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ABSTRACT 
Croston’s method was developed to forecast 
intermittent demand, employing separate exponential 
smoothing estimates of the average demand size and the 
average interval between demand occurrences. Syntetos 
and Boylan reported an error in Croston’s mathematical 
derivation of expected demand, and proposed an 
approximate correction now usually referred to as the 
Syntetos-Boylan approximation. Subsequently, Shale, 
Boylan, and Johnston derived the expected bias in 
Croston’s method and proposed an ‘exact’ correction 
factor. Both approximate and exact corrections have 
been derived analytically. In the current study, we 
empirically investigate whether or not there are actually 
significant improvements in terms of statistical forecast 
accuracy as well as inventory control performance 
obtained by applying the approximate or exact 
correction.   
 
Keywords: intermittent/lumpy demand forecasting, 
forecast accuracy, bias correction, inventory control, 
modeling and simulation 

 
1. INTRODUCTION 
Demand for an item of inventory is intermittent when 
there are time intervals in which there are no demand 
occurrences. Intermittent demand is said to be lumpy 
when there are large variations in the sizes of actual 
demand occurrences.   

Croston (1972) noted that under simple 
exponential smoothing (SES), which has frequently 
been used for forecasting demand, a biased estimate 
arises since forecasts are based on an average of the 
recent demand occurrences.  This bias is greatest 
immediately following a demand occurrence. Because 
inventory replenishment decisions are usually taken 
after a reduction in stock, there can be serious 
consequences of an upward bias in the demand forecast. 
To address this upward bias, Croston proposed a 
method of forecasting intermittent demand using 
separate exponential smoothing estimates of the average 
demand size and the average interval between demand 
occurrences, and combining these to obtain a demand 

forecast. Leading statistical forecasting software 
packages include Croston’s method (Syntetos and 
Boylan 2005; Boylan and Syntetos 2007). 

While Croston applied a single smoothing constant 
Schultz (1987) proposed the use of separate 
smoothing constants, i and s, in updating inter-
demand intervals and nonzero demand sizes, 
respectively. However, Mukhopadhyay, Solis, and 
Gutierrez (2012) investigated separate smoothing 
constants, i  and s, in forecasting lumpy demand and 
reported no substantial improvement in forecast 
accuracy.   

Syntetos and Boylan (2001) established the 
presence of a positive bias in Croston’s method, called 
an ‘inversion bias’, arising from an error in Croston’s 
mathematical derivation of expected demand. Syntetos 
and Boylan (2005) proposed a correction factor of 

  21   applied to Croston’s original estimator of 

mean demand, where  is the smoothing constant in use 
for updating the inter-demand intervals. The revised 
estimator yields an approximately unbiased estimator, 
and is now usually referred to as the Syntetos-Boylan 
approximation (SBA) in the literature on intermittent 
demand forecasting (e.g., Gutierrez, Solis, and 
Mukhopadhyay 2008; Boylan, Syntetos, and Karakostas 
2008; Babai, Syntetos, and Teunter 2010; 
Mukhopadhyay, Solis, and Gutierrez 2012). 

Levén and Segerstedt (2004) proposed a 
modification to Croston’s method, which they called a 
‘modified Croston procedure’, involving a new method 
for estimating the mean and variance of the forecasted 
demand rate. Boylan and Syntetos (2007), however, 
found that the smoothing method for estimating the 
variance is based on an invalid forecast accuracy 
measure, and that the new method of estimating mean 
demand produces biased forecasts.  

Shale, Boylan, and Johnston (2006) derived the 
expected bias when the arrival of orders follows a 
Poisson process, and extended their work to other inter-
arrival distributions. They specified      21 as 

an ‘exact’ correction factor (hereafter referred to in this 
paper as SBJ) to remove the inversion bias in Croston’s 
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method. However, the SBJ method has not been cited or 
applied in recent intermittent demand forecasting 
literature. For instance, Syntetos and Boylan (2010) 
analyze the “most well-cited intermittent demand 
estimation procedures” with respect to the variance of 
their estimates, but do not even mention SBJ. Only the 
variances of demand estimates using SES, Croston’s 
method, SBA, and an “exactly unbiased modification” 
of Croston’s method (Syntetos 2001) are reported. 

A critical issue in forecasting intermittent/lumpy 
demand is the assumption of a distribution of demand 
occurrence. Boylan (1997) proposed three criteria for 
assessing the suitability of demand distributions: 

 
1. A priori grounds for modelling demand. 
2. The flexibility of the distribution to represent 

different types of demand. 
3. Empirical evidence. 
 

Syntetos and Boylan (2006) argued that compound 
distributions can represent demand incidence and 
demand size by separate distributions. Noting that the 
negative binomial distribution (NBD) is a compound 
distribution with variance greater than the mean, with 
“empirical evidence in its support (Kwan 1991),” 
Syntetos and Boylan declared the NBD to meet all the 
above three criteria. They accordingly selected the NBD 
to represent intermittent demand over lead time (plus 
review period) in their stock control simulation model. 
Among others, Boylan, Syntetos, and Karakostas (2008) 
and Syntetos, Babai, Dallery, and Teunter (2009) have 
also conducted empirical investigations of stock control 
using the NBD to characterize intermittent demand over 
the lead time (plus review period). These latter studies 
have cited Syntetos and Boylan’s (2006) declaration 
that the NBD “satisfies both theoretical and empirical 
criteria.” 

Use of the NBD to characterize demand may 
indeed have been found by previous researchers to 
apply to intermittent (but not very erratic) demand.  Our 
investigations, however, show that the NBD may not 
hold for much of lumpy demand distributions. In the 
current study, we use a two-stage simulation approach 
to characterize lumpy demand, as earlier discussed and 
applied, for instance, by Solis, Longo, Nicoletti, and 
Yemialyanava (2013). The first stage uses a uniform 
distribution, with probability z1 of zero demand, to 
determine whether or not a demand occurs in the given 
period. If the first stage leads to a demand actually 
occurring in the period, the second stage estimates the 
demand size using an NBD. In the process, Pr(X=0) in 
the NBD is applied to adjust the probability z1 of zero 
demand in the first stage. 

