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ABSTRACT 
The production in bakeries can be modelled as a no-
wait permutation flow-shop based on the constraints 
and frame conditions given by the real production 
processes. A modified genetic algorithm, ant colony 
optimization and particle swarm optimization were used 
to analyse and optimize the production planning of a 
bakery production line that processes 40 products on 26 
production stages. This setup leads to 8.2 x 1047 
different possible schedules in a permutation flow-shop 
model and is thus not solvable in reasonable time with 
exact methods. The makespan of the production, an 
objective function of high economic interest, was 
analysed. In combination with the created model, the 
applied algorithms proved capable to provide optimized 
results for the scheduling operation within a restricted 
computational time of 15 min, reducing the makespan 
by up to 8.6 %. 

 
Keywords: Bakery Production Planning; Modified 
Genetic Algorithm; Ant Colony Optimization; Particle 
Swarm Optimization; Flow-Shop Scheduling 

 
1. INTRODUCTION 
It is an economical and often also vital necessity 
throughout the different industry branches from 
producing to service companies to work on an optimal 
level concerning their efficiency or at least as close to 
this ideal as possible. Even more since the increased 
awareness of the finite nature of most of the today 
commonly used resources came up. 
 To reach a state of efficient production and 
sustainable or at least efficient use of resources is, 
besides the degree of efficiency of the utilized 
machines, for the most part a matter of optimal or at 
least efficient scheduling.  
 From its beginnings in the 1950’s (Johnson, 1954; 
Jackson, 1955; Smith, 1956) flow-shop scheduling 
became an increasingly important tool for decision-
making, mainly in the last 20 to 30 years, because of its 
potential to optimize manufacturing processes and by 
that creating significant savings for companies of all 
kinds of industries. 

The main elements of which all flow-shop models 
are build are a set of j jobs, which have to be processed 

on a set of m machines. In most manufacturing facilities 
a job, e. g. a product, has to undergo a series of 
operations or processing steps related to specific 
machines. In many cases the jobs have to follow the 
same route through the production stages and the 
required machines are assumed to be set up in series. 
Such a manufacturing environment is then referred to as 
a flow-shop (FS). Some minor modifications or 
additional constraints of the aforementioned set up lead 
to special kinds of FSs. If the order in which the jobs 
are processed is the same for all stages of the FS, the FS 
is referred to as permutation flow-shop (PFS). In a more 
general machine set up that consists of k stages with a 
certain number of parallel machines m in each stage and 
j jobs that have to be processed on only one of these 
machines in each stage, the machine environment is 
referred to as flexible FS, compound FS or hybrid flow-
shop (HFS) (Pinedo 2008). 
 Any kind of FS scheduling problem that includes a 
no-wait constraint for the jobs can be labelled as a no-
wait flow-shop (NWFS) scheduling problem. This type 
of scheduling represents a very important application 
since it can be used for all kinds of time dependent 
industries like food or pharmaceutical production (Hall 
and Sriskandarayah 1996, Raaymakers and Hoogeveen 
2000), as well as chemical, concrete or steel processing 
(Fondrevelle, Oulamara, Portmann, and Allahverdi 
2009, Grabowski and Pempera 2000, Rajendran 1994). 
 A commonly faced problem in flow-shop 
scheduling is that it belongs to the class of NP-hard 
problems (Garey, Johnson, and Sethy 1976, Lenstra and 
Rinnooy Kan 1978), which means that the 
computational requirements for finding an optimal 
solution increase exponentially with the problem size. 
Thus large problems cannot be solved using exact 
methods, but a huge variety of heuristic and 
metaheuristic solution methods has been developed for 
flow-shop scheduling. 
     Due to the increasing importance of tackling 
complex multi-stage FS scheduling problems to model 
and solve real world scheduling problems to optimize 
manufacturing in numerous industrial branches, the 
range of approaches and solution methods employed is 
as various as the respective real world archetypes. 
Nevertheless there are many reviews available that 
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summarize those approaches and methodologies, e. g. 
the works of Vignier et al. (1999) or Linn and Zhang 
(1999), Ruiz and Vázquez-Rodriguez (2010), Hejazi 
and Saghafian (2005), Gupta and Stafford (2006), 
Minella, Ruiz, and Ciavotta (2008) or Hall and 
Sriskandarajah (1996). 

