied the GA to this case. 
Then, Boctor (2010) proposed a new formulation of the 
problem proposed by MBRP, and a heuristic algorithm 
based on Simulated Annealing through which they 
achieved the same results as Moon, Cha, and Kim 
(2008). Successively, Boctor and Bolduc (2012) 
presented a new mathematical formulation for the 
“staggering problem”, showed two heuristic approaches 
and evaluated the obtained performance using their 
techniques. Finally, Croot and Huang (2013) proposed a 
series of algorithms, operating randomly, for the 
determination of offsetting inventory cycles: they 
studied this problem from the view of probability theory 
and their algorithm can work when the number of item 
is large, while the time horizon and unit volumes are not 
too large. 
Despite of the several researches, there is not yet a 
procedure which leads to the optimal solution or, in 
other words, to an exact methodology for the resolution 
of the above mentioned problem. Furthermore, the 
heuristics developed in the course of the years, hint at a 
wide margin for improvements and, for this reason, the 
idea of developing a new algorithm able to bring to 
most interesting solutions is becoming very relevant. 
 
3. PROBLEM DESCRIPTION AND 

FORMULATION 
As shown in the following example (which reproduces 
the MBRE), the offsetting of items’ inventory cycles in 
the warehouse does not alter the stock management 
costs and reduces the maximum volume peak in storage. 
Consider the data reported in Table 1 and see the trend 
of the two items in Figure 1. In particular, the maximum 
peak without the offsetting is equal to 2Q because both 
the items will be ordered for the first time at the 
beginning of the time horizon; with the application of 
MBRP, the order of item 2 slides to the right of P units 
of time while the item 1 is always ordered for the first 
time at the initial instant: in this way the maximum peak 
will be equal to 1.75Q (Figure 2) and will occur at P 
unit of time. 
 

Table 1: MBRE 

Item Storage space 
per unit time 

Time between 
orders (TBO) 

Order 
quantity 

#1 s=1 4T Q 
#2 s=1 2T Q 

 
In conclusion, instead of ordering all EOQs 
immediately, as predicted by the Wilson model, initial 
stocks are supposed for satisfying the demand of the 
early days and, then, the respective EOQ will be 
ordered only when it is really necessary, namely when 
these stocks are inferior to the demand. In this way, it is 
possible to have a better use of warehouse-space. Then, 
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the objective is the determination of the optimal 
offsetting for each item with the aim to minimize the 
maximum peak over time. 
 

 
Figure 1: Space Requirement Without Offsetting 

 

 
Figure 2: Space Requirement With Offsetting 

 
The problem supposed the same assumptions of MBRP: 
 

• the daily demand rate is deterministic and 
constant;  

• the replenishment is instantaneous; 
• the Time Between Order (TBO) is known and 

constant. 
 
The objective is to minimize the maximum peak in the 
time horizon.  
We introduce the following notation: 
 
N ! number of items 
𝑑! ! daily demand for the jth item  
𝑇𝐵𝑂!! time between orders for the jth item  
𝑄!,! ! replenishment quantity for the jth item at time t 
𝑦!,!! occupied quantity from item j in the warehouse at 
time t 
𝑞!"!#,!! initial stock of the jth item  
𝑆! ! total storage space required for all items at time t 
  𝑠!! required space per unit time for the jth item  
𝑆!"#! maximum storage space required for all items 
in the time horizon T  
 
The mathematical model of the problem is shown 
below: 
 

min 𝑆!"#                                                                (1)  

subject to:  

𝑦!,! = 𝑞!"!#,!                 t = 0                                   (2) 

𝑦!,! = 𝑦!,!!! + 𝑄!,! − 𝑑!   t = 1,…,T                      (3) 

𝑄!,! = 0                          𝑖𝑓    𝑦!,!!! ≥ 𝑑!
𝑄!,! = 𝑑!𝑇𝐵𝑂!     𝑖𝑓  𝑦!,!!! < 𝑑!