It should be emphasized that this two-stage 
approach was not intended to “accurately” capture the 
actual lumpy demand distribution. The objective is to 
simulate demand distributions that mimic as closely as 
possible the lumpy demand distributions. We, therefore, 
address in this study the apparent inadequacy of the 
NBD, in spite of its “satisfying both theoretical and 

empirical criteria,” for characterizing intermittent 
demand. As in Solis, Longo, Nicoletti, and 
Yemialyanava (2013), we illustrate how the two-stage 
simulation process better characterizes a greater 
proportion of lumpy demand distributions we 
investigate.  

In this paper, we report on the preliminary results 
of our empirical investigation of both statistical 
accuracy and inventory control performance of four 
intermittent demand forecasting methods which employ 
exponential smoothing: SES, Croston’s, SBA, and SBJ.  
We evaluate the improvements associated with applying 
approximate and exact corrections (SBA and SBJ, 
respectively) which address the positive bias in 
Croston’s method. We first seek to characterize lumpy 
(i.e., both intermittent and erratic) demand by applying 
the NBD or two-stage approximations. We proceed to 
evaluate forecast accuracy using a number of error 
statistics, and then consider inventory control 
performance. 

This paper is organized as follows. In section 2, we 
discuss the industrial dataset and how data partitioning 
is conducted for purposes of empirical evaluation, as 
well our application of the NBD and two-stage 
approximations to characterize demand. In the next 
section, we first discuss the statistical measures of 
forecast accuracy that we use, and proceed to report on 
our empirical investigation of forecasting performance 
on the performance blocks of actual data as well as on 
the simulated demand distributions. In section 4, we 
report on our empirical investigation of inventory 
control performance. We present our conclusions in the 
final section.    
 
2. INDUSTRIAL DATASET AND DEMAND 

CHARACTERIZATION 
 

2.1. Industrial Dataset and Partitioning 
In this paper, we apply the SES, Croston’s, SBA, and 
SBJ methods to stock-keeping units (SKUs) in a 
regional warehouse of a firm operating in the 
professional electronics sector. The SKUs represent end 
items, sub-assemblies, components, and spare parts that 
are used for building projects, retail sales, or servicing 
of professional electronic products. The raw data 
consist of actual withdrawals from stock as reported in 
the company’s enterprise resource planning system over 
a period of 61 months. The transactional data are 
aggregated into usage quantities per month, which we 
treat as a surrogate measure of monthly demand while 
recognizing that the inventory on hand when a demand 
occurs may not meet the required quantity. The 61 
months of “demand” data are divided into initialization, 
calibration, and performance measurement blocks (as in 
Boylan, Syntetos, and Karakostas 2008) with our blocks 
consisting of 20, 20, and 21 months, respectively. 

Syntetos, Boylan, and Croston (2005) proposed a 
scheme to classify demand patterns into four categories 
(smooth, erratic, intermittent, and lumpy) for the 
purpose of establishing ‘regions’ of superior forecasting 
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performance between Croston’s method and SBA. The 
scheme (hereafter referred to as SBC) is based on the 
use of two statistics: 2CV  and ADI, the squared 
coefficient of variation of demand and average inter-
demand interval, respectively. The four categories are 
delimited by cutoff values for 2CV  and ADI as follows: 
(i) smooth, with ADI < 1.32 and CV2 < 0.49; (ii) erratic, 
with ADI < 1.32 and CV2 > 0.49; (iii) intermittent, with 
ADI > 1.32 and CV2 < 0.49; and (iv) lumpy, with ADI > 
1.32 and CV2 > 0.49. Recently, Heinecke, Syntetos, and 
Wang (2013) empirically evaluated the SBC cutoff 
values for 2CV  and ADI in comparison with alternative 
approaches proposed by Kostenko and Hyndman 
(2006), and found that SBC results in inferior 
forecasting performance overall in comparison with the 
latter alternatives. For purposes of the current study, we 
will nonetheless continue to apply the relatively simple 
SBC fixed cutoff values to classify demand patterns. 
These cutoff values and resulting categories have been 
cited in various other studies involving intermittent or 
lumpy demand (e.g., Ghobbar and Friend 2002, 2003; 
Gutierrez, Solis, and Mukhopadhyay 2008; Altay, 
Rudisill, and Litteral 2008; Boylan, Syntetos, and 
Karakostas 2008; Mukhopadhyay, Solis, and Gutierrez 
2012).       

In this paper, we report findings on a set of ten 
SKUs which have thus far been evaluated for purposes 
of the current study. Demand statistics are presented in 
Table 1. All 10 SKUs exhibit lumpy demand (ADI > 
1.32 and CV2 > 0.49) according to the SBC 
categorization scheme. We have yet to find a SKU with 
intermittent demand (ADI > 1.32 and CV2 < 0.49) 
according to the scheme. [Solis, Longo, Nicoletti, and 
Yemialyanava (2013) earlier investigated a separate set 
of SKUs (nine with lumpy demand, and six with erratic 
demand) coming from the firm’s central warehouse. 
That earlier study also evaluated the simple moving 
average method, but did not consider SBJ. Hence, no 
comparison was made between the approximate and 
exact corrections of the bias in Croston’s method, which 
is the focus of the current study.]    
 