Three frequently used optimization algorithms for 
scheduling problems are genetic algorithms (GA), ant 
colony optimization (ACO) and particle swarm 
optimization (PSO). Due to the many examples of 
successful implementation of these methods it was 
decided to also apply them in this work. 

Inspired by the Darwinian principles of evolution, 
the first GA was introduced by Holland (1975). Genetic 
and evolutionary algorithms use the same basic 
operations as in the reproduction and evolution of 
higher species, like inheritance of genes, mutation, 
selection and recombination. GAs and modified GAs 
are widely used for solving complex optimization 
problems (Fereidoonian and Mirzazadeh 2012, Gómez-
Gasquet, Andrés, and Lario 2012, Phanden, Jain, and 
Verma 2012, Ventura and Yoon 2013, Zhang, Zhou, 
and Liu 2012, Ziaeifar, Tavakkoli-Moghaddam, and 
Pichka 2012). 

Initially proposed by Dorigo in his Ph.D. thesis 
(Dorigo 1992) ACO adapts the mechanisms that help 
ants to find the shortest and thus optimal way between a 
food source and their formicary. Proven its capability to 
resolve the TSP (Dorigo and Gambardella 1997), one of 
the classical NP-hard problems, ACO is another nature 
inspired and frequently used algorithm to solve 
combinatorial optimization tasks. There is by now an 
almost inconceivable variety of applications using 
ACO, covering all kinds of scheduling, routing and 
optimization problems. The works of Dorigo, Di Caro 
and Gambardella (1999), Mullen et al. (2009), Chandra 
Mohan and Baskaran (2012) and of Tavares Neto and 
Godinho Filho (2013) provide an impressive overview 
of how versatile and successful ACO can be employed. 

Kennedy and Eberhart (1995) invented PSO as an 
adaption of the movement and behaviour of bird flocks 
or fish schools on their search for a food source. 
Tasgetiren et al. (2007) were the first to tackle 
makespan and total flowtime minimization of a PFS 
using PSO. Minimizing Cmax was also the objective 
function in the work of Lian, Gu and Jiao (2008) who 
used a novel PSO adapted to the discrete space of the 
PFS problem. Pan, Tasgetiren and Liang (2008) created 
a discrete PSO for a NWFS with makespan and total 
flowtime criterion and a new position update method as 
well as several speed-up methods were presented in 
their work. A k-stage NWFS was modelled with 
makespan as objective function for the scheduling of a 
polypropylene process by Liu, Gao and Pan (2011) and 
a hybrid PSO combined with SA was introduced to 
solve the scheduling problem.  

The huge variety of applications of PSO is also 
presented in the works of Eslami et al. (2012) and Poli, 
Kennedy and Blackwell (2007). 

Although there are these many examples where 
numerical modelling and optimization have been 
successfully applied in different industry branches, the 
baking industry in Germany yet provides no such 
efforts or applications. Even though this industry branch 
with its high diversity of products and time dependent 
production processes is as if predestined for the 
application of state-of-the-art scheduling methods. In 
the German baking industry, the production planning is 
almost completely based on the practical experience of 
the responsible employee(s) instead of the usage of 
mathematical methods. Regarding the high diversity of 
the product range in a common German bakery that 
includes around 50-100 different products and the high 
complexity of the scheduling task induced therein, the 
performance of bakeries is often sub-optimal. 
 The baking industry in Germany consists of 
approximately 14,000 producing companies, employs 
over 290,000 employees and reaches a business volume 
of almost 13.4 billion Euros per year (Zentralverband 
des Deutschen Bäckerhandwerks e. V. 2012). The 
increase of companies’ efficiency in respect of energy 
consumption or staff allocation and man working hours 
therefore comprises high potential to decrease 
production costs. 