  

𝑆! = 𝑠!×𝑦!,!!
!!!      j = 1,…,N  and  t = 0,…,T   (4) 

𝑆!"# = 𝑚𝑎𝑥! 𝑆!         t = 0,…,T                           (5) 
 
The objective (1) is to minimize the maximum space 
required in stock over the considered time horizon. The 
constraint (2) indicates that the present quantities at t = 
0 must be equal to the assumed initial quantities for 
each item; the constraint (3), however, indicates that the 
present quantities from the second day onwards, until 
the end of the time horizon T, will be equal to the sum 
of the present amount on the previous day and the lot 
𝑄!   less demand of the jth item. The equation (4) 
establishes the total space occupied by the items at all 
time instants, while the constraint (5), finally, defines 
the peak capacity utilization. 
As regards the time horizon, since the total space 
requirement pattern is periodic, the maximum will occur 
in the time interval from t = 0 to t = LCM (TBO1,…, 
TBOn) where LCM is the acronym of least common 
multiple. However, in the real cases, the items in the 
warehouse are numerous and, consequently, the time 
horizon (the LCM of the TBOs) growths exponentially. 
But, as also observed by Moon, Cha, and Kim (2008), it 
is totally unrealistic to think that the daily demand, the 
price and the management costs of each product do not 
change during a so long period. For these reasons, we 
assume a more realistic time horizon which has been 
prudentially fixed to a working year, namely T = 220 
days. During such period, the order quantities (EOQs), 
the daily demands, the purchasing, ordering and holding 
costs are supposed known and constant. 
Moreover, as mentioned above, many studies suggest 
that the replenishment of each item must be present at 
the beginning of the considered time horizon, namely at 
t = 0. We relax this hypothesis and, to determine the 
optimal offsetting in order to minimize the maximum 
peak in the store, suppose initial quantities for the items 
that, when satisfying the demand of the first days, delay 
consequently the time of the first replenishment. In 
other words, the day in which the satisfaction of the 
demand is not more possible with the assumed initial 
quantities, the lot 𝐸𝑂𝑄! is ordered and that day 
represents the offsetting of the item j. For example, if in 
the third day it is not more possible to satisfy the 
demand of the product j with the assumed initial 
amount, then t = 3 represent the offsetting of the jth 
item. The optimal offsetting is therefore the 
combination of the single delays which minimizes the 
peak of required space in stock. 
To obtain the initial quantities that allow to minimize 
the maximum peak and maximizing the saturation, we 
performed a series of simulations using the genetic 
algorithm developed for the specific issue that can 
establish the best case, among all those assumed, 
namely the optimal initial quantities that will be needed 
in the warehouse for a better management of the space 
and  a more regular saturation. 
 
Genetic Algorithms (GAs), widely used in recent 
decades by various researchers, are techniques based on 
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the population, have an objective dynamic function, 
memory and methods are inspired by nature, unlike 
traditional methods that are based on research of single 
point, have an objective static function, have no 
memory and are not inspired by nature.  
In particular, GA have demonstrated good performances 
in lot sizing issues (Macchiaroli and Riemma 2002), 
also in presence of space and budget constraints (Yang 
and Wu 2003). 
The main parameters of the genetic algorithms are 
numerous and known from the literature thanks to many 
articles such as in Dowsland (1996) and to several 
books as in Mitchell (1998).  
 
The principal steps of the GAs are: 
 
1. The choice of an initial population, namely the first 
set of possible solutions, is generated randomly. Each 
individual of the population is known as chromosome 
representing a possible solution to the problem and 
evolves through the iterations called generations. The 
size of the population can vary considerably according 
to the kind of problem. 
2. The fitness function is used to measure the goodness 
of the founded solutions at each iteration, the 
individuals are tested, are given them a value that will 
be considered in subsequent phases and will allow to 
the algorithm to move toward the best solution.  
3. The fitness scaling converts the raw scores returned 
by the fitness function, in values, in a range that is 
suitable for selection. 
4. The selection chooses at each generation the most 
promising solutions to create the next population of 
solutions.  
5. The reproduction determines how the GA creates the 
children at each generation: from two parents, GA 
creates a child who will have similar characteristics to 
the parents and, therefore, later, it is appropriate to 
apply techniques of crossover and mutation. 
6. Through the mutation is possible to make small 
random changes in the individuals of the population in 
order to have a wider genetic diversity and to allow for 
a broader search space of the solutions. 
7. The crossover combines two chromosomes to form a 
new one for the next generation. 
8. The process of generation of populations is repeated 
until a stop condition, set by the user, is reached (for 
example, it is reached the maximum number of 
generations or is exceeded the imposed 
temporal/economical limit, etc.).  
 
4. THE PROPOSED PROCEDURE 
In this section we propose a specific genetic algorithm 
to obtain an optimal solution for the JRP with 
warehouse-space constraints. 
Due to the large number of available techniques for 
each step described above, several configurations could 
be used for the genetic algorithm and, for this reason, an 
experimental analysis, based on the ANOVA technique, 
was conducted in order to investigate the effect of the 

most influencing parameters and to identify the optimal 
configuration of the proposed procedure: it is necessary 
to set properly control parameters so that GA is able to 
search for good solutions.  
After this analysis has been performed, the techniques 
for each step were chosen and the parameters have been 
established for the best configuration. 
 