Table 1: 10 SKUs  with Lumpy Demand  
SKU # 1 2 3 4 5
Mean 2.0492 1.0656 2.4918 1.9672 2.7541
Std Dev 2.8427 1.1954 3.2641 3.0549 4.2531

1.9244 1.2585 1.7159 2.4115 2.3848
ADI 1.4186 1.6486 1.3864 1.7429 1.5641
z  (% of Zero Demand) 31.15% 40.98% 29.51% 44.26% 37.70%
Mean Nonzero Demand 2.9762 1.8056 3.5349 3.5294 4.4211
Std Dev of Nonzero Demand 2.9999 1.0370 3.3831 3.3596 4.6652

SKU # 6 7 8 9 10
Mean 6.5410 2.5082 6.9016 3.4426 2.1639
Std Dev 9.1462 3.8454 10.1648 4.3609 2.8412

1.9552 2.3506 2.1692 1.6046 1.7240
ADI 1.4878 1.5641 1.6053 1.6053 1.6486
z  (% of Zero Demand) 34.43% 37.70% 39.34% 39.34% 40.98%
Mean Nonzero Demand 9.9750 4.0263 11.3784 5.6757 3.6667
Std Dev of Nonzero Demand 9.6728 4.2074 10.9477 4.3208 2.8586

2CV

2CV

2CV

2CV

2CV

2CV

 
 
2.2. Demand Characterization Using a Negative 

Binomial Distribution 
As previously stated, Syntetos and Boylan (2006) 
declared that the NBD “satisfies both theoretical and 
empirical criteria” to characterize demand. It is a 
discrete probability distribution with density function 
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1
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with two parameters r and p. The parameter r is a 
positive integer. The parameter p is a real number 
satisfying 10  p , and is a probability of “success” in 

a Bernoulli trial, while r is a target number of successes 
(e.g., Mood, Graybill, and Boes 1974). The random 
variable X represents the number of failures, in a 
succession of the Bernoulli trials, preceding the rth 
success. The NBD has mean 
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Clearly, the variance of the NBD is greater than its 
mean. The NBD, when r = 1, reduces to a geometric (or 
Pascal) distribution with density function 
 

    )(1);( ,...2,1,0 xIpppxf x .                (4) 

  
Solving (2) and (3) simultaneously, we obtain 

 

2
ˆ




p                     (5) 

 
and  
 





 2

2

r̂                       (6) 

 
as initial estimates of the parameters of an NBD with 
mean  and variance 2. We use the mean x  and the 
variance s2 of the 61-month demand time series in place 

of  and 2 , respectively. However, while r is 
supposed to be integer-valued, the expression (6) is 
real-valued. Thus, in attempting to characterize the 
actual demand distribution using an NBD 
approximation, we investigate rounded up and rounded 
down values of r̂  while at the same time adjusting p̂ to 

obtain acceptable NBD parameters r and p.  
We used AnyLogic as our simulation platform. To 

address mathematical modeling not doable within the 
AnyLogic standard library, some code was written in 
Java. For the NBD parameters tested, we performed 100 
runs each consisting of 100 months (for a total of 
10,000 months) in each experiment.  

As a rule of thumb, we operationalize ‘reasonably 
acceptable’ approximation in terms of mean, standard 
deviation, CV2, and ADI of the simulated distribution all 
being within ±20% of those of the actual demand 
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distribution and with a fairly small difference between 
simulated and actual proportion z of zero demand. 

In each of SKUs 1, 2 and 3, we found the 
suggested NBD approximation to yield a simulated 
distribution which fairly closely resembles the actual 
demand distribution. The simulation results are reported 
in Table 2. For SKUs 1 and 3, the adjusted r value is 1 
(i.e., the NBD reduces to a geometric distribution). 

 
Table 2: Three SKUs with Reasonably Acceptable NBD 
Approximations 
SKU # 1 2 3
Mean 2.0492 1.0656 2.4918
Std Dev 2.8427 1.1954 3.2641

1.9244 1.2585 1.7159
ADI 1.4186 1.6486 1.3864
z  (% of Zero Demand) 31.15% 40.98% 29.51%
r^ 0.6962 3.1246 0.7607
p^ 0.2536 0.7457 0.2339
SIMULATION NBD NBD NBD
r 1 4 1
p 0.3458 0.7897 0.2904
Mean 1.9053 1.0567 2.4137
Std Dev 2.3690 1.1648 2.8935

1.5460 1.2151 1.4371
ADI 1.5249 1.6464 1.4100
z  (% of Zero Demand) 34.43% 39.27% 29.09%
Simulated vs Actual Mean 93.0% 99.2% 96.9%
Simulated vs Actual Std Dev 83.3% 97.4% 88.6%
Simulated vs Actual CV^2 80.3% 96.6% 83.7%
Simulated vs Actual ADI 107.5% 99.9% 101.7%
Difference in Simulated vs Actual z 3.28% -1.71% -0.42%

2CV

2CV

2CV

2CV

 
 
2.3. Demand Characterization Using a Two-Stage 

Distribution 
For the seven other SKUs (4-10), we were unable to 
find NBD approximations that are reasonably 
acceptable (as set forth in the previous sub-section).  

We briefly summarize the alternative, two-stage 
distribution as applied by Solis, Longo, Nicoletti, and 
Yemialyanava (2013). In each time period, the first 
stage is based on applying the continuous uniform 
distribution defined over the real number interval (0,1). 
Stage 1 can be viewed as a Bernoulli process, which has 
a fixed probability of “success” or “failure”. It 
determines whether or not a demand occurs. If the 
random number generated in stage 1 is less than or 
equal to z1 (a “failure”), demand for the period is set 
equal to zero and the demand generation process moves 
on to the next period. If the random number generated 
in stage 1 is greater than z1 (a “success”), the demand 
generation process moves to stage 2 in which an NBD 
is used to simulate the demand size. It follows that there 
will still be some probability of zero demand in stage 2. 
At the conclusion of stage 2, the demand generation 
process moves to the next time period, again starting 
with stage 1 of the two-stage process.  

