
MODEL TRANSFORMATION FROM BPMN FORMAT TO OPENERP WORKFLOW

Zhe Liu (a), Gregory Zacharewicz(b)

University of Bordeaux, Lab. IMS, UMR 5218, 33405 Talence, France.

(a)liuzhe.ch@gmail.com, (b)gregory.zacharewicz@ims-bordeaux.fr

ABSTRACT
This article presents a model transformation from a
conceptual modeling language to a platform-specific
model. Business people do not have IT background
when creating views of their process nevertheless at the
end they look at implementing their design. The idea is
to support the model transformation from concept to
implementation. The source model is BPMN (Business
Process Model and Notation) that is a graphical
representation used for conceptual modeling in business
process management. The target is OpenERP that is an
open-source enterprise resource planning (ERP) and
customer relationship management (CRM) software
which consist in two functional modules, end-user
processes and workflow engine. In this research, using
model-driven architecture, a mapping relation is built up
to bridge the two different models. And with the help of
XSLT, the transformation can be achieved, tested and
validated.

Keywords: model transformation, BPMN, workflow,
OpenERP

1. INTRODUCTION
Business process management and workflow
management are both common and important
approaches in business process. They help people
intuitively understand what to do in business process.

Among the many business process management
methods, BPMN is a symbolic language used for
specifying business processes using a process models.

In the meantime, OpenERP is the most popular
ERP software for European small and medium
enterprises. Today it has a number of collaborators and
participants all over the world (Pinckaers et al. 2013).

As mentioned above, OpenERP is widely used in
European SMEs, which means it has a large amount of
users. However, considering about business process
modeling, most people are still accustomed to use
BPMN. Converting BPMN files to OpenERP workflow
will extend a new function in business process
management of OpenERP and help people have a better
understanding of their business process, have a better
communication and cooperation, improve efficiency,
and reduce mistakes and omission.

2. BACKGROUND

2.1. Workflow
There are many definitions of workflow given by
different persons or organizations. To define standards
for the interoperability of workflow management
systems, an association, the Workflow Management
Coalition (WfMC), founded in 1993.

According to the definition given by WfMC
(1996):

Workflow is “the automation of a business
process, in whole or part, during which documents,
information or tasks are passed from one participant
(also called resource, which means a human or
machine) to another for action, according to a set of
procedural rules.”

Its synonyms are workflow management,
workflow computing and case management.

2.2. Process
As for process, it has different meanings in different
domains. To find an accepted definition, we can see the
one defined by WfMC (1996):

A process is “the representation of a business
process in a form which supports automated
manipulation, such as modelling, or enactment by a
workflow management system.”

And as for business process, defined by WfMC, it
is “a set of one or more linked procedures or activities
which collectively realize a business objective or policy
goal, normally within the context of an organizational
structure defining functional roles and relationships.”

2.3. BPMN
BPMN is flow-chart based notation for defining
business processes. BPMN is an agreement between
multiple modeling tools vendors, who had their own
notations, to use a single notation for the benefit of end-
user understand and training. (Stephen 2004)

BPMN consists of a set of graphical elements. The
four basic kinds of elements are flow objects (events,
activities and gateways), connecting objects (sequence
flow, message flow and association), swimlanes (pool
and lane) and artifacts (data object, group and
annotation).

Proceedings of the International Conference on Modeling and Applied Simulation, 2014
978-88-97999-40-9; Bruzzone, De Felice, Massei, Merkuryev, Solis, Zacharewicz Eds.

225

mailto:liuzhe.ch@gmail.com
mailto:gregory.zacharewicz@ims-bordeaux.fr

2.4. Signavio
With the widespread use of BPMN, many BPMN
drawing software and plugins are released. Apart from
Visio as we all know, EdrawMax, intalio designer,
bonitaBPM, Signavio are all BPM drawing tools.

In this project, we choose Signavio web as the
source tool from the BPMN drawing tools mentioned
above. The Signavio Process Editor is a network-based
business process modeling tool.

User can export drawing in different formats,
Signavio archive (SGX), BPMN 2.0 XML, PNG, SVG
and PDF in Signavio, which provides many choices.
Considering the OpenERP workflow format, the output
format of Signavio is more suitable and easy to use.