1. The population size, in this case, was set equal to 50 
individuals after a series of tests carried out firstly with 
20 individuals and then with 100 and 200, and it was 
found that if it increases the size of the population, it 
does not significantly improve the results in a 
meaningful way, but rather the duration of the algorithm 
for the research of the optimal solution, growths 
appreciably; instead, if the population is too small (20 
chromosomes) there is little variability of the possible 
solutions and then there is the risk of not finding the 
correct solutions for the specific case. 
2. The fitness function, subsequently implemented in 
MatLab 7.9 and explained by the flow chart in Figure 3,  
was built specifically for the JRP with space constraints, 
assumes the values of initial quantities for each item 
and searches, in every generation, those that lead to the 
minimization of the maximum peak. 
3. The technique used for the fitness scaling is called 
“Shift Linear”, namely scale raw scores so that the 
expectation of the stronger individual is equal to a 
constant multiplied per an average score: during each 
generation chromosomes are evaluated using the fitness 
function; 
4. The technique used for the selection is the so-called 
“Remainder”, that assigns a parent from the integer part 
of each individual’s scaled value, while the rest of the 
parents are chosen stochastically by the fractional part 
of the scaled value (for example, if the scaled value of 
an individual is 2.3, that individual is listed twice as a 
parent, while the probability that other additional 
parents will be choose for the next generation is 
proportional to the fractional part, in this specific case 
to 0.3); 
5. As for the reproduction, in this case we have 
established, as suggested by the literature, that 5 
individuals of 50 (10%) of the new created population  
have direct access to the next population (formed at the 
subsequent generation) because they are considered the 
best, while it is necessary to apply mutation and 
crossover techniques to the remaining population; 
6. The utilized technique for the mutation is the so-
called “Uniform”: the value of the gene is replaced with 
the uniform value between the minimum and the 
maximum specified for that gene: through mutation, the 
small changes in individuals are carried out according to 
a random mutation probability 𝑝! established equal to  
0.05; 
7. The crossover probability 𝑝! was established equal to 
0.8. The used technique is called “Scattered”, which 
involves creation of a random binary vector and the 
genes of the first parent are inserted in the above-
mentioned binary vector if it present the number ‘1’, 
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otherwise, if there is the number ‘0’, the genes of the 
second parent are inserted: so, by these two parents, will 
born the new chromosome; 
8. In this case, the established stopping condition is the 
number of generations equal to 300, exhaustive number 
allowing convergence to optimal solutions.  

Figure 3 schematizes the logic of the model created and 
subsequently implemented in MatLab that represent the 
fitness function of the proposed GA. 
 

 

 
Figure 3 – Flow chart of the proposed fitness function  

 
The model needs in input the number of items, the 
required unit space for each item, the daily demand, the 
Time Between Orders (TBOj) for the jth item and the 
time horizon T. Once this information is known, it is 
possible to calculate the EOQ for each item [a] using 
the following formula: 
 
𝑄! = 𝑑!𝑇𝐵𝑂!                                                               (6) 
 
where Qj  represent the EOQ which must be ordered for 
the jth item. Consider that z represents the subscript of 
each GA’s generation, and that the total number of 
generations (Z) is equal to 300, as mentioned before. 
The model must hypothesize randomly the values of the 
initial quantities [b] for the first generation (z = 1) and 

for each item that are included within the lower and 
upper limits: 
 
0 ≤ 𝑞!"!#,! ≤ 𝑄!                                                           (7) 

 
Based on the presumed values, it will have a certain 
inventory trend: as long as the initial stock 𝑞!"!#,! can 
satisfy the demand 𝑑! [c], then it is unnecessary to order  
𝑄!, and the present quantity in the second day, 𝑦!,!, will 
be equal to 𝑞!"!#,! − 𝑑! [d]; when the demand of the jth 
item is greater than the initial quantity, then order 𝑄!, 
that will add up to the remaining quantity of the jth 
item, namely 𝑦!,! = 𝑞!"!#,! − 𝑑! + 𝑄! [e]; at this point, 
the algorithm calculates the space occupied by the items 
[f] according to (4) which will be particularized 
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considering also the subscript z for the number of 
generations and, consequently, becomes: 
 
𝑆!,! = 𝑠!×𝑦!,!!