To estimate the parameters of the NBD in stage 2 

of the demand simulation process, the mean nzx  and 

variance 2
nzs  of the nonzero demands are calculated and 

used to obtain first approximations of the parameters 

nzp̂  and nzr̂  in line with (5) and (6). We round up or 

down nzr̂  to some integer value and adjust nzp̂  

accordingly. The corresponding negative binomial 

probability 0)0Pr(0  XP  is then used to find z1 

(as applied in the first stage), as follows: 
 

0

0
1 1 P

Pz
z




 ,                    (7) 

 
provided z > P0. The resulting proportion of zero 
demand periods arising from the two-stage distribution 
is then closer to z. We refine the parameter estimate 

nzp̂  

while the mean, standard deviation, CV2, ADI, and z of 
the actual and simulated distributions are compared. 

We note that this two-stage approach did not yield 
acceptable characterizations of demand for SKUs 1 and 
2; only the NBD approximations for these two SKUs 
(as presented in Table 2) were reasonably close to 
actual demand statistics. In the case of SKU 3, on the 
other hand, both NBD and two-stage approximations 
are both fairly close to the actual demand distribution 
(refer to Table 3), but with the two-stage approximation 
appearing to yield a somewhat better characterization.  

 
Table 3: SKU 3 – Comparison of NBD and Two-Stage 
Approximations 

SKU #
Mean
Std Dev

ADI
z  (% of Zero Demand)
r^
p^
SIMULATION NBD Two-Stage
r 1 1
p 0.2904 0.2602
Mean 2.4137 2.6693
Std Dev 2.8935 3.2648

1.4371 1.4960
ADI 1.4100 1.4186
z  (% of Zero Demand) 29.09% 29.52%
Simulated vs Actual Mean 96.9% 107.1%
Simulated vs Actual Std Dev 88.6% 100.0%
Simulated vs Actual CV^2 83.7% 87.2%
Simulated vs Actual ADI 101.7% 102.3%
Difference in Simulated vs Actual z -0.42% 0.01%

0.7607
0.2339

3
2.4918
3.2641
1.7159
1.3864
29.51%

2CV 2CV 2CV 2CV

2CV2CV2CV2CV

 
  
We present in Table 4 the simulation results for the 

demand distribution approximations, using the NBD 
approximation for SKUs 1 and 2 and the two-stage 
approach for SKUs 3-10. 

We have yet to evaluate a SKU in the current 
dataset for which neither approximation method leads to 
an acceptable characterization, albeit with only 10 
SKUs evaluated thus far. [We must quickly point out, 
however, that Solis, Longo, Nicoletti, and 
Yemialyanava (2013) reported that both the NBD and 
two-stage approximations fail in the case of SKUs with 
demand distributions that are lumpier.]  

 
3. EMPIRICAL INVESTIGATION OF 

FORECASTING PERFORMANCE 
 
3.1. Smoothing Constants and Forecast Accuracy 

Measures 
In the context of intermittent demand, low values of the 
smoothing constant  have been recommended, and 

Proceedings of the International Conference on Modeling and Applied Simulation, 2014 
978-88-97999-40-9; Bruzzone, De Felice, Massei, Merkuryev, Solis, Zacharewicz Eds.  

208



values in the range 0.05-0.20 are considered realistic 
(Croston 1972; Willemain, Smart, Shockor, and 
DeSautels 1994; Johnston and Boylan 1996). We test 
four  values: 0.05, 0.10, 0.15, and 0.20 (as in Syntetos 
and Boylan 2005, 2006; Gutierrez, Solis, and 
Mukhopadhyay 2008; Mukhopadhyay, Solis, and 
Gutierrez 2012). 
 

Table 4: Lumpy Demand Approximations 
SKU # 1 2 3 4 5
Mean 2.0492 1.0656 2.4918 1.9672 2.7541
Std Dev 2.8427 1.1954 3.2641 3.0549 4.2531

1.9244 1.2585 1.7159 2.4115 2.3848
ADI 1.4186 1.6486 1.3864 1.7429 1.5641
z  (% of Zero Demand) 31.15% 40.98% 29.51% 44.26% 37.70%
r^ 0.6962 3.1246 0.7607 0.5254 0.4946
p^ 0.2536 0.7457 0.2339 0.2108 0.1523
Mean of nonzero demand 2.9762 1.8056 3.5349 3.5294 4.4211
Std Dev of nonzero demand 2.9999 1.0370 3.3831 3.3596 4.6652
r^ nonzero - - 1.5796 1.6058 1.1270
p^ nonzero - - 0.3089 0.3127 0.2031
SIMULATION NBD NBD Two-Stage Two-Stage Two-Stage
r 1 4 1 1 1
p 0.3458 0.7897 0.2602 0.2726 0.1987
Pr(X  = 0) 0.3458 0.3889 0.2602 0.2726 0.1987
Final zero proportion in stage 1 - - 4.72% 23.37% 22.26%
Mean 1.9053 1.0534 2.6693 1.9950 3.1393
Std Dev 2.3690 1.1959 3.2648 2.9137 4.4296

1.5460 1.2888 1.4960 2.1331 1.9910
ADI 1.5249 1.7074 1.4186 1.7989 1.6124
z  (% of Zero Demand) 34.43% 41.44% 29.52% 44.42% 37.99%
Simulated vs Actual Mean 93.0% 98.9% 107.1% 101.4% 114.0%
Simulated vs Actual Std Dev 83.3% 100.0% 100.0% 95.4% 104.2%
Simulated vs Actual CV^2 80.3% 102.4% 87.2% 88.5% 83.5%
Simulated vs Actual ADI 107.5% 103.6% 102.3% 103.2% 103.1%
D in Simulated vs Actual z 3.28% 0.46% 0.01% 0.16% 0.29%

