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ABSTRACT 
Simulation-based optimization (SO) has been applied in 
many different application areas with the objective of 
searching for the settings of controllable decision 
variables that yield the minimum (maximum) expected 
performance of a stochastic system. Here we propose an 
SO method to deal with computer/network security 
related to systems for conditional access. The basic idea 
consists in designing and developing a simulation-based 
optimization tool to evaluate cyber attack tolerance 
along with the related performance degradation. In 
particular, we optimize training-based recovery actions 
aimed at restoring the target quality of service level for 
the services under attack while enhancing the 
knowledge of the human resources (i.e. analysts) 
engaged in defending cyber security assets. An 
illustrative example is presented to show how system 
performance varies according to whether the analysts in 
a cyber defense team (i.e. the controllable decision 
variables) are called to work alone or in consultation 
with other analysts. 

 
Keywords: simulation optimization, cyber security, 
team formation and collaboration 

 
1. INTRODUCTION 
Simulation-based optimization (SO) is the practice of 
searching for the settings of controllable decision 
variables that yield the minimum (maximum) expected 
performance of a stochastic system that is represented 
by a simulation model (Fu and Nelson 2003). In an SO 
procedure, a structured iterative approach calls an 
optimization algorithm to decide how to change the 
values for the set of input parameters (i.e. configuration) 
and then uses the responses generated by the simulation 
runs to guide the selection of the next set. The logic of 
this approach is shown in Figure 1. 

SO methods have been applied to applications with 
a single objective, applications that require the 
optimization of multiple criteria, and applications with 
non-parametric objectives. (Carson and Maria 1997) 
review the area of simulation optimization by providing 
a critical review of the methods employed and 

presenting applications developed in the area. A similar 
work is somewhat proposed in (Wang and Shi 2013), 
but without major differences in content. Fields of SO 
application include, but are not limited to, energy, 
environment, economics, health, manufacturing, high 
tech, education, government, and defense. 
 

 
Figure 1: Logic of an SO Procedure 

 
Whatever be the application field of interest, the 

appeal of SO is that it allows one to work with 
essentially arbitrarily complex simulation models, 
freeing the modeler from the tyranny of restricting 
model complexity to tractable forms (Pasupathy and 
Henderson 2011). In (cit. op.), the authors develop and 
promote a library (www.simopt.org) of over 50 
simulation optimization problems intended to spur 
development and comparison of simulation-
optimization methods and algorithms with respect to 
practical guarantees of performance. 

To our knowledge, SO applied to cyber security 
has not received great attention in the past literature. 
(Fischer et al. 2010) present an effective simulation 
methodology called optimal splitting technique for rare 
events (OSTRE) with applications to cyber security. On 
one side, a splitting methodology is used to create 
separate copies of the simulation whenever it gets close 
to the rare event in order to multiply the promising runs 
that are “near” the rare event and, thus, improve the 
efficiency of the simulation. On the other, the notion of 
optimal computing budget allocation is applied to 
determine a good allocation of simulation runs at the 
intermediate levels (i.e. levels measure proximity to the 
rare event). The overall methodology is applied to 
simulate the link performance of an Internet Protocol 
(IP) network under a worm attack where the worm 
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propagation creates a denial of service in many parts of 
the Internet and, thus, changes the traffic loading on the 
network. (Masi et al. 2011) extends (Fischer et al. 2010) 
by studying the sensitivity of the benefit of splitting to 
the number and location of the levels and also 
examining equal-allocation splitting. 

(Zhang et al. 2012) present a learning environment  
to provide users with a unique way of improving their 
understanding of cyber intelligence with respect to the 
identification, tracking, analysis and countering of 
security threats in the cyberspace. In their system, a 
simulation engine drives the environment dynamics and 
changes; an optimization engine based on a multi-
objective genetic algorithm implements decision 
making mechanisms; and data mining techniques 
provide for adaptation. 