2.5. OpenERP
OpenERP system provides a flexible modular
architecture, including financial management,
purchasing/sales management, inventory management,
MPR, CRM, human resource management, point-of-
sale management, project management, etc. (Xiao 2010).

Among all the functional modules of OpenERP,
business process management has two parts, one is end-
user processes, and another is workflow engine. In this
topic, we also consider these two aspects.

2.5.1. OpenERP workflow
Workflows represent the company's different document
flows. They are used to define the behavior of a given
file. Developers and system implementers use
workflows to determine which object perform the
actions, which actions should be performed and at
which moments the actions performed.

A workflow is expressed by a directed graph, in
which the nodes are called "activities" and the arrowed
lines are called "transitions".

Workflow activities represent the nodes of
workflows. These nodes are the actions to be executed.
They state the work that needs to be performed in the
OpenERP server, such as modifying the content of
some records, or sending emails.

Workflow transitions are the conditions to be
satisfied to go from one activity to the next one; they
control how the workflow progresses from activity to
activity. Transitions are represented by one-way arrows
joining two activities.

In OpenERP workflow format, three main
elements exists which are workflow, workflow activity
and workflow transition.

2.5.2. OpenERP process
In OpenERP, enterprise process is a view, that is to say,
it is a display interface, rather than a real flow. The
actual flow is workflow. So, enterprise process is a
display view in a different form, like the form view.
While workflow is a function that changes the object’s
state, not a view which is used to display. However, the
difference between enterprise process and other views is
that each node in enterprise process can be associated
with different objects. As a consequence, it can present

action menu of multiple objects at the same time in
enterprise process, unlike the form view which only can
show one object and its related functions (report,
wizard, etc.) (Xiao 2010).

Processes form a structure for all activities that
enable the company to function effectively. Processes
represent workflows across all of a company and the
documents associated with the workflows. For this
reason, user processes are associated to workflows.
Processes are used by end-users to locate an action for
more complete handling, and to help them understand
the problems which have not been handled in
OpenERP.

Corresponding to workflow activity and workflow
transition of workflow, process has process node and
process transition to present activities and transitions.

3. GENERAL DESIGN

3.1. MDA
The Model-Driven Architecture (MDA) is a framework
based on a set of OMG standards that uses models to
describe their transformation into other models or
complete systems (Mellor et al. 2003).

The OMG’s standards include UML (Unified
Modeling Language) modeling notation, MOF (Meta
Object Facility), XMI (XML Metadata Interchange),
CWM (Common Warehouse Metamodel), CORBA
(Common Object Request Broker Architecture)
middleware, etc. These standards define the key
concepts of the MDA.

3.1.1. Models in MDA
According to the different levels of abstraction, MDA
identifies three model types, computation independent
model (CIM), platform independent model (PIM) and
platform specific model (PSM), which are also
mentioned above. To make it more clearly, next, each
level will be introduced them one by one.

A computation independent model doesn’t show
any details of the system, since it is defined by the
business requirements. CIM is also called “domain
model”. It focuses on the requirements of the systems.

A platform-independent model is defined by
Mellor et al. (2003) as a model that contains no
reference to the platforms on which it depends. PIM is
used to present the aspects of system characters that are
unlikely to change with the change of the platform
which the model depends on (Robert and Bernhard
2007).

The OMG defines a platform as “a set of
subsystems and technologies that provide a coherent set
of functionality through interfaces and specified usage
patterns”.

A platform-specific model is defined by Mellor et
al. (2003) as the result of weaving a PIM with the
platforms on which it depends. PSM describes a system
in which platform specific details are integrated with the
elements in a PIM.

Proceedings of the International Conference on Modeling and Applied Simulation, 2014
978-88-97999-40-9; Bruzzone, De Felice, Massei, Merkuryev, Solis, Zacharewicz Eds.

226

In general, when developing an MDA-based
application, the first step is to build a platform
independent model (PIM), conveyed by UML on the
basis of the proper core model. Platform architects then
convert this common application model into one target
platform which is a specific platform such as CCM,
EJB, or MTS. Standard mappings allow tools to
perform automatically some of the transformation.

The work in the following stage is to generate
application code. The system needs to produce several
types of code and configuration files. (Soley 2000).

The essence of MDA is to distinguish platform-
independent model and platform-specific model.