SKU # 6 7 8 9 10
Mean 6.5410 2.5082 6.9016 3.4426 2.1639
Std Dev 9.1462 3.8454 10.1648 4.3609 2.8412

1.9552 2.3506 2.1692 1.6046 1.7240
ADI 1.4878 1.5641 1.6053 1.6053 1.6486
z  (% of Zero Demand) 34.43% 37.70% 39.34% 39.34% 40.98%
r^ 0.5548 0.5123 0.4940 0.7609 0.7925
p^ 0.0782 0.1696 0.0668 0.1810 0.2681
Mean of nonzero demand 9.9750 4.0263 11.3784 5.6757 3.6667
Std Dev of nonzero demand 9.6728 4.2074 10.9477 4.3208 2.8586
r^ nonzero 1.1904 1.1854 1.1935 2.4791 2.9845
p^ nonzero 0.1066 0.2274 0.0949 0.3040 0.4487
SIMULATION Two-Stage Two-Stage Two-Stage Two-Stage Two-Stage
r 1 1 1 2 2
p 0.0973 0.2073 0.0877 0.2754 0.3868
Pr(X  = 0) 0.0973 0.2073 0.0877 0.0758 0.1496
Final zero proportion in stage 1 27.36% 21.41% 33.51% 34.37% 30.60%
Mean 6.6577 3.0033 6.8982 3.4690 2.1988
Std Dev 9.1379 4.1380 10.2014 4.3599 2.7861

1.8838 1.8984 2.1870 1.5796 1.6056
ADI 1.5108 1.6028 1.6491 1.6548 1.6998
z  (% of Zero Demand) 33.82% 37.62% 39.37% 39.58% 41.18%
Simulated vs Actual Mean 101.8% 119.7% 100.0% 100.8% 101.6%
Simulated vs Actual Std Dev 99.9% 107.6% 100.4% 100.0% 98.1%
Simulated vs Actual CV^2 96.4% 80.8% 100.8% 98.4% 93.1%
Simulated vs Actual ADI 101.5% 102.5% 102.7% 103.1% 103.1%
D in Simulated vs Actual z -0.61% -0.08% 0.03% 0.24% 0.20%

2CV

2CV

2CV

2CV

 
 
To compare intermittent demand forecasting 

methods, Eaves and Kingsman (2004) used three 
traditional measures of accuracy: mean absolute 
deviation (MAD), root mean squared error (RMSE), 
and mean absolute percentage error (MAPE). We 
apply these three, as well as two additional error 
statistics.  

MAPE is the most widely used scale-free forecast 
accuracy measure. The traditional MAPE definition 
fails when demand is intermittent, due to division by 
zero. We use an alternative specification of MAPE as a 
ratio estimate (e.g., Gilliland 2002): 
 

100MAPE
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We use as a second scale-free error statistic the 

mean absolute scaled error (MASE), which was 

proposed by Hyndman and Koehler (2006). It uses the 
in-sample mean absolute error from the naïve forecast 
as a benchmark.  The scaled error for period t is 
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i ii
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.   (9) 

 
MASE is calculated as follows: 
 

MASE = mean  tq .               (10) 

 
If MASE is less than one, the forecasting method being 
considered performs better than the in-sample naïve 
forecasts. In comparing different forecasting methods, a 
smaller MASE indicates better performance.   

A third scale-free error statistic that we used is 
percentage best (PB), which refers to the percentage of 
time periods in which one particular method 
outperforms all of the other methods with respect to a 
specified criterion. We applied smallest absolute error 
as performance criterion. PB has been used in previous 
intermittent demand forecasting studies (e.g., Syntetos 
and Boylan 2005, 2006; Gutierrez, Solis, and 
Mukhopadhyay 2008; Mukhopadhyay, Solis, and 
Gutierrez 2012).  
 
3.2. Forecast Accuracy: Performance Block 
The exponential smoothing constant  was selected 
from among the candidate values (0.05, 0.10, 0.15, or 
0.20) for each of the SES, Croston’s, SBA and SBJ 
methods, taking into consideration four forecast 
accuracy measures (RMSE, MAD, MAPE, and MASE). 
We did not consider PB, as the 20 months in the 
calibration block are apparently insufficient to apply PB 
as an appropriate accuracy measure.  For all ten SKUs 
thus far evaluated, minimum values of MAD, MAPE, 
and MASE were consistently associated with the same 
 values. We accordingly selected  values (as reported 
in Table 5) based upon minimum MAD, MAPE, and 
MASE in the calibration block. (In the case of five 
SKUs, the minimum RMSE actually yielded  values 
consistent with the other three error measures.)   

We proceeded to calculate the resulting error 
statistics (MAD, MAPE, and MASE) when applying 
SES, Croston’s, SBA and SBJ methods to actual 
demand data in the performance block (the final 21 
months). These error statistics are summarized in Table 
5. SES resulted in the best forecast accuracy for SKU 
10. For the other nine SKUs, SBJ and SBA resulted in 
the best error statistics. As expected, SBJ yielded 
“slightly better” accuracy measures, though generally 
only at the fourth or fifth significant digit. The 
improvement arising from SBJ’s ‘exact’ correction over 
SBA’s approximate correction factor is, therefore, 
hardly significant.     
 
3.3. Forecast Accuracy: Simulated Demand 
In evaluating forecast accuracy over the 10,000 months 
of simulated demand (100 runs of 100 months each), we 
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found a more pronounced overall superiority of SBJ and 
SBA over SES and Croston’s methods using the three 
scale-free error statistics (MAPE, MASE, and PB). 
These error statistics are summarized in Table 6. Once 
again, SBJ yielded “better” accuracy measures only 
generally at the fourth or fifth significant digit. The 
improvement arising from SBJ’s ‘exact’ correction over 
SBA’s approximate correction factor is, therefore, 
hardly significant.     
 