(Kiesling et al. 2013) introduce an approach that is 
based on an adversary-centric view and combines 
modeling and simulation-optimization techniques to 
detect ongoing attacks and prevent their successful 
execution. On the simulation side, human adversaries 
are represented as agents that make active decisions in 
attacking a system by means of attack patterns (e.g. 
brute force, SQL injection, social attack, spearfish 
attack, keylogger, and backdoor installation), 
deliberately exploiting dynamic interactions of 
vulnerabilities. On the optimization side, a Multi-
objective genetic algorithm metaheuristic is introduced 
to optimize information systems and enable decision-
makers to study how its security may be improved (e.g., 
by adding physical, technical, operational, and 
organizational security controls) while trading off 
multiple objectives (e.g., effectiveness against different 
types of adversaries, cost, risk, awareness of attacks). 
The overall model returns non-dominated efficient 
portfolios, i.e., there is no other portfolio with equal or 
better values for all objectives and a strictly better value 
in one of the objectives. 

In our work we focus on computer/network 
security related to systems for conditional access by 
which we refer to digital systems that administer certain 
rights of their users pertaining to the access of 
documents, confidential data or, even more importantly, 
digital payment systems. Our ongoing research activity 
currently consists in designing and developing a 
qualitative and quantitative simulation-based 
optimization tool to evaluate attack tolerance, along 
with the related performance degradation. In particular, 
we optimize training-based recovery actions aimed at 
restoring the target quality of service level for the 
digital services under attack while enhancing the 
knowledge of the human resources (i.e. analysts) 
engaged in defending, alone or in cooperation with 
others, the cyber security assets to which they are 
assigned. 

The rest of the paper is organized as follows: the 
statement of the problem is presented in section 2. In 
section 3, we present the meta-heuristic technique for 
the optimization of the controllable decision variables 
sets. Section 4 illustrates the practical usefulness of the 

tool by means of optimizations for a sample scenario. 
Conclusions and directions for further research 
investigations are presented in Section 5. 
 
2. PROBLEM STATEMENT 
Digital service systems are a fast-growing IT market 
area in which data exchange, transactions and payments 
are increasingly implemented by using advanced 
technologies, devices and network architectures (e.g. 
cloud computing, mobile devices, etc.). Within this 
context, cyber security has become an “enabling factor” 
for the use of digital systems, due to the fact that the 
comprehension and control of risk scenarios is 
assuming a particularly critical role, especially because 
of the latest emerging risk characteristics. These can be 
summarized as large-scale network attacks, associated 
with either fraudulent or denial-of-services activities, 
that exploit the increased vulnerability associated with 
new technologies (such as smartphones), growing 
availability of cloud services and infrastructure 
virtualization. 

In the above market scenario, a major response can 
certainly come from deploying cyber defense security 
analysts. The main job of a cyber defense security 
analyst entails auditing computer networks and 
information systems for vulnerabilities, developing 
solutions for security issues and investigating security 
breaches. These analysts are also often responsible for 
training both (junior) co-workers and clients with 
respect to the best computer security practices. 

In fulfilling the major of the above purposes, 
besides taking appropriate off-the-shelf preventive 
measures by installing firewalls and anti-virus software, 
a security analyst monitors server logs and network 
traffic for unusual or suspicious activity or data flow, 
often with the support of automation software and 
applications designed to detect and filter intrusion. 
Obviously, in a corporate-based perspective the 
contribution to providing an efficient protection of the 
cyber assets cannot be delivered regardless of the types 
of skills (e.g. the ability to carry out triage analysis, 
escalation analysis, correlations analysis, forensic 
analysis as described in (D’Amico and Whitley (2007)) 
and levels of skills (e.g. expert, average and novice) 
possessed by the analysts. As a result, both company 
activity scheduling and knowledge-sharing policies 
among analysts must undergo a systematic approach. 
To begin with, these activities require the formalization 
of skill types and levels. If different types of skills are 
defined with letters (e.g. 5 different types of skills are 
labeled from “A” to “E”) and different levels of skills 
are defined with numbers (e.g. expert level is 3, average 
level is 2 and novice level is 1), then the cyber defense 
skill map can be formalized by means of a 2-entry table 
such as the one depicted by Table 1 in which the cyber 
defense security staff is supposed to consists of 10 
units. 