 
2. MATERIAL AND METHODS 
The model implementation, simulation and optimization 
were performed on a “lenovo ThinkPad R500” with an 
“Intel Core 2 Duo” 2.26 GHz processor, 2 GB RAM 
and Microsoft XP 2002 as operating software.  
 The modelling of a bakery production line with 40 
products and 26 production stages, as well as the 
implementation of MGA, ACO and PSO and the 
optimization were programmed and performed with 
MATLAB R2012b (The MathWorks, Inc). 
 
2.1. Modelling procedure 
From the scheduling point of view the production in a 
bakery can be described as a hybrid flow-shop 
according to commonly used definitions (Pinedo, 2008; 
Ruiz & Vázquez-Rodriguez, 2010). The machine 
environment is called a hybrid flow-shop, if jobs have 
to be processed on only one machine m in a stage k or 
can completely bypass it, being the case in a bakery, as 
long as they are processed on at least one stage. 
 By considering the scheduling task in a bakery as a 
permutation flow-shop instead of a ‘normal’ hybrid 
flow-shop by adding the constraint, that the order in 
which the jobs j pass through the production is fixed 
and does not change between production stages (Pinedo, 
2008), the number of possible product sequences can be 
reduced significantly. Although the real process in a 
bakery does not fulfil these requirements entirely, this 
model can be used and modified to match with the real 
production processes, where products can bypass earlier 
started products and the sequence of products on the 
first production stage determines all subsequent process 
tasks, due to the further down specified time 
dependence in bakery production. Doing so, the number 
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of possible combinations is reduced from (j!)m to j! and 
each possible schedule is a permutation of j (Pinedo 
2008). Each of those permutations can be used to 
represent a sequence of products on the first production 
stage of the bakery which is crucial for sequencing the 
work flow. Still, high numbers of j, and thus j! different 
schedules may lead to optimization problems 
unsolvable with exact methods in reasonable 
computational time. 
 Additionally the production in bakeries is 
commonly subject to a no-wait constraint due to 
inherent fermentative processes. The production of most 
baking goods requires proofing and the most commonly 
used proofing agent is yeast (Saccharomyces 
cerevisiae). The main characteristic of this process is 
the fermentative decomposition of glucose to CO2, 
among other components. The retention of CO2 
produced by the yeast cells is given by the dough matrix 
surrounding the gas bubbles and leads to a desired 
volume increase. Up to a certain degree the dough 
matrix can withstand the structural stress induced by 
the, over time, increasing gas pressure, but after 
exceeding the maximum gas retention ability the dough 
matrix collapses. Due to these processes the production 
of such goods is not highly but strictly time sensitive 
from the point on, where the microorganisms get in 
contact with water and substrates under preferable 
conditions of temperature and humidity, as it happens in 
the dough production process. Cooling can be used to 
regulate or slow down the fermentation speed of yeast 
but is costly and sometimes accompanied with negative 
influence on the product quality. 

 
2.1.1. Production modelling 
Modelling the production site and ensuring the 
compliance of the no-wait constraint are done prior to 
the scheduling optimization.  
 All products in a bakery follow more or less the 
same way on consecutive stages through the production, 
meaning that a product does not return to an already 
passed stage. The common progression of these 
production stages is shown in Figure 1. 

 

Preparation of 
Ingredients

Dough 
Production

Dough Rest
Dividing and 

Forming

ProofingBakingDistribution

Figure 1: Basic Bakery Production Flow Model 
 

Besides the definition of each products individual work 
flow through the production and the capacities of the 
employed machines, the processing times (PTs) of the 
products on each stage represent the most important 
information for modelling. PT also include process 
steps, where the product is not literally “processed” by 
means of being influenced by a worker or a machine, 
like the dough rest since this is a defined and desired 

waiting time. Table 1 shows an example containing the 
required processing information of products. The 
numbers in Table 1 represent the elements of a matrix 
A. The rows and columns of matrix A represent the 
products and the production stages respectively, such 
that, for example a2,3 would return the processing time 
of product 2 on stage 3, meaning in case of Table 1, that 
product “B” requires a forming time of 10 min. The 
recipe and the desired characteristics of the finished 
product determine the respective processing times. 