3.1.2. Models in this case
In this topic, we focus on the process from PIM to PSM
without considering CIM.

Generally, the model mapping process goes from
PIM to PSM, finally to coding.

Figure 1 Model mapping in MDA of this project

However, in this transformation, it begins from

PIM, after building the mapping relationship between
PIM (BPMN in this case) and PSM (OpenERP
workflow and business process in this case), it firstly
goes to code (workflow and business process XML
files) according to the mapping and then generates PSM
from XML code with the help of OpenERP platform.
See figure 1.

3.2. Model mapping
In the process of the development based on MDA, the
transformation between the models is a very important
part.

Before transforming PIM, it is necessary to
identify the target platform. On the basis of the
platform, then designers identify the metamodels and
the mapping techniques which will be used with the
metamodels (Mellor et al. 2004).

The following part explains the related concepts
and design in the mapping process.

3.2.1. Model and metamodel
Defined by Mellor et al. (2003), a model is a coherent
set of formal elements describing something (for
example, a system, bank, phone, or train) built for some
purpose that is amenable to a particular form of
analysis, such as communication of ideas between
people and machines. In other words, a model is an
abstraction of the real objects or processes.

Each model, both the source model and the target
model, is expressed in a sort of language. The target
model’s language may define different objects or
processes from the source model’s language. To
describe the models better, we need to define the two
languages in one way or another by building a model of
the modeling language — a so-called metamodel. A
metamodel defines the structure and well-formed rules
of the model confirms to it (Tom and Pieter 2006).
Which means, as a model is an abstraction of the real
world, a metamodel is an abstraction of the model.

Figure 2 Model, metamodel, and platform.

See figure 2. The OMG’s Meta Object Facility

(MOF) defines a model as an instance of a metamodel.
A metamodel can describe a particular platform.

3.2.2. Mapping and model transformation
A model transformation defines a relation between two
sets of models. (Robert and Bernhard 2007) If one set of
models is called as a source model and the remaining
one as a target model, then an automated process will
take the source models as input and produce the target
models as output, according to the transformation rules.
We call this process as model transformation (Kleppe et
al. 2003; Sendall and Kozaczynski 2003).

To realize the transformation, we build a “bridge”
from source models to target models. All model
transformations performed are based on to the generic
transformation architecture (see figure 3) (Jouault et al.
2008). The “bridge” is a mapping technique (Bazoun et
al. 2013). A mapping between models takes one or
more models as its input and produces one output
model. The mapping technique describes rules for the
transformation. These rules are described at the
metamodel level.

Figure 3 Transformation architecture

In this project, we make a new transformation from

BPMN to OpenERP workflow.
In consideration of this case, figure 3 also shows

instances of PIM and PSM models and metamodels, and
how these instances relate to one another. The source
model here refers to the PIM model instance, BPMN.
The target models refer to the PSM model instances,

Proceedings of the International Conference on Modeling and Applied Simulation, 2014
978-88-97999-40-9; Bruzzone, De Felice, Massei, Merkuryev, Solis, Zacharewicz Eds.

227

OpenERP workflow and process, which contains the
semantic information of the original PIM model
instance, as well as the information added as a result of
the mapping technique. Because the PSM metamodel
describes a platform (here is OpenERP), the PSM also
includes the elements that workflow and process depend
on in OpenERP platform.

As mentioned above, the model mapping in this
case is a little different from the general model mapping
in MDA. See figure 4.

Figure 4 Model transformation in this project

To realize the transformation, first, their mapping

relationship needs to be established. In accordance with
the mapping, with the help of coding, the original
BPMN files can be transformed to the target model
files. Then, depending on the OpenERP platform,
workflow graphs and process graphs can be generated.

3.2.3. Mapping relation in this case
Core elements of BPMN associated with workflow are
flow objects (event, activity and gateway) and sequence
flow.

To describe workflow, OpenERP workflow has
three elements which are workflow, workflow activity
and workflow transition. In general, pool matches

workflow. Event and activity (task and sub-process)
correspond to workflow activity. Sequence flow and
gateway equals to workflow transition.

To describe process, OpenERP process also has
three elements which are process, process node and
process transition. Process is similar with workflow; the
paper doesn’t focus too much on describing it.