 
Table 1: Example of Skill Types and Levels of the 
Cyber Defense Security Staff 
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Analyst/Skill A B C D E 
analyst 1  3  3 3 
analyst 2 1 2 2   
analyst 3    1 1 
analyst 4 3 2    
analyst 5  2 1  3 
analyst 6  2 2 3  
analyst 7  1 3 2  
analyst 8   3  1 
analyst 9 3  1 2  

analyst 10 3 2 1   
 
Besides “who knows how to do what”, from the 

above table one may derive additional information. For 
instance, since analyst 1 is a senior worker in three 
skills (i.e. B, D and E), while analyst 3 is a junior 
worker bearing two of the same skills held by analyst 1 
(i.e. D and E), if analyst 3 is meant to improve on skills 
D and E or start training on skill B, then he/she is likely 
to be engaged by senior management in teamwork with 
analyst 1. This and similar options lead to considering 
different knowledge-sharing policies and practices that 
may be addressed by the company. 

In general, depending on their roles and/or tasks 
performed within a specific workflow, cyber defense 
analysts in a company may be called to i) work alone or 
ii) in consultation with other analysts who are 
committed to a common mission and are willing to 
share the knowledge that is necessary to fulfill that 
mission (Kvan and Candy 2000). The former case may 
apply in small companies that operate a non-
collaborative policy because analyst staff is limited in 
number and each unit is dedicated to monitoring a 
specific cyber asset (see left-hand side of Figure 2). The 
latter case may apply in more complex organizations in 
which a team of analysts, each bearing specific 
knowledge and behavioral characteristics, exploit a set 
of rules to study macro-level patterns emerging from 
micro-level interactions among team members (see 
right-hand side of Figure 2). 
 

 
Figure 2: No Knowledge-sharing vs Knowledge-sharing 
Working Procedure  

 
Whatever be the working procedure, let us 

consider the case in which a company operates an 
evaluation program according to which an analyst 
generates a certain number of credits for every attack 
mitigated. A credit is a measure of security performance 
ranking from 1 to 4 according to the type of attack. If 
the analyst works alone, every type of threat for which 
he/she is skilled will be detected and mitigated 
according to the proper service time - the service time 
depends on the type of attack and the analyst’s (expert, 
average or novice) level of skill. As a result of attack 
mitigation, the analyst will be “rewarded” with the 
entire credit. If no such expertise is held by the analyst, 
the lack of ability to mitigate the malicious attack will 
have a negative impact on the entire system and likely 
cause a “loss” of overall performance. On the other 
hand, if the analyst works in consultation with other 
analysts, two situations may occur depending on 
whether or not the analyst holds the appropriate skill to 
detect and manage an attack. If he/she is properly 
skilled, then the attack will be dealt with according to 
the expertise of the analyst who, in turn, will be 
rewarded the entire credit at the end of the attack 
management process. Vice versa, if the analyst is 
obliged to consult with his/her team members in order 
to acquire the necessary know-how to manage the 
attack, then as a result of the ongoing interaction 
process: the service times of all the interacting team 
members will be inflated; the status of the skill level of 
the “enquiring” analyst will change thanks to the 
learning process he/she is undergoing; and the final 
credit will be shared among the team members that took 
part in the knowledge-sharing process. Of course, if 
none of the team members hold the appropriate skill to 
manage the attack, in the same way as the work alone 
modus operandi, this lack will have a negative impact 
on the entire system and cause a loss of overall 
performance. 

In the present study we consider both of the above 
policies, but individually and propose for each 
configuration a qualitative/quantitative simulation-
based optimization methodology to evaluate attack 
tolerance, along with the related performance 
degradation. Specifically, under a given attack scenario 
by which we mean different types and rates of attacks 
targeting a predefined set of cyber assets, the resulting 
model is aimed to estimate the following (average) 
performance metrics: 
 

• percentage of attacks mitigated; 
• resource (analyst) utilization; 
• number of credits gained 

 
and in addition for the knowledge-sharing policy among 
team members: 
 

• number of cyber defense security analysts per 
team; 
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• cyber defense security team composition in 
terms of skill types and levels held by every 
single analyst assigned to every single team; 

• knowledge gain. 
 