 
Table 1: Example of bakery production data 

  S
tage 

       P
roduct 

D
ough 

production 

[m
in] 

D
ough rest 

[m
in]  

F
orm

ing 

[m
in] 

P
roofing 

[m
in] 

B
aking 

[m
in] 

A 5 0 5 35 25 

B 4 20 10 35 55 

C 8 30 15 50 30 

D 6 25 25 40 60 

E 9 0 8 55 40 

F 10 10 12 35 35 

 
Taking into account that some products do not have to 
be processed on all present stages (e. g. if a product 
needs no dough rest) and therefore might skip certain 
processing steps, a zero entry in matrix A indicates that 
the specific product skips the respective stage and is not 
processed there.  
 Matrix A is the basis to form a new matrix B. To do 
so the starting times (STs) of all products on all stages 
are calculated for the investigated sequence of products 
(which represents an individual in GA or a path of an 
ant in ACO or a particle in PSO for optimization). ST 
for the first product on stage 1 is “0” as this represents 
the start of the production shift and the STs on the 
successive stages are just a summation of the respective 
previous PTs. 
 Each investigated product sequence is scheduled 
following the procedure shown in Figure 2. The 
scheduling conditions include a reconciliation of the 
calculated STs of the currently processed product with 
the capacities and busy times of the involved machines, 
to make sure that the no-wait constraint is not violated 
and the sequence is valid for the following optimization 
procedure.  

 

Proceedings of the International Conference on Modeling and Applied Simulation, 2014 
978-88-97999-40-9; Bruzzone, De Felice, Massei, Merkuryev, Solis, Zacharewicz Eds.  

32



Pick Element of (STj,mmax)
Calculation of STj,m:mmax-1

Inputs: Processing Times of 
Products on Machines (Matrix A)

Calculation of STj1,m1:mmax

Calculation of Possible STj,mmax

Scheduling 
Conditions

Matrix B Completed

j=jmax

False

True
(Next j)

 
Figure 2: Flow chart of modelling algorithm without 
optimization procedure 
 
Using the example data of Table 1 and defining that the 
processes “Dough rest” and “Proofing” are stages with 
unlimited capacity, matrices A and B will be obtained as 
shown in Figure 3, where A contains the processing 
times and B the starting times of products (row-wise) on 
the respective stages (column-wise), such that e. g. b4,4 

means that product “D” starts its proofing process 119 
min after the shift start. 
 

 
Figure 3: Example matrices A extracted from Table 1 
and B with the same product order 

 
To comply with the no-wait constraint, the processing 
start of some products has to be delayed, as can be seen 
in the third row of matrix B shown in Figure 3. The first 
machine would be available for product “C” at nine min 
after shift start, but starting the processing at this time 
would mean that the product has to be baked at 112 min 
after shift start. At this time the oven is blocked by 
product “B”, which is baked from 74-129 min after shift 
start and product “C” would have to wait, thus violating 
the no-wait constraint. 
 A real bakery production in Germany including 40 
different products and 26 different production stages 
was investigated in this study. Figure 4 shows the 
corresponding production line model. Modelling this 

production line as a permutation flow-shop leads to a 
total of 8.2 x 1047 (= 40!) different possible schedules. 