Even though BPMN and workflow are both used to
model the business process, they are still two different
modeling language and have totally different file
formats. It is not closely coincident between their
elements and attributes. The node activities and the
transmission method to the next node of the flow that
the two modeling methods describe in the business
process are not exactly in the same way. Many concepts
of them are not overlapping each other.

Figure 5 describes the corresponding relation
between BPMN and OpenERP workflow and process in
concept, and builds the mapping between source
metamodel and target metamodel.

From the workflow perspective, it only has two
major elements (namely, workflow activity and
workflow transition) to describe business process, there
are yet many sub-elements or attributes to make further
explanation or give limiting conditions.

For workflow, in more details, “id” or “name”
attributes of elements in BPMN format correspond to
“id” or “name” attributes of related elements in
workflow format. Start event means the value of
workflow activity’s “flow_start” attribute is “True”, and
end event means the value of workflow activity’s
“flow_stop” attribute is “True”.

Figure 5 Mapping in concept

Proceedings of the International Conference on Modeling and Applied Simulation, 2014
978-88-97999-40-9; Bruzzone, De Felice, Massei, Merkuryev, Solis, Zacharewicz Eds.

228

Gateway’s attribute “gatewayDirection” is also
used to describe workflow activity’s attributes, which
are split_mode (gatewayDirection= "Diverging") and
join_mode (gatewayDirection="Converging").
Sequence flow’s “sourceRef” attribute corresponds to
“act_from” attribute of workflow transition, and
sequence flow’s “targetRef” attribute corresponds to
“act_to” attribute of workflow transition.

For some elements in BPMN, such as data object
and text annotation, there is no corresponding content in
workflow. And for some other elements in BPMN, we
can see some contents which describe the same
concepts in workflow. However, the corresponding
contents in workflow are not node elements just like in
BPMN, but some sub-elements or attributes describe
the node elements. For instance, about how to describe
the trend of divergence and convergence in the business
process flow. In BPMN format, we use
“gatewayDirection” attribute of gateway element to
describe the trend of divergence and convergence. But
in workflow, we use “join_mode” and “split_mode”
attributes of workflow activity to indicate whether the
activity node is going to diverge or converge the flow.
This makes the node describes flow divergence and
convergence become a child node of the activity node
from a sibling node.

Some of these attributes are hard, even impossible
to map. For example, “kind”, an attribute of workflow
activity which shows the action type the system should
execute when flow gets to this node, has four values in
total, “dummy”, “function”, “subflow” and “stopall”.
Among the four values, “function” is not able to be
simply mapped from BPMN. If the value of “kind”
equals to “function”, it indicates to execute Python code
defined in “action”, and execute “server action” defined
in “action_id”. Since the two attributes, “action” and
“action_id”, are being used only when the value of
“kind” equals to “function”, they are also difficult to
map. The common case is, define a “write” method in
“action”, and modify the state of the related object. For
the “function” type nodes, Python code defined in
“action” will return “False” or a client action id.

3.3. XSLT
Since Signavio web has been choosen as the source
tool, only the output format of Signavio web is
considered as source model.

In OpenERP, the workflow input and the process
input are both in a XML format, in this case, we choose
BPMN 2.0 XML as Signavio exported format for
simplicity.

As the source format and the target format are both
XML formats, XSLT is used to achieve the
transformation.

XSL (Extensible Stylesheet Language) is a
language which is used to present XML data in a
readable format. XSLT is a language for transforming
XML documents into other forms, such as XML
documents in another format, text documents, HTML
documents, XHTML, or into XSL Formatting Objects

which can then be converted to PDF, PostScript and
PNG. The original document is not changed; rather, a
new document is created based on the content of an
existing one (Clark 1999).

To perform the XSL transformation, the
programmer firstly needs to provide one or more XSLT
stylesheets, which are also XML documents and
describe the transformation rules that the original XML
documents should follow, to translate the original XML
document into an XML document conforming to the
syntax in another format. The XSLT processor then
reads in the original XML documents, performs
transformations using XSLT stylesheets and produces
the output documents needed. See figure 6.

Figure 6 XSLT

As figure 6 illustrates, the original XML data is

input into the processor as one input, and an XSLT
stylesheet is input as a another input. The output will
then be saved directly in the local folder (or a web
browser in other situation) as an output XML document.
The XSLT stylesheet provides XML formatting
instructions, while the XML provides raw data (Burke
2001).