 
3. SO METHODOLOGY 
It should be clear at this point that the problem at hand 
is a problem of cost-performance-security evaluation of 
security services, where both (scarce and costly) human 
resources have to be allocated to important assets in a 
rational way in order to face the execution of activities 
and transactions by several actors under different 
policies. In this section we show how simulation-based 
optimization takes over whenever optimal resource 
allocation is more properly modeled in stochastic 
environment, due to the exclusive capability of discrete-
event simulation to reproduce attacker activities against 
vulnerable assets and defender responses under security 
controls and policies. We expect to achieve a rational 
cost-effective organization of security analysts devoted 
to activity and resource monitoring, along with a 
rational cooperation and training of skilled personnel. 

To show that this is the case here, we present an 
integer programming based mathematical formulation 
of the simplified decision problem of allocating analysts 
from several sources to a given asset to face multiple 
types of possible threats. It is inspired from the classical 
multi-choice multi-knapsack problem (Hifi, Michrafy 
and Sbihi 2004). Let’s assume that: 
 

• Ii ,...,1=  analysts are available, each with a 
certain number of skills measured in terms of 
capability of covering to some extent a fixed 
set of threats; 

• Jj ,...,1=  assets are given as subjected to 

Kk ,...,1=  threats; 

• k
ijr  is the expected reward achieved (amount of 

risk covered) with respect to threat k by 
allocating analyst i to asset j; 

• analyst i could be allocated to asset j (through 
the binary ijx  variable) at an expected cost ijc . 

 
We want to minimize the total allocation cost under the 
constraint of guaranteeing a fixed level of coverage 
( kR ) against each threat. 

The formulation follows. 
 

∑∑
= =

I

i

J

j
ijij xc

1 1

min   (1) 

KkRxr k

I

i

J

j
ij

k
ij ,...,1

1 1

=≥∑∑
= =

  (2) 

Iix
J

j
ij ,...,11

1

==∑
=

  (3) 

{ } JjIixij ,...,1;,...,11,0 ==∈  (4) 

 

In principle, a mathematical programming 
formulation as the one just presented can be embodied 
in a simulation-based optimization algorithm (see, for 
example, the context-specific chart illustrated in Figure 
3). Once both the objective and the set of constraints 
have been formulated, i.e. formalized under some linear 
or non linear functions and inequalities, and an initial 
feasible solution is available, then statistical analysis of 
the simulation output data gathered from one 
sufficiently-long run or multiple simulation runs allows 
to estimate the expected values of the predefined 
security rewards and costs corresponding to the current 
feasible solution. An iterative search process is then 
applied with the aim of exploiting the neighborhood of 
the current solution and sometimes suitably escaping 
from local minima to explore the whole feasible set of 
solutions.  

 

 
Figure 3: The Context-Specific SO Procedure 
 
In a “complete” cyber environment, one could 

accept the deterministic measure of the ijc  parameter as 

a pure (monetary) cost. However, the inadequacy of 
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such a formulation becomes evident by recalling the 
more complex policies and objectives underlying the 
complex cooperation and training settings under the 
randomly occurring events described in the previous 
section. So, we focus on a simulation-based 
optimization approach and simply put aside the IP 
formulation. As for the search process, here two 
different simulation optimization algorithms are tailored 
to the problem: simulated annealing and ant colony 
optimization.  

 
3.1. Heuristic Methods 
Heuristic methods represent the latest developments in 
the field of direct search methods that are frequently 
used for simulation optimization. Many of these 
techniques balance the global search for promising 
solutions within the entire feasible region (exploration) 
with the local search of promising sub-regions 
(exploitation), thereby resulting in efficient global 
search strategies. In the following we tailor two 
different types of meta-heuristics to our team formation 
problem: simulated annealing and ant colony 
optimization. The reason for choosing to illustrate these 
two meta-heuristics is due to the fact that, given a fixed 
time budget, they represent two different philosophies 
in the implementation of a computationally expensive 
activity such as simulation optimization. In the former, 
more computational time is devoted to estimate via 
simulation (evaluation process) the solutions found 
because only one neighbor solution is sampled and 
more time is left for the simulation process. In the latter, 
more time is devoted to find improved solutions on the 
optimization side (search process) because of the wider 
sampling of the neighborhood. In general, for any 
problem it is impossible to determine a priori which 
option carries a better pay-off.  