 

Preparation 
of 

Ingredients

Kneader 
1

Dough 
Rest

Dividing and 
Forming        

 (includes 7 
possible 
stages)

Proofing 
1

Baking 
1

Distribution

Kneader 
2

Kneader 
3

Proofing 
2

Freezer 
1

Long-time 
Proofing 

Baking 
2

Baking 
3

Stiffening
Refining 

2
DepanningPackaging

Freezer 
2

Refining 
1

Figure 4: Model of the investigated production 
 

The common way of a product would be to exit the 
production line as a baked good via the “Distribution” 
process. Nevertheless some products can exit the 
production e. g. without passing the baking process due 
to long-time proofing or being distributed as frozen 
dough pieces and thus do not influence the production 
after their specific final process step. The model 
therefore contains different exit points, shown as shapes 
with dashed lines in Figure 4. Any product following a 
long-time proofing procedure will be distributed or 
baked after the current work shift has finished and 
therefore exits at the “Long-time Proofing”. And finally 
products that are distributed frozen have to be stored in 
a freezer and thus exit the model at the “Freezer 1” or 
“Freezer 2” stage. 
 The capacities of the employed machines or stages 
have a crucial importance for the scheduling process. 
The production stages can roughly be grouped into 
stages with limited capacity and stages with (practically 
regarded) unlimited capacity. The latter can handle any 
amount of different products without blocking under 
common production conditions. In the modelled bakery 
shown in Figure 4 “Dough Rest”, “Proofing 1”, 
“Proofing 2”, “Long-time Proofing”, “Stiffening”, 
“Freezer 1”, “Freezer 2” and “Depanning” belong to the 
group of stages with unlimited capacity. “Baking 1” has 
a limited capacity of two and “Baking 2” of six, 
meaning that these stages can process two or six 
products (or product batches) simultaneously. All other 
stages of the model have a limited capacity of one and 
can process only one job at a time. 
 
2.2. Optimization procedures 
As a quality measure of the analysed product sequence 
at least one cost or objective function to be optimized 
must be defined prior to the actual optimization process. 
The minimization of the makespan of the production 
was chosen as objective function in this work. 
 The makespan (Cmax) represents the required time 
to complete a defined production goal and equals the 
highest end time (ET) of the products and thus can be 
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easily retrieved from matrix B and matrix A by 
summation of the start of the last production step of the 
last product (e. g. b6,5 in Figure 3) and the 
corresponding processing time (e. g. a6,5 in Figure 3). 
For the example shown in Figure 3 Cmax would thus be 
294 min (259 min + 35 min).  
 The computational time was restricted to a 
maximum of 15 minutes to make the optimization 
procedure feasible for usage prior to a work shift in a 
real production environment. To match this constraint it 
was decided in the MGA to limit the number of 
individuals to 100 and the number of generations to ten. 
Analogous in the ACO and PSO the number of 
ants/particles was limited to ten and the number of 
iterations to 100, respectively. 
 

2.2.1. Modified Genetic Algorithm 
The classical GA is primarily not considered to be 
applied to combinatorial scheduling problems. 
Therefore the GA used in this work was modified to 
make it suitable to solve the combinatorial sequencing 
problem. The conducted modifications follow the ideas 
of the New Genetic Algorithm (NGA) introduced by 
Ventura and Yoon (2013) and of partially matched 
crossover (PMX) by Goldberg and Lingle (1985).  

The first step consists of the calculation of the 
objective function values of all individuals of the initial 
population and their ordering according to the 
respective results. Afterwards the best 50 % of the 
population are selected for the mating and reproduction 
process. The mating in this MGA simply consists of 
coupling the selected individuals pair wise, such that the 
individual with the best objective function value is 
mated with the second best, the third best is mated with 
the fourth best and so on. As next step two offspring are 
created by each mated pair. 

The creation of these offspring is performed by a 
PMX operation. In contrast to the NGA (Ventura and 
Yoon 2013) four crossover regions were defined such 
that the jobs on positions 1-5, 11-15, 21-25 and 31-35 in 
the parent sequences were exchanged as well as the 
respective jobs included in these sections, to ensure that 
the offspring sequences represent permutations without 
job duplications. 

After the production of the offspring by PMX, 
mutation can occur with mutation probability of Mp = 
0.1. If mutation occurs, two jobs in the sequence are 
chosen at random with a uniform distribution and 
change their respective places. The progress of 
offspring creation in the employed MGA is illustrated 
in Figure 5, showing the recombination of the two 
parent sequences P1 and P2 to create one example 
offspring. 
 