To transform the imported BPMN file to workflow
format XML file and process format XML file, XSL
code has been designed to process input files.

4. IMPLEMENTATION
In this project, to perform the mapping transformation
from BPMN to coding, Java is used. There are four
ways to operate XML in Java, DOM (Document Object
Model), SAX (Simple API for XML), DOM4J, and
JDOM (Java Document Object Model). DOM and SAX
are basic means to parse XML, DOM parses XML
based on the tree structure of the document, while SAX
parses XML based on events stream.

With the help of these methods, there exist
different XSLT processors. Among them, Saxon was
chosen to be used for Java and .NET.

After developing the program, the transformation
can be performed. See the realization process in figure 7

As figure 7 shows, with the business process
diagram created in Signavio web, firstly export the
diagram in BPMN 2.0 XML format from Signavio, then
the original XML document is obtained as one input of
the Saxon processor.

Proceedings of the International Conference on Modeling and Applied Simulation, 2014
978-88-97999-40-9; Bruzzone, De Felice, Massei, Merkuryev, Solis, Zacharewicz Eds.

229

Figure 7 Implementation steps

Open the application and choose the source XML
document to be transformed, the source document will
be shown in the left pane. The XSLT stylesheets are
designed before and provided in the application as the
second input of the Saxon processor. Clicking on the
button “workflow” or “process”, the application will
automatically generate the transformed XML document
confirms to OpenERP file format (workflow or
process), which will be shown on the right pane. Save
the file in the proper folder and update the related
module in OpenERP, the workflow or process graphs
can be generated easily.

5. CONCLUSION
The paper presented a means of converting PIM BPMN
to OpenERP workflow and process at PSM, and it gave
an original mapping relation between BPMN and
OpenERP workflow and process. This work has
permitted to perform the XML files’ transformation
with the help of the code, thus it achieves the
implemented conversion from BPMN to OpenERP
workflow and process.

The next step of the work will consist in the
reverse transformation from OpenERP workflow and
process to BPMN.

REFERENCES
Bazoun H., Zacharewicz G., Ducq Y., Boye H.:

Transformation of extended actigram star to
BPMN2.0 and simulation model in the frame of
model driven service engineering architecture.
SpringSim (TMS-DEVS) 2013: 20

Burke E. M., 2001. Java and XSLT [M]. O’Reilly
Media, Inc.

Clark J, 1999. XSL transformations (XSLT) version
1.0. W3C recommendation [J].

France R., Rumpe B., 2007. Model-driven development
of complex software: A research roadmap[C].
2007 Future of Software Engineering. IEEE
Computer Society: 37-54.

Jouault F., Allilaire F., Bézivin J., Kurtev I., 2008.
ATL: A model transformation tool [J]. Science of
computer programming, 72(1): 31-39.

Kleppe A, Warmer J., Bast W., et al., 2003. The model
driven architecture: practice and promise [J].

Mellor S. J., Clark A. N., Futagami T., 2003. odel-
driven development: guest editors' introduction [J].
IEEE software, 20(5): 14-18.

Mellor S. J., Scott K., Uhl A., Weise D., 2004. Model-
driven architecture [J]. Computing Reviews,
45(10): 631.

Mens T., Van Gorp P., 2006. A taxonomy of model
transformation [J]. Electronic Notes in Theoretical
Computer Science, 152: 125-142.

Pinckaers F., Gardiner G., Van Vossel E., 2013. Open
ERP, a modern approach to integrated business
management (Release 7.0.0).

Sendall S., Kozaczynski W., 2003. Model
transformation: The heart and soul of model-
driven software development [J]. IEEE software,
20(5): 42-45.

Soley R., 2000. Model driven architecture [J]. OMG
white paper, 308: 308.

WfMC, 1996. Workflow Management Coalition
Glossary and Terminology. Available from:
http://www.aiai.ed.ac.uk/project/wfmc/ARCHIVE/
DOCS/glossary/glossary.html

White S. A. 2004. Business Process Modeling Notation
v1.0. For the Business Process Management
Initiative (BPMI).

Xiangfu X, 2010. OpenERP applications and
development foundation.

Proceedings of the International Conference on Modeling and Applied Simulation, 2014
978-88-97999-40-9; Bruzzone, De Felice, Massei, Merkuryev, Solis, Zacharewicz Eds.

230