Table 5: Error Statistics when Applying Forecasting 
Methods to Actual Demand in the Performance Block 

SKU # 1 2 3 4 5
Smoothing Constants Selected in Calibration Block
SES 0.05 0.05 0.05 0.05 0.05
Croston 0.05 0.05 0.05 0.05 0.05
SBA 0.05 0.05 0.05 0.05 0.05
SBJ 0.05 0.05 0.05 0.05 0.05
MAD
SES 1.674 0.670 2.223 2.261 1.909
Croston 1.637 0.649 2.179 2.211 2.029
SBA 1.625 0.652 2.158 2.202 1.982
SBJ 1.625 0.652 2.157 2.202 1.980
Best MAD SBJ/SBA SBJ/SBA SBJ SBJ/SBA SBJ
MAPE
SES 95.0% 87.9% 101.5% 101.0% 174.3%
Croston 92.9% 85.2% 99.5% 98.8% 185.2%
SBA 92.2% 85.5% 98.5% 98.4% 180.9%
SBJ 92.2% 85.5% 98.5% 98.4% 180.8%
Best MAPE SBJ/SBA SBJ/SBA SBJ/SBA SBJ/SBA SBJ
MASE
SES 0.676 0.670 0.765 0.669 1.336
Croston 0.661 0.649 0.750 0.654 1.420
SBA 0.656 0.652 0.743 0.651 1.387
SBJ 0.656 0.652 0.743 0.651 1.386
Best MASE SBJ/SBA SBJ/SBA SBJ/SBA SBJ/SBA SBJ

SKU # 6 7 8 9 10
Smoothing Constants Selected in Calibration Block
SES 0.05 0.05 0.05 0.2 0.05
Croston 0.05 0.05 0.05 0.05 0.2
SBA 0.05 0.05 0.05 0.05 0.2
SBJ 0.05 0.05 0.05 0.05 0.2
MAD
SES 8.152 2.079 7.538 2.268 2.600
Croston 7.980 2.032 7.164 2.287 2.787
SBA 7.936 1.991 7.064 2.263 2.718
SBJ 7.935 1.990 7.062 2.263 2.710
Best MAD SBJ SBJ SBJ SBJ/SBA SES
MAPE
SES 113.4% 121.3% 135.3% 103.5% 101.1%
Croston 111.0% 118.5% 128.6% 104.4% 108.4%
SBA 110.4% 116.1% 126.8% 103.3% 105.7%
SBJ 110.4% 116.1% 126.8% 103.3% 105.4%
Best MAPE SBJ/SBA SBJ/SBA SBJ/SBA SBJ/SBA SES
MASE
SES 0.751 1.149 1.319 0.744 0.853
Croston 0.735 1.123 1.254 0.751 0.915
SBA 0.731 1.100 1.236 0.743 0.892
SBJ 0.731 1.100 1.236 0.742 0.889
Best MASE SBJ/SBA SBJ/SBA SBJ/SBA SBJ SES  

 
4. EMPIRICAL INVESTIGATION OF 

INVENTORY CONTROL PERFORMANCE 
Recent studies that have looked into both forecast 
accuracy and inventory control performance of 
intermittent demand forecasting studies have applied a 
(T,S) periodic review system, where T and S denote the 
review period and the base stock (or ‘order-up-to’ 
level), respectively. These include Eaves and Kingsman 

(2004), Syntetos and Boylan (2006), Syntetos, 
Nikolopoulos, Boylan, Fildes, and Goodwin (2009), 
Syntetos, Babai, Dallery, and Teunter (2009), Syntetos, 
Nikolopoulos, and Boylan (2010), and Teunter, 
Syntetos, and Babai (2010). 

We simulate the performance of a (T,S) inventory 
control system over the 10,000 months of simulated 
demand (100 runs of 100 months each) generated using 
the NBD or two-stage approximations. We assume full 
backordering, with inventory reviewed on a monthly 
basis (T = 1). The reorder lead time for most SKUs is 
about one month (L = 1).  
 
Table 6: Error Statistics when Applying Forecasting 
Methods to the Simulated Demand Distributions 

SKU # 1 2 3 4 5
Smoothing Constants Selected in Calibration Block
SES 0.05 0.05 0.05 0.05 0.05
Croston 0.05 0.05 0.05 0.05 0.05
SBA 0.05 0.05 0.05 0.05 0.05
SBJ 0.05 0.05 0.05 0.05 0.05
MAPE
SES 81.6% 84.5% 90.4% 106.5% 102.7%
Croston 81.8% 83.5% 89.6% 105.0% 102.6%
SBA 81.1% 83.3% 89.0% 104.3% 101.8%
SBJ 81.1% 83.3% 88.9% 104.3% 101.7%
Best MAPE SBJ/SBA SBJ/SBA SBJ SBJ/SBA SBJ
MASE
SES 0.777 0.759 0.761 0.788 0.778
Croston 0.779 0.750 0.755 0.777 0.777
SBA 0.773 0.748 0.750 0.772 0.771
SBJ 0.772 0.748 0.749 0.772 0.771
Best MASE SBJ SBJ/SBA SBJ SBJ/SBA SBJ/SBA
PB 
SES 37.5% 34.6% 35.1% 38.5% 39.7%
Croston 20.5% 26.4% 15.4% 13.5% 20.6%
SBA 0.1% 1.2% 0.3% 0.4% 0.3%
SBJ 42.0% 37.8% 49.2% 47.7% 39.5%
Best PB SBJ SBJ SBJ SBJ SES

