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ABSTRACT 

 

The paper presents a new framework for carrying out 

simulations of continuous-time stochastic processes by 

exploiting a discrete event approach. The application 

scope of this work mainly refers to industrial production 

processes executed on a continuous flow of material 

(e.g. food and beverage industry) as well as production 

processes working on discrete units but characterized by 

a high speed flow (e.g. automated packaging lines). 

The proposed model, developed adopting the DEVS 

formalism, defines a single generalized base unit able to 

represent, by means of an event scheme generated by 

state changes, the base behaviors needed for the 

modeling of a generic manufacturing unit, that is, (i) 

breakdowns and repairs, (ii) speed and accumulation, 

and (iii) throughput time. Moreover, the possibility to 

keep trace of additional measures of parameters related 

to the process and the flowing material (i.e. 

temperature, concentration of pollutant, and so on) is 

also considered. Since these parameters can change over 

time in a continuous manner with respect to some laws 

that depend on contingent conditions, the possibility to 

transmit those laws as functions is introduced in the 

model. 

 

Keywords: continuous flow simulation, DES, DEVS. 

 

1. INTRODUCTION 

It is widely known that simulation is effectively applied 

in industry to address design and management issues in 

complex production systems that cannot be easily 

represented mathematically. 

The use of simulation delivers added value to 

customers both in the deployment of a new production 

plant as well as in analyzing existing ones. Typical 

applications regards the definition of work centers 

capacity and buffers dimensioning and location, of 

process control rules, of layout configuration, 

accomplishing with specific design target in terms of 

system performances also considering different 

scenarios. Specially, Discrete Event Simulation (DES) 

has been widely adopted in the industrial context thanks 

to the advantages deriving from the discretization of 

time, that is, the possibility to speed up computation 

time and to ease model building activity. 

As a consequence, in last decades the birth and the 

development of numerous discrete event simulators has 

been seen. However, there are industrial contexts of 

great relevance for which the discrete event simulation 

is not the best approach to represent the system since 

approximations are typically requested to keep the 

simulation time in line with industrial requirements. 

These sectors are, for instance, fluid processing (e.g. 

food and beverages industry) or high-speed automated 

lines (e.g. packaging lines) that, for the high processing 

speed, the system behaves as the same as it were a fluid 

process. 

While a large number of works addressing the discrete 

event simulation of manufacturing systems have been 

produced in years by scientists (see for a comprehensive 

review Jahangirian et al. 2010), only recent papers have 

focused on the problem of defining simulation models 

able to consider the production flow as a if it were a 

fluid, that is, continuous (Praehofer 1991, Tamani et al. 

2009). Hence, further studies to develop new 

approaches for the simulation analysis of production 

system adopting a continuous flow approach are of 

interest for both academics and practitioners. 

The aim of this paper is to present a new modeling 

framework for the simulation of flow manufacturing 

processing following an approach that aims to 

reproduce the behavior of a continuous-time stochastic 

process. The innovation of the proposed paper resides in 

the definition of a generalized model able to represent a 

continuous-time process by using a discrete event 
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approach, in which the events are signals related to state 

changes of the simulation units. The structure of the 

basic model is so that all of the minimum requirements 

needed for modeling an industrial process are met and, 

moreover, the possibility to consider continuous 

functions for process parameters is also introduced. This 

results in a very efficient and scalable modeling 

framework. 

The Discrete Event system Specification (DEVS) 

formalism, firstly introduced by Zeigler (Zeigler 1976, 

Zeigler 1984, Zeigler et al. 2000), is used in this paper 

to define the base unit model. DEVS allows the 

development of robust model representation based on 

the concept of atomic models and on the concept of 

higher-level models coupling. Several applications of 

DEVS for the definition of models for simulating 

manufacturing systems have been presented in 

literature. Among them, interesting contributions are 

Giambiasi and Carmona (2006) and Pujo et al. (2006). 

The remaining of the paper is organized as follows. 

Section 2 defines the problem statement, while Section 

3 develops the model for the base unit. Finally, Section 

4 provides concluding remarks. 

 

2. PROBLEM STATEMENT 

The aim of this paper is to present a new modeling 

framework for the simulation of flow manufacturing 

processing following an approach that aims to 

reproduce the behavior of a continuous-time stochastic 

process. 