 
3.1.1. Simulated Annealing 
Originally introduced by (Kirkpatrick, Gelatt and 
Vecchi 1983), simulated annealing (SA) was developed 
on the similarities between combinatorial optimization 
problems and statistical mechanics. In the field of metal 
sciences, the annealing process is used to eliminate the 
reticular defects from crystals by heating and then 
gradually cooling the metal. In our case, a reticular 
defect could be seen as grouping analysts in teams that 
are not able to “properly” cover cyber assets and, thus, 
guarantee a given quality of service level when the 
above assets undergo an attack. 

Technically speaking, the annealing process is 
aimed to generate feasible teams of analysts, explore 
them in a more or less restricted amount and, finally, 
stop at a satisfactory solution. To avoid getting caught 
in local minima, during the exploration process a 
transition to a worse feasible solution (higher-energy 
state) can occur with probability 

 
Tep /∆=   (5) 

 

where ∆  is the difference between the values of the 
objective function (energy) of the current solution 
(state) θ  and the candidate solution tθ  and T  is the 

process temperature. A prefixed value of T  determines 
the stop of the entire process and it usually decreases 
according to a so-called cooling schema. Unfortunately, 
in the literature there is no algorithm that can determine 
“correct” values for the initial temperature and cooling 
schema, but, as suggested by empirical knowledge 
simple cooling schemas seem to work well (Ingber 
1993). 

In the following, some pseudo-code is given for 
the original SA algorithm for a minimization problem. 

 
 Algorithm 1: Simulated Annealing 

1: θ  ←  initial solution 
2: for time = 1 to time-budget do 
3: ←T  cooling-schema[time] 
4: if 0=T  then  

5: 
Present current solution as the estimate of 
the optimal solution and stop 

6: 
Generate a random neighbor tθ  of the current 

solution θ  by performing a move. 
7: ( ) ( )tff θθ −=∆  
8: if 0>∆  then  
9: tθθ ←  

10: else 
11: tθθ ←  (with probability Tep ∆= ) 
12: end for 

 
When customizing the SA algorithm to our 

problem, some choices need to be made. 
To begin with, choosing the proper cooling schema 

has great impact on reaching a global minimum. In 
particular, it affects the number and which analysts are 
assigned to a team (solutions) that will be evaluated by 
running the SA algorithm. To this end, the so-called 
simple mathematical cooling schema ii TT ⋅=+ α1  has 

been tested, and the best results are returned for an 
initial temperature 1000 =T  and a decreasing rate 

9.0≈α . 
The “move” definition for neighborhood 

generation is very context-sensitive. For our problem, a 
move must be defined with respect to the feasibility (or 
lack thereof) of a team by taking into account the 
analysts’ skills, as well as the constraint that limits the 
number of analysts that can communicate and, thus, be 
assigned to the same team. Some examples of moves 
are: 

 
• move analyst l  from team i  to team j  ( ji ≠ ); 

• swap analyst l  and analyst k  ( kl ≠ ), 
originally assigned to team i  and team j  

( ji ≠ ), respectively. 

 
As far as the stopping criteria are concerned, 

designers can choose among the following possibilities: 
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• stop when the algorithm has reached a fixed 

number of iterations n  or an upper bound on 
the available time-budget; 

• stop when the current solution has not been 
updated in the last m  iterations; 

• stop when the cooling schema has reached a 
lower bound on the temperature. 

 
3.1.2. Ant Colony Optimization 
Ant colony optimization (ACO) is a population-based 
metaheuristic for combinatorial optimization problems 
which was inspired by the capability of real ants to find 
the shortest path between their nest and a food source. 
Dorigo (1992) developed the first ACO algorithm called 
ant system and applied it to solve the traveling salesman 
problem (TSP). In this problem, an ant builds a tour by 
moving from one city to another until all cities have 
been visited and the objective is to find the tour that 
minimizes the distance traveled in visiting all cities. 