 
Figure 5: Creation of Offspring in MGA 
 

The four crossover regions are separated by the three 
vertical dashed lines. After creating an offspring with 
recombined ‘genes’ mutation occurs (indicated by the 
dotted frame), causing two products to change their 
respective positions and creating a mutated offspring. 

 
2.2.2. Ant Colony Optimization 
Like GA, ACO is a nature inspired iterative 
optimization algorithm. In this case the activities and 
mechanisms observable in sedentary ant colonies are 
adapted, not the processes that happen during gene 
transfer in the reproduction of higher organisms. It is 
well known in biology that such ants often find the 
shortest and thus optimal way between a food source 
and their formicary over a certain time span.  
 The mechanisms behind this effect are also known 
and based on the special way of communication 
between ants via pheromones, a special group of 
evaporative biochemical molecules. If a foraging and 
randomly wandering ant finds a food source it heads 
back to its formicary, laying down a pheromone trail. 
Other ants crossing such a trail will stop wandering 
randomly and follow this trail to the food and start 
bringing it to the nest while also laying down 
pheromones and thus reinforcing the scent. With time 
the shortest and most frequently used way will thus hold 
the highest pheromone concentration and attracts the 
highest number of ants. Pheromones are not persistent 
and once a food source is exhausted, the previously 
marked and reinforced pheromone trails are less and 
less used and the scent dissipates over time. 
 In ACO an artificial ant “moves” by applying a 
local stochastic decision and while moving builds a 
possible solution to the given optimization problem, e. 
g. a product sequence as in the presented work. Figure 6 
shows the process of creating such a possible solution. 
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Figure 6: Modified ACO for the Production Planning 
Optimization 
 
The bold arrows indicate the chosen path of an ant and 
every position already visited is depicted grey and 
cannot be chosen any more. In every step the remaining 
possible paths to the next position are shown as arrows 
with dashed lines. 

This ant’s “way” and resulting cost function value 
are then used as pheromone information to direct the 
moves of “following” ants by influencing their 
stochastic decision making process. 
     The ACO algorithm applied to solve the production 
planning task by providing an optimized product 
sequence works with the following steps: 

 
1. Input parameters for ACO: cost function to be 

optimized (Cmax), number of ants (n), number 
of iterations (i), number of products (p), initial 
pheromone matrix (Pi). 

2. Initialize an ant (an,i) with random starting 
position (posp). This position represents the 
first product in the sequence. 

3. Move an,i to the next position according to a 
probability factor (pfp) (where pfp for an 
already “visited” posp = 0) and the pheromone 
trail in Pi. 

4. Repeat 3. until all posp are “visited” and thus a 
possible solution / product sequence is created 
for each an,i. 

5. Evaluate each ant’s fitness (cost function 
value). 

6. The sequence of an,i with the best value (sbest) 
represents the best way so far and is used to lay 
pheromone upon in its representation in Pi. 
Thus an,i in following iterations are more 
attracted to this way / sequence. 

7. Evaporate pheromone according to an 
evaporation factor (ef) with 0 < ef < 1 to 
update Pi into Pi+1 following equation (1): 
 
Pi+1 = Pi * ef                   (1) 
 
The value of ef influences how randomly an,i 
are searching for an optimal product sequence. 
A low value will lead to a more random 

creation of new product sequences, a high 
value will lead to rather preserving the best 
sequence found so far and smaller changes 
thereof.  

8. Repeat 2. – 7. until an exit criterion (maximum 
i, time limit, result quality, etc.) is met. 

 
2.2.3. Particle Swarm Optimization 
There are many examples in nature where animals are 
forming swarms for higher individual safety or better 
chances to locate food sources. In such a swarm each 
individual member searches for a food source by itself 
while staying within a certain range to its neighbours 
and thus maintain the swarm structure. Once a swarm 
member finds food it will move towards it, attracting 
other swarm members to move in the same direction. 
The more individuals move to a food source and thus 
influencing the motion of their swarm neighbours, the 
whole swarm will move to a certain location over time 
depending on the ratio of moving individuals compared 
to the swarm size.  
 The “swarm” in PSO consists of particles, possible 
solutions (e. g. product sequences as in the presented 
work) of a given optimization problem, that represent 
the individual swarm members in nature. During the 
iterations of the algorithm the particles are “flying” 
through the search space and due to a frequent update 
and comparison of the swarm’s best sequence so far and 
each particle’s current value of the cost function, move 
over time to the optimal solution of the given 
optimization problem. 