SKU # 6 7 8 9 10
Smoothing Constants Selected in Calibration Block
SES 0.05 0.05 0.05 0.2 0.05
Croston 0.05 0.05 0.05 0.05 0.2
SBA 0.05 0.05 0.05 0.05 0.2
SBJ 0.05 0.05 0.05 0.05 0.2
MAPE
SES 100.9% 100.8% 109.8% 101.4% 98.5%
Croston 99.9% 99.9% 108.4% 97.9% 101.7%
SBA 99.2% 99.2% 107.5% 97.3% 99.1%
SBJ 99.2% 99.2% 107.5% 97.3% 98.8%
Best MAPE SBJ/SBA SBJ/SBA SBJ/SBA SBJ/SBA SES
MASE
SES 0.771 0.778 0.788 0.810 0.783
Croston 0.763 0.771 0.778 0.783 0.808
SBA 0.758 0.766 0.772 0.779 0.788
SBJ 0.758 0.766 0.772 0.779 0.786
Best MASE SBJ/SBA SBJ/SBA SBJ/SBA SBJ/SBA SES
PB 
SES 12.4% 13.4% 12.7% 31.4% 29.4%
Croston 11.4% 12.8% 12.2% 18.3% 14.8%
SBA 0.2% 0.3% 0.2% 0.3% 0.7%
SBJ 49.3% 47.4% 47.4% 31.5% 38.4%
Best PB SBJ SBJ SBJ SBJ SBJ  

 
The literature suggests a safety stock component to 

compensate for uncertainty in demand during the 
‘protection interval’ T+L. For each SKU, we calculated 

trs , the standard deviation of monthly demand during 
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the ‘training sample’ (corresponding to the combined 
initialization and calibration blocks). We seek a safety 
stock level of trsk  , with ‘safety factor’ k. This 

approach is different from that suggested under an 
assumption that daily demand is identically and 
independently normally distributed during the 
protection interval (e.g., Silver, Pyke, and Peterson 
1998). The replenishment quantity tQ  at the time of 

review is 
 

tttrtt BIskFLTQ  )( ,              (11) 

 
where Ft is the forecast calculated at the end of month t, 
and tI  and tB  are, respectively, on-hand inventory and 

backlog. 
 
4.1. Service Levels 
According to Silver, Pyke, and Peterson (1998), the two 
most commonly specified service level criteria in 
inventory systems are: 
  

 Probability of no stockout (PNS) per review 
period, and  

 Fill rate (FR), the average percentage of 
demand to be satisfied from on-hand 
inventory.  

 
FR is considered to have considerably more appeal for 
practitioners.  

We used two values of the target PNS (90% and 
95%) and two values of the target FR (95% and 98%) in 
simulating inventory control performance. These target 
PNS and FR values are comparable with ‘reasonable’ 
levels tested in inventory systems studies – for instance, 
80%, 90%, 95%, or 97.5% for PNS and 95%, 98%, 
99% or 99.9% for FR (Solis, Longo, Nicoletti, Caruso, 
and Fazzari 2014). We performed simulation searches 
to find the safety factor k that would yield the target 
PNS or FR. 

  
4.2. Average Inventory on Hand 
For a 95% target FR, resulting averages of inventory on 
hand are reported in Table 7. We proceeded to index the 
average inventory on hand using Croston’s method as 
base (Croston index = 100). These indices, reported in 
Table 8, are all very close to 100. In fact, the indices for 
SBA and SBJ differ by at most 0.1. Moreover, all SBA 
and SBJ indices are between 98.9 and 100.3, which 
indicate that average levels of inventory on hand do not 
differ much from those arising using Croston’s method. 
Indices for a 98% target FR are all even closer to 100.  

In the case of a 90% target PNS, average inventory 
on hand levels are reported in Table 9. In applying an 
index of 100 to average inventory on hand under 
Croston’s method (see Table 10), we find the resulting 
indices for SBA and SBJ to be roughly equal for each of 
the 10 SKUs. These SBA and SBJ indices are all very 
close to 100 (between 99.8 and 100.4). With a 95% 
target PNS, the SBA and SBJ indices all fall between 

99.9 and 100.7, and are again roughly equal for each 
SKU.  
 
Table 7: Average Inventory on Hand for a 95% Target 
Fill Rate 
SKU # 1 2 3 4 5
SES 5.3849 2.1224 7.4255 7.6331 11.3890
Croston 5.3636 2.1561 7.4242 7.6112 11.3918
SBA 5.3618 2.1335 7.4268 7.6104 11.4288
SBJ 5.3625 2.1322 7.4273 7.6101 11.4271

SKU # 6 7 8 9 10
SES 22.5350 10.2828 27.3020 9.3131 5.9441
Croston 22.5247 10.2460 27.2997 9.2100 6.0214
SBA 22.5171 10.2382 27.2846 9.2028 5.9952
SBJ 22.5207 10.2404 27.2797 9.2028 5.9916  
 
Table 8: Indices of Average Inventory on Hand for a 
95% Target Fill Rate  
SKU # 1 2 3 4 5
SES 100.4 98.4 100.0 100.3 100.0
Croston 100.0 100.0 100.0 100.0 100.0
SBA 100.0 99.0 100.0 100.0 100.3
SBJ 100.0 98.9 100.0 100.0 100.3

SKU # 6 7 8 9 10
SES 100.0 100.4 100.0 101.1 98.7
Croston 100.0 100.0 100.0 100.0 100.0
SBA 100.0 99.9 99.9 99.9 99.6
SBJ 100.0 99.9 99.9 99.9 99.5  
 
Table 9: Average Inventory on Hand for a 90% Target 
Probability of No Stockout 
SKU # 1 2 3 4 5
SES 2.9487 1.2462 4.0906 3.5699 5.7023
Croston 2.9623 1.2558 4.0598 3.5567 5.6738
SBA 2.9616 1.2557 4.0614 3.5520 5.6752
SBJ 2.9616 1.2559 4.0614 3.5530 5.6723