The probability that ant k in city i chooses to go to 
city j is given by the following rule 

 

( )
( )[ ] ( )[ ]

( )[ ] ( )[ ]( )
( )









∈

⋅

⋅
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otherwise  0

if  
,,

,,

,
iJj

gigi
jiji

jip
k

iJgk k

β

β

ητ
ητ

 (6) 

 
where ( )ji,τ  is the pheromone associated to the 

connection from city i to city j, ( )ji,η  is a simple 

heuristic guiding the ant, for example ( ) ( )jidji ,1, =η  

where ( )jid ,  is the distance between the two cities, and 

β  is used to define the importance of the heuristic 

information as opposed to the pheromone information. 
Once ant k has built a tour, the pheromone trail is 

updated according to 
 

( ) ( ) ( )∑
=

∆+⋅=
m

k
k jijiji

1

,,, ττρτ   (7) 

 
where ρ  is the evaporation rate and 

 

( ) ( )






 ∈
=∆

otherwise      0

ant  oftour ji, if 
1

,
k

Lji kkτ  (8) 

 
is the pheromone increase on all the edges visited by the 
all the ants (the more the ants visit an edge, the greater 
the pheromone they leave). 

In the following, some pseudo-code is given for a 
basic ACO algorithm for a minimization problem. 

 
 Algorithm 2: Ant Colony Optimization 

1: Ρ  ←  pheromone initialization 
2: gbθ ←  global best solution is null 

3: for time = 1 to time-budget do 

4: Θiteration ←  {} 
5: for j=1 to n° of ants 
6: θ ←  build a solution based on Ρ  
7: if θ  is feasible then 

8: if ( ) ( )( )gbff θθ <  or  gbθ  is null then 

9: θθ ←gb  
10: Θiteration ←  Θiteration  { }θ∪  
11: end for 
12: Ρ  ←  pheromone update  

13: end for 
14: return gbθ  

 
Some variants to the original algorithm have been 

proposed such as: 
 
• update the pheromone trail by allowing only 

the best ant to place pheromone after an 
iteration of the algorithm 
( ) ( ) ( )antiteration best ,, ijjiji ττρτ ∆+⋅= ; 

• update the pheromone trail every γ  iterations 

by allowing only the best global ant to place 
pheromone ( ) ( ) ( )ant globalbest ,, ijjiji ττρτ ∆+⋅= . 

 
Once again we must think of customization: the 

TSP is an ordering problem, while in our case we face a 
grouping problem. AS has been applied to solve other 
grouping problems such as bin packing, cutting stock 
(see, for example, Levine and Lucatelle 2004) and 
graph coloring (see, for example, Costa and Hertz 
1997). 

Rather than visiting cities, in our problem an ant 
moves to connect analysts with different skills and, 
thus, form teams to defend a given set of cyber assets. 
In doing so, the ant leaves a pheromone trail between 
analysts i and j which may be seen as the global 
goodness of teaming i and j. So the probability of an ant 
k connecting analyst i with j is still given by (6), where 
( )ji,η  is the number of different skills obtained when 

teaming the analysts. Once ant k has teamed all the 
analysts the pheromone trail is updated according to (7) 
where ρ  is the evaporation rate and  

 

( )
( )

( )
( ) { }










≠=∆

∑
∈

otherwise                      1

 if 
,

,

,
) I
ji

ji

ji
iKj

k
k

η

τ

τ  (9) 

 
is the pheromone value given by the sum of all the 
pheromone values between analyst i and all the analysts 
connected to i (including j obviously) 

As for the stopping criteria, designers can chose 
among the same options given for the customization of 
the SA algorithm.  

 
4. ILLUSTRATIVE EXAMPLE 
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4.1. Preliminary Verification 
The SO model has been implemented in Microsoft 
Visual Basic 6.0 Professional and experiments have all 
been run on a personal computer equipped with a 
2.26Hz Inter Core™2 duo processor and 3 GB of RAM. 
Input data and SO parameters are specified in the proper 
sections of a simple GUI panel, as the one illustrated in 
Figure 4. In particular, one must first define the attack 
scenario by specifying attack interarrivals (in time 
units) and composition (in percentage) with respect to 
different types of attacks. Skills are then defined by 
specifying for every analyst which skills he/she features 
and the level of competence for each skill (0=no skill, 
1=novice, 2=average, 3=expert). After inserting the 
number of teammates (here ranging between 1 and 10), 
the input stage is then completed by providing the 
settings for the simulated annealing-based SO scheme 
and the simulation settings which are, respectively, the 
initial temperature along with the cooling rate of the SA 
procedure, and the time horizon, the number of 
simulation runs to be performed and the simulation 
seed. 
 