The PSO algorithm adapted for the bakery 
scheduling problem works as follows: 

  
1. Input parameters for PSO: cost function to be 

optimized (Cmax), number of particles (or 
swarm size), number of iterations (i). 

2. Initialize a swarm of particles (xi) with random 
positions (pi) and velocities (vi). 

3. Each xi represents a possible product sequence 
and the predefined initial vi defines how each 
of these sequences is changed from the initial 
to the next iteration. 

4. Evaluate each particle’s fitness (cost function 
value). 

5. Compare particle’s fitness with its personal 
best value (pbest), update pbest if current 
fitness value is better and set pbest position of 
the particle to the current position. 

6. Compare particle’s fitness to swarm’s best 
value (gbest), update gbest if current fitness 
value is better and set gbest parameters to the 
according particle’s parameters. 

7. Change particle’s velocity and position 
according to equations (2) and (3) respectively: 
 
vi = vi + C1 * (pbesti - xi) + C2 * (gbest - xi) 
(2) 
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 xi = xi + vi                                                      
(3)  
C1 and C2 are two positive constants in the 
original PSO and in this application equal “1” 
since the velocity is used to create a new 
product sequence. 

8. Repeat 3. – 6. until an exit criterion (maximum 
i, time limit, result quality, etc.) is met. 

 
3. RESULTS 
MGA, ACO and PSO were used separately to perform 
21 separate optimization runs each. Figures 7 and 8 
show the results as Cmax and the reduction of Cmax 
compared to the initial value, respectively. The 
objective function value of the initial product sequence, 
which is the representation of the real production 
schedule used in the modelled bakery, for Cmax was 
1,380 min. 
 

 
Figure 7: Optimization Results for Cmax using Different 
Algorithms 
 

 
Figure 8: Reduction of Cmax in % Compared to Initial 
Cmax Value 
 
The results show that each algorithm’s optimization run 
found an optimized solution for Cmax. With mean values 
for Cmax of 1,267 ± 5 min (reduction of 8.18 ± 0.35 %) 
for MGA, 1,269 ± 4 min (reduction of 8.05 ± 0.26 %) 
for ACO and 1,271 ± 7 min, all three algorithms 
performed quite similar. To further analyse if significant 
differences in the algorithm performances can be 
obtained, a one-way ANOVA (ANalysis Of VAriance) 
with significance level α = 0.05 was performed. A 

significant difference in the results is given if the 
resulting p-values of the ANOVA are smaller than the 
significance level α and the smaller the p-values the 
higher the significance of the differences.  
 The resulting p-values show that the results for 
optimizing Cmax of MGA and ACO have no difference 
(p = 0.18), as well as the results of ACO and PSO (p = 
0.15). The comparison of the results of MGA and PSO 
instead seems to show a difference with MGA 
performing better (p = 0.03).  
 The MGA provides the overall best solution of all 
optimization runs for Cmax with a reduction of 8.62 % 
(or 119 min) in four out of 21 runs, PSO provides the 
overall worst solution with a reduction of 7.10 % (98 
min). Still all algorithms even in their worst case 
performances provide significantly better results for 
Cmax than the initial sequence. This means that the 
production goal of the analysed shift could be reached 
considerably faster, saving between 98 and 119 min of 
shift length depending on the optimization result, and 
thus saving a significant amount of man hours. This 
becomes especially clear if one has in mind that the 
reduction of shift length has to be multiplied with the 
number of involved staff members to calculate this 
reduction of man hours.  
 With a mean computational time of 749 ± 28 s, 
MGA tends to run slightly faster than ACO with a mean 
computational time of 775 ± 6 s and PSO with 783 ± 17 
s. ANOVA results confirmed this, computational times 
of MGA and ACO (p = 2.0x10-4) and MGA and PSO (p 
= 2.7x10-5) show a highly significant difference, 
respectively. The differences in the computational times 
of ACO and PSO could not be determined clearly, the 
ANOVA result provided a p-value of p = 0.0455 and is 
thus just slightly below the significance level of α = 
0.05. 
 For a better evaluation of the obtained results, 
additional optimization runs without time restrictions 
where performed using 2,000 individuals and 500 
generations in MGA and 2,000 ants/particles and 500 
iterations in ACO/PSO. All three algorithms provided 
1,261 min as best result for Cmax. 