This aspect is of particular interest for modeling 

manufacturing processes acting on a continuous flow of 

material (i.e. food and beverage industry), as well as 

processes working on discrete units but flowing at a 

high rate (e.g. packaging lines). For the latter, discrete 

event simulation is typically adopted to carry out 

performance analysis and to address design tasks, 

involving a huge overhead in terms of computation 

time. In fact, simulating a high capacity production line 

by means of a discrete event approach involves the need 

to manage a large number of events just to represent the 

flowing of the units. 

Conversely, a continuous-time stochastic approach 

determines states and transitions probabilities, 

considering the manufacturing process as it were 

working on a continuous flow. Typically, mathematical 

modeling is used to model the system and to obtain the 

closed form solutions. The base unit model is the so-

called two-machines one-buffer building block, whose 

first models were proposed by Zimmern (1956), 

Gershwin and Schick (1980), Yeralan and Tan (1997), 

and that obtained several improvements in years to 

enhance its capability to represent the behavior of real 

systems (Tan and Gershwin 2009, Tolio 2011, Tan and 

Gershwin 2011, Gebennini et al. 2011, Gebennini and 

Gershwin 2013). This building block is able to represent 

a simple series of two machines (a simple line) in which 

the decoupling effect of a buffer is also considered, and 

then it is the minimal requirement need to model a flow 

based manufacturing system. To model more complex 

systems, i.e. lines with more than one buffer, 

decomposition techniques have been introduced (Tan 

and Yeralan 1997, Gershwin and Burman 2000, 

Levantesi et al. 2003). 

The approach proposed in this paper uses a discrete 

event mechanism to reproduce the behavior of a 

continuous-time stochastic process. To reach this goal, 

the base unit model (see Figure 1) has been conceived 

so as to manage signals, coming from the other 

connected units, that are delivered following a discrete 

event scheme. A signal transmits information about a 

state change in the upstream or in the downstream, then 

producing changes in the internal states and parameters 

of the unit itself. In this way, the need to model the very 

production flow is avoided, and then computational 

time is saved, while the accurate behavior of the system 

is granted by the transmission of the only signals 

needed to determine state changes. 

To be able to represent production processes in 

industry, the basic modeling unit has been engineered 

so as to be able to represent three basic behaviors with 

which the most general real-world working unit can be 

modeled. In particular, those behaviors are: 

 

1. failures and repairs; 

2. working speed and accumulation; 

3. throughput time. 

 

Failures and repairs represent the operational state 

of the unit and are related to the Time-To-Failure (TTF) 

and the Time-To-Repair (TTR) profiles, that typically 

are random variables. Those random variables 

determine the occurrence of breaking and repair events, 

then putting the unit in down and up states, respectively. 

Working speed and accumulation make it possible to 

model changes in working speed as a consequence of 

state changes in the upstream and the downstream, on 

one side, and in the internal accumulation level on the 

other side. Moreover, internal accumulation level can 

involve changes in working speed, and this is the reason 

why those two aspects have to be jointly considered. It 

has to be pointed out that accumulation is here related to 

decoupling capability, so the capability of the unit to 

vary its content of material from zero to a maximum 

value. The throughput time represents a delay that has 

to be applied to a signal exiting from the downstream 

and generated as a consequence of an signal entering 

from the upstream. 

Referring to Figure 1 the three aforementioned 

basic behaviors have to be considered in the reported 

sequence (1, 2, and 3), given the implicit 

interdependence among them. By means of those three 

basic behaviors, we are able to produce a general base 

unit model that can represent the main categories of 

working units found in real applications, such as: 

 

• work centers continuously operating on the 

flow, characterized by a specific maximum 

production speed, zero accumulation and zero 

throughput time; 
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• buffers, characterized by a maximum speed, an 

accumulation greater than zero, and a 

throughput time depending on the buffering 

strategy (FIFO, LIFO, mixing, etc.); 

• conveying units (i.e. conveyors, belts, pipes, 

etc.), characterized by a fixed speed, zero 

accumulation, and a throughput time 

depending on the length and the speed. 

 

Summarizing, the basic behavior allows for the 

correct representation of the basic operation of a generic 

line, making also possible the computation of the 

classical performance measures such as throughput, 

efficiency, stay time in different status, and so on. 

Moreover, the modeling approach here proposed 

provides the capability to include additional parameters 

whose values need to be tracked during the simulation 

and along the production flow. Classical examples, 

referring to the food industry, are the