 
Figure 4: Snapshot of the SO Tool 

 
The design and implementation of the SO tool 

depicted in Figure 4 has been carried-out in compliance 
with all the conventional steps used to guide a thorough 
and sound simulation study (Banks et al. 2001). For the 
time being, due to the unavailability of real-world input 
data as driving force for the SO model, here we will 
focus on illustrating the “predictive” capability of the 
model by explicitly reporting on the verification, rather 
than validation step of the study. 

Verification has been performed with respect to the 
input parameters and logical structure of the SO model 
by combining three classes of techniques: common-
sense techniques, thorough documentation and traces. A 
set of ad hoc instances have been used for verification 
by running the model in boundary cognitive conditions 
which allow expecting a predetermined system 
behavior. For instance, lets us consider the case in 
which every analyst i has an expert competence in every 
skill j (i.e. SkillMap(i,j)=3 for every (i,j)). Now, since 
every single analyst is skilled at the highest level for 
any type of attack, whatever be the number of 
teammates in the given scenario, the SO model is likely 
to return a fairly stable utilization of analysts (U) along 

with high accomplishments in both credit (C) and 
number of attacks mitigated (AM), while no loss (L) or 
whatsoever gain in knowledge (K) should be recorded. 
As a result, as one may see from Table 1, in which all of 
the above indices are averaged over (suitable) multiple 
runs and plotted as the number of teammates grows 
from 1 to 10, there are no significant changes in system 
performance whatever be the level of collaboration 
between analysts inserted by the user. 

 
Table 2: Model Verification in a “Boundary” Scenario 

Teammates U K C L AM 
1 0.66 0 14349 0 5736 
2 0.66 0 14066 0 5708 
3 0.67 0 14389 0 5751 
4 0.66 0 14254 0 5705 
5 0.66 0 14358 0 5736 
6 0.67 0 14397 0 5756 
7 0.67 0 14388 0 5758 
8 0.66 0 14294 0 5720 
9 0.66 0 14314 0 5702 

10 0.67 0 14443 0 5768 
 
The results of this and other similar experiments 

allow us to be confident in the correctness of the SO 
model. 
 
4.2. Problem Set-up 
In this subsection we present the problem set-up 
involved in the second set of experiments designed to 
estimate performance under a given attack scenario. 

As far as system features are concerned, we 
consider 10 cyber assets which are attacked, according 
to an exponential renewal process, on average every 
200 time units ( λ , the average interarrival rate, is thus 
equal to 1/200) from a combination of 4 different types 
of attacks (i.e. 60% type A, 25% type B, 10% type C 
and 5% type D). Defense is provided by a team of 10 
cyber analysts, where each analyst is skilled according 
to the data reported in Table 3. In the given scenario, 
analysts respond to attacks by working alone (n° of 
teammates=1) or in cooperation with other analysts (n° 
of teammates>1). The rate ( µ ) of the attack mitigation 

activity depends on the type of attack, the skill level 
held by the analyst and if mitigation occurs alone or  in 
cooperation with other analysts. In the later case, 
mitigation times are inflated by 25%. 

 
Table 3: Skill Types and Levels of the Cyber Defense 
Security Staff 

Analyst/Skill A B C D 
analyst 1 1 0 1 0 
analyst 2 3 0 0 0 
analyst 3 0 2 0 0 
analyst 4 1 0 3 0 
analyst 5 2 0 0 0 
analyst 6 1 3 0 0 
analyst 7 0 0 1 3 
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analyst 8 2 0 0 0 
analyst 9 0 3 0 0 

analyst 10 3 0 1 0 
 
The initial temperature and the cooling rate of the 

SA scheme are set equal to 100 and at least 0.948, 
respectively, so that at least 100 different team-
formation and assignment configurations are considered 
for the given scenario. The time horizon is fixed at 
14400 time units (i.e. one four-hour labor shift) and, 
based on system variance, from 10 to 30 runs are 
performed for each experiment in order to obtain point 
estimates and/or construct 95% confidence intervals for 
estimating resource (i.e. analyst) utilization and 
knowledge gain and system credit, loss and number of 
attacks mitigated. Here, for clarity of illustration, we 
prefer using (stable) point estimates to show the 
numerical results in the next subsection. 