 
4. DISCUSSION 
The obtained results are distributed in a certain range, 
indicating that the sequences obtained in most of the 
optimization runs have to be local optima. The overall 
best result (1,261 min) obtained by using MGA seems 
to represent the global best solution for the problem, as 
the optimization runs without time restriction also 
provided this result for all employed optimization 
methods. This objective function value, that occurred 
seven times (in four MGA runs and the three 
optimization runs without time restriction), was 
provided by four different product sequences.  
 As with every modelling and optimization task, the 
quality of the obtained results is directly dependent on 
the quality and completeness of the data it is based 
upon. Therefore the optimization results presented have 
to be regarded critical due to the limited amount of real 
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production data available. The optimization of Cmax is 
based only on the data for the bread and bread roll 
production lines of the case study bakery, possible 
interactions with other production departments at the 
baking stages would probably affect the presented 
results, like the decrease of Cmax by 7.10-8.62 % (or 98-
119 min). Here more data has to be collected from the 
bakery involved in this work. Also the participation of 
additional companies providing their production data 
would further enhance the progress of this project. 
 Nevertheless even the worst case results for the 
optimization of Cmax show significant benefits 
compared to the initial product sequence’s objective 
function value, regardless of the applied methods. 

Since the initial product sequence represents the 
real production schedule, the calculated results for the 
respective starting and end times of the products using 
the model presented in section 2.1.1. were used for 
verification. These results were checked and approved 
to be correct in respect to the real production progress 
by the shift leaders of the bakery modelled in this work. 
Thus the model used seems to be valid and provides 
reliable simulation results. 

 
5. CONCLUSION AND OUTLOOK 
The application of numerical modelling and 
optimization algorithms to develop a production 
planning procedure capable of solving the scheduling 
task in a bakery proved to be successful. A model of the 
production processes was designed in MATLAB, that 
schedules the workflow of a given product sequence 
according to defined decision parameters. An MGA, an 
ACO and a PSO have been used separately to solve the 
optimization task with respect to the optimal makespan 
of the production.  
 The applied methods proved capable of solving the 
given optimization problems in a computational time 
restricted to a maximum of 15 min, thus providing a 
scheduling tool that can be employed in a limited time 
frame prior to a production shift start.  
 After appropriate customization of the production 
model it is now possible for decision-makers in baking 
companies to approach their scheduling task in a fast 
and promising way capable for usage in praxis, based 
on the developed modelling and optimization 
procedure. Since even the worst case results of the 
applied methods yielded significant benefits compared 
to the results given by the initial product sequence, 
using such a mathematical procedure would most 
probably lead to a considerable increase of baking 
companies‘ efficiency.  
 Running the developed procedure on a PC with 
higher performance, to calculate more iterations or 
bigger ant/particle swarms or population sizes in the 
same computational time restriction, or simply allowing 
more time for the calculation, would be a promising 
way to further enhance the obtained results. 
 Another succeeding step will be to investigate the 
whole production of the modelled bakery, covering all 

existing different production departments to provide a 
companywide optimization approach.  
 Simultaneously we are also trying to convince 
additional bakeries to become new project partners and 
to provide their production information for new 
modelling and simulation studies. 
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