SKU # 6 7 8 9 10
SES 12.3393 5.3399 13.7299 6.1841 3.6508
Croston 12.2887 5.3147 13.6642 6.0096 3.6979
SBA 12.3222 5.3185 13.6631 5.9979 3.7144
SBJ 12.3241 5.3185 13.6692 5.9985 3.7122  
 
Table 10: Indices of Average Inventory on Hand for a 
90% Target Probability of No Stockout  
SKU # 1 2 3 4 5
SES 99.5 99.2 100.8 100.4 100.5
Croston 100.0 100.0 100.0 100.0 100.0
SBA 100.0 100.0 100.0 99.9 100.0
SBJ 100.0 100.0 100.0 99.9 100.0

SKU # 6 7 8 9 10
SES 100.4 100.5 100.5 102.9 98.7
Croston 100.0 100.0 100.0 100.0 100.0
SBA 100.3 100.1 100.0 99.8 100.4
SBJ 100.3 100.1 100.0 99.8 100.4  
 
4.3. Cumulative Backlogs 
For reasonable target service levels, the occurrence of 
backlogs is minimized with the provision of safety 
stock levels. Therefore, reporting on average backlog 
per period will lead to averages of well under one unit. 
We accordingly record the cumulative backlogs over an 
entire 100-month simulation run.  
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Table 11 shows the average (across 100 
replications) of the cumulative backlogs over 100-
month intervals when the target FR is 98%. The 
absolute differences (with respect to results arising from 
the use of Croston’s method) are all less than 0.1 unit, 
indicating that there is hardly any difference in 
performance with respect to 100-month cumulative 
backlogs for the given target FR. The same observation 
holds for a target FR of 95%.          
 
Table 11: Mean 100-Month Backlogs for a 98% Target 
Fill Rate 
SKU # 1 2 3 4 5
SES 3.86 2.14 5.41 3.98 6.45
Croston 3.87 2.14 5.43 3.98 6.47
SBA 3.88 2.14 5.44 3.99 6.48
SBJ 3.87 2.14 5.44 3.99 6.48

SKU # 6 7 8 9 10
SES 13.98 6.26 13.84 7.04 4.51
Croston 14.03 6.24 13.87 7.10 4.51
SBA 13.99 6.25 13.87 7.11 4.52
SBJ 14.01 6.26 13.89 7.09 4.52  
 
Table 12 provides analogous results under a 95% target 
PNS. The absolute differences in average cumulative 
backlogs over 100-month intervals of SBA or SBJ with 
respect to those arising from the use of Croston’s 
method are all less than 0.2 unit. The absolute 
differences between SES and Croston’s method 
cumulative backlogs are all well under 1 unit. 
Essentially the same observations apply for a target 
PNS of 90% 

 
Table 12: Mean 100-Month Backlogs for a 95% Target 
Probability of No Stockout 
SKU # 1 2 3 4 5
SES 14.88 7.50 19.39 19.07 27.92
Croston 14.83 7.68 19.68 19.04 28.03
SBA 14.84 7.68 19.69 19.03 27.88
SBJ 14.84 7.68 19.69 19.03 27.91

SKU # 6 7 8 9 10
SES 50.97 24.60 59.48 20.00 14.64
Croston 51.43 24.52 58.85 20.56 14.69
SBA 51.35 24.46 58.93 20.44 14.56
SBJ 51.35 24.46 58.96 20.45 14.54  
 
5. CONCLUSION 
Croston’s method (1972) was developed to forecast 
intermittent demand, employing separate exponential 
smoothing estimates of the average demand size and the 
average interval between demand occurrences. Syntetos 
and Boylan (2001) reported an error in Croston’s 
mathematical derivation of expected demand, leading to 
a positive bias. Syntetos and Boylan (2005) then 
proposed an approximate correction, SBA. 
Subsequently, Shale, Boylan, and Johnston (2006) 
derived the expected bias in Croston’s method and 
proposed an ‘exact’ correction factor, SBJ.  

Both the approximate correction (SBA) and the 
exact correction (SBJ) have been derived analytically. 
In the current study, we empirically investigate, using 

an industrial dataset involving SKUs exhibiting lumpy 
demand, whether or not there are actually significant 
improvements in terms of statistical forecast accuracy 
as well as inventory control performance obtained by 
applying the approximate or exact correction. We 
evaluate SES (the original exponential smoothing 
method), Croston’s method, SBA, and SBJ by way of 
modeling and simulation. This paper constitutes a very 
preliminary report, limited to ten SKUs, all exhibiting 
lumpy demand, that have thus far been subjected to 
extensive simulation experiments. 

We first attempt to characterize lumpy demand 
using a suggested NBD approximation (Syntetos and 
Boylan 2006). Failing to find a reasonably acceptable 
NBD approximation, we try characterizing the demand 
distribution using an alternative two-stage simulation 
approach involving the continuous uniform distribution 
(stage 1) and the NBD (stage 2). The two-stage 
alternative allows us to better characterize demand for 
most of the 10 SKUs. Having characterized demand, we 
then simulate forecasting performance. Based on the 10 
SKUs evaluated, we have, as expected, found overall 
superior forecast accuracy of the bias corrections (SBA 
and SBJ) over both Croston’s method and SES. 
However, we have not found significant differences in 
forecast accuracy between the SBA (approximate) and 
SBJ (exact) corrections. 

Moreover, in terms of inventory control 
performance, we have observed very minute differences 
in average inventory on hand and average cumulative 
backlogs. 

We reiterate, nonetheless, that this is a very 
preliminary report based upon an investigation of 10 
SKUs. In particular, Table 1 shows that the mean 
monthly demands range between 1.07 and 6.54 (with 
mean nonzero demands ranging between 1.81 and 
9.98). We anticipate being able to report, by the time of 
the conference, on a larger set of SKUs which will also 
include some with higher mean monthly demands.      
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