 
4.3. Numerical Experiments 
In this subsection, the illustration and related discussion 
of the numerical results returned by the previously 
defined scenario of the SO model is quite clear. In 
summary, except for the case in which an analyst is 
called to work alone, cooperation in small teams seems 
to return better performances. 
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Figure 5: Trend of Average Analyst Utilization 
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Figure 6: Trend of Average Knowledge Gain 

 
To begin with, let us consider the (average) values 

of what we believe to be two measures of resource 
performance: analyst utilization and knowledge gain. 
Figures 5 and 6, respectively, show how utilization 
reaches its peak when the number of teammates  is 

equal to 3, while utilization stays rather stable for 
3>teammates . As one may see from Table 4, this 

happens in conjunction with a specific asset-analyst 
assignment and subsequent team formation in which 
analysts with complementary skills have been teamed 
together. 

 
Table 4: Details of Best Asset-Analyst Assignment and 
Team Formation when Number of Teammates=3 

Analyst Asset Teammates Skills Covered 
1 10 6 & 9 1, 2 & 3 
2 5 4 & 10 1 & 3 
3 8 5 & 7 1, 2, 3 & 4 
4 3 2 & 8 1 & 3 
5 6 3 & 6 1 & 2 
6 7 1 & 5 1, 2 & 3 
7 9 3 & 10 1, 3 & 4 
8 1 4 & 9 1, 2 & 3 
9 2 1 & 8 1, 2 & 3 
10 4 2 & 7 1, 3 & 4 
 
As for the so-called system performance measures, 

system loss is totally overcome when 4≥teammates , 
while the credit acquired and the number of attacks 
mitigated do not seem to experience significant changes 
beyond the above value of teammates  (see Figures 7, 8 
and 9, respectively). This is even more evident if one 
plots the point-by-point difference between system 
credit and loss over the number of teammates: for 

4≥teammates  this trend is stable on a value 
approximately equal to 1200 units of credit. 
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Figure 7: Trend of Average System Credit  
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Figure 8: Trend of Average System Loss 
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Figure 9: Trend of Average Number of Attacks 
Mitigated 

 
So now the final question should be whether or not 

there are changes in system behavior when the average 
interarrival rate ( λ ) of the attacks grows significantly, 
for example by a factor of four (e.g. average interarrival 
times go from 200 to 50 time units), while clearly 
keeping satisfied the classical stability condition 

1<µλ  where we recall µ  being the service rate (i.e. 

attack mitigation rate). Regardless of the growth of the 
interarrival rate, numerical experiments not reported 
here for lack of space state that only minor changes 
occur in system behavior such as system loss that goes 
to zero at a lower speed and specifically when 

10=teammates , rather than 4≥teammates . 
 

5. CONCLUSIONS 
In this paper we presented a simulation-based 
optimization model to assess attack tolerance in cyber 
systems when man-monitored assets are targeted by 
different types of attacks and different attack rates. The 
opportunity of teaming cyber defense analysts to work 
together in attack mitigation, rather than implementing a 
non-cooperative working policy seems to suitably fit the 
twofold purpose of cyber security defense unit: 
protection and learning. Numerical evidence shows that 
resource (analyst) utilization and knowledge, as well as 
system loss, credit and number of attacks mitigated 
benefit from the formation of small, yet well-assorted 
teams as far as the skills held by analysts belonging to 
the same team are concerned. In the proposed set of 
sample experiments, the best overall performance is 
recorded for a number of teammates ranging between 3 
and 4.    

Future research effort will focus on input modeling 
pertaining to both data and organizational matters. In 
the former case, a finer representation of the stochastic 
cyber attacks process will be provided via phase-type 
distribution-based models to match, for instance, the 
dynamics of attack graphs. In the latter, new policies 
will be considered. In particular, the current version of 
the SO model may be seen as the in vitro lab to assess 
the proficiency of proactive policies within the wider 
underlying attacker-defender game logic in cyber 
security.   
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