!!!                                                      (8) 
 
for  t = 0,1,….,T    j = 1,2,….,N   and   z = 1,2,…,Z 
 
Then the heuristics memorizes this value. From the later 
instant of time, and until the last day of the required 
time horizon, the procedure is repeated; when the 
condition t > T occurs (whereas T = 220 days, it will 
have as a result 220 spaces calculated for each 
generation), the algorithm calculates the maximum 
occupied space [g] according to (5) but particularized 
with the subscript z as follows: 
 
𝑆!"#,! = max 𝑆!,!                                                        (9) 
 
The algorithm stores both the peak 𝑆!"#,! and the value 
of the initial quantities that have brought such peak [h]. 
Until z ≤ Z the entire procedure is repeated and new 
initial quantities are assumed, according to (7) and to 
the established parameters for the GA configuration 
with the aim to hypothesize, at each generation, new 
initial quantities that lead to a maximum peak 𝑆!"#,! 
equal or lower than previous one  (𝑆!"#,!!!). When the 
condition z > Z occurs, [i] the algorithm shows its best 
solution corresponding to the minimum required space 
𝑆!"" given by: 
 
𝑆!"" = 𝑚𝑖𝑛  𝑆!"#,!      for z = 1,2,…,Z                       (10) 
 
and the corresponding initial quantities that led to this 
value: then, as the algorithm is structured, 𝑆!"" will 
coincide to 𝑆!"# of the last generation.  
 
5. GA VALIDATION AND APPLICATION 
 
5.1. Validation 
Until this time, many heuristics or procedures have been 
tested on the MBRE (whose data are shown in Table 2), 

achieving large improvements: for example, the 
algorithm developed by Moon, Cha, and Kim (2008), 
implemented on the MBRE, shows a reduction of the 
maximum peak equal to 24.06% compared to the case 
without offsetting while the MBRP applied to the 
MBRE has led to a reduction of 15.46% compared to 
the same case without offsetting. In the same way, the 
algorithm implemented in this paper was applied to the 
MBRE, obtaining a huge reduction of the maximum 
peak in the time horizon. 
Table 3 reports the results obtained in the case without 
offsetting, with the application of MBRP, Moon et al.’s 
procedure and, finally, the proposed algorithm, showing 
that in the first three cases the maximum peak in the 
time horizon always occurs at the initial instant while 
with the application of the developed GA, the maximum 
peak occurs on day 42 and is equal to 700m! with a 
reduction of 32.37% (compared to the case without 
offsetting). This percentage is obtained thanks to the 
values of the initial quantities, indicated in Table 3, 
leading, consequently, to the shown values of 𝑦!,!", and 
then to the maximum peak of 700m!. 
Figures 4, 5, 6 and 7 show respectively: the trend of the 
total warehouse required by the items without offsetting 
(the classic EOQ model), in the case of application of 
MBRP, Moon et al.’s procedure and, finally, with the 
application of the GA developed in this paper. In the 
last case it is interesting to note the significant reduction 
of the maximum peak in the stock and the evident 
increase of the regularity of the saturation. Moreover, it 
can be noted that in these figures only the trends for the 
first 50 days are reported because these are considered 
sufficient for the understanding of the trends which, 
after that moment, present a similar behaviour. 
 

Table 2 – Data of MBRE 
Item  j 1 2 3 4 5 6 7 8 9 

𝑠!𝑄! 100 200 81 144 150 160 90 60 50 

𝑇𝐵𝑂! 4 5 9 12 15 8 6 12 2 

Table 3 – Comparison with literature 
 Without 

Offsetting 
MBRP Moon et al.’s 

Procedure 
The Proposed  

Procedure 
Item 𝑞!"!#,!= max peak 𝑞!"!#,!=max peak 𝑞!"!#,!=max peak 𝑞!"!#,! 𝑦!,!"= max peak 

1 100 100 100 50 25 
2 200 160 200 40 200 
3 81 81 72 63 18 
4 144 144 84 36 120 
5 150 150 120 82 122 
6 160 120 120 80 60 
7 90 75 60 75 90 
8 60 20 5 40 15 
9 50 25 25 25 50 

Sum 1035 875 786 491 700 
Reduction                    - 15.46% 24.06%  32.37% 
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Figure 4 – Trend without offsetting. 

 

 
Figure 5 – Trend with Murthy et al.’s procedure. 

 

 
Figure 6 – Trend with Moon et al.’s procedure 

 

 
Figure 7 – Trend with the proposed procedure. 

 
5.2. Application 
After its validation, the proposed heuristics was applied 
to a case of a production system operating in the 
engineering sector which manages 200 items in 
warehouse that has a volume capacity of 21.000 m! 
and, then, this value will represent the space constraint. 
Table 4 indicates the range of values in which the 
characteristics of the items are included. 

Table 4 - Characteristics of items 
Characteristic Measure Unit Range 

Daily Demand (𝑑!) units/day 1÷100 

Ordering Cost (Clj) € 50÷100 

Holding Cost  (𝑘!) €/(unit*day) 0,001÷0,05 

Specific Volume (vj) m3/unit 0,001÷1 

Purchasing Cost (pj) €/unit 1÷100 

 
Initially, the EOQ model is applied to this case, the 
individual cost of the items, the total cost and the 
maximum peak are calculated (see Table 5), noting that 
the peak occurs at the initial instant, as shown in Figure 
8, and the space constraint is violated. 

Table 5 - EOQ model’s costs and max volume 
Cost Type Value 

Purchasing Cost (€) 113.840.980 
Ordering Cost (€) 274.974 
Holding Cost  (€) 274.990 

Total Cost (€) 114.390.944 
Max Volume (m!) 32.507 

 
With the application of the GA, on the contrary, the 
costs remain almost constant (consider only an extra 
ordering cost for the initial hypothesized quantities that 
is negligible compared to the total cost), while the 
maximum peak is significantly reduced (see Table 6).  
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Table 6 - GA’s costs and max volume 
Cost Type Value 

Purchasing Cost (€) 113.840.980 
Ordering Cost (€) 274.974 

Extra Ordering Cost (€) 3.253 
Holding Cost  (€) 274.990 

Total Cost (€) 114.394.197 
Max Volume (m!) 20.020 

 
Such peak does not occur at the first day, as indicated in 
Figure 8: in this way the space constraint is respected. 
From the Figure 8, that shows the trend of the total 

warehouse required by the items over the time with the 
application of the traditional EOQ model, the MBRP 
and finally the GA, it may be noted, moreover, that in 
the second case the initial peak decreases significantly 
but the saturation of the warehouse is not much constant 
because of the initial peak. In the third case, however, 
the saturation is more regular than the two previous 
cases, the peak is strongly lower, does not occur at the 
initial time and allows to respect the space constraint. 
Moreover, since there will be approximately 1.000 m! 
on average that can be used for possible safety stocks, a 
better management of the space is achievable. 

 

 
Figure 8 – Comparison between application of GA, EOQ model and MBRP 

 
6. CONCLUSIONS 
This paper deals with the joint replenishment problem 
subject to space constraints assuming constant and 
deterministic demand rates, instantaneous 
replenishments, known and constant time between 
orders for all items and a finite time horizon, which is 
more realistic than the infinite time horizon.  
A genetic algorithm, which allows to calculate the 
optimal initial quantities required to minimize the 
maximum peak in the warehouse over the time horizon, 
has been implemented for the above mentioned 
problem.  
Using the proposed algorithm it is possible to improve 
the process of inventory management by reducing the 
maximum peak and maximizing the saturation. GA is 
able to reduce inefficiencies because the warehouse is 
better used for the majority of its time, but without 
excessive peaks and, consequently, very often it can 
respect the space constraints. 

The heuristics has been tested and compared with some 
procedures previously made available in the literature 
that consider an infinite time horizon (Murthy, Benton 
and Rubin 2003; Moon, Cha and Kim 2008), showing 
better results as regards the maximum peak, which is 
much lower and not necessarily occurs at t = 0. 
The algorithm can be used as a tool to support business 
decisions as it increases the ability to handle multiple 
items, avoiding the need to rent additional space. 
Furthermore, it can be considered as an interesting 
contribution to the study of the heuristic techniques 
applied to the stock management issue. 
This work represents the starting point of possible 
future developments: firstly a Design of Experiment 
with ANOVA will be implemented with the purpose of 
finding a better configuration of the genetic algorithm 
and an optimal setting of heuristics’ parameters; 
secondly the idea of applying other heuristic techniques 
to the offsetting problem with the aim of comparing the 
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results achieved by the GA could be evaluated. Another 
possible future development could be the comparison of 
the proposed GA with procedures that consider a finite 
time horizon, with the aim of making improvements as 
regards both the computational time and maximum peak 
in storage, also in presence of high number of items. 
Moreover it is necessary to highlight that the proposed 
procedure leads to a considerable reduction of the 
maximum peak in the warehouse, but does not 
guarantee the respect of the imposed space constraints. 
For this reason, a further interesting possible future 
development could be the implementation of a 
procedure able to minimize the maximum peak in the 
stock, maximize the saturation and, at the same time, 
respect the space constraints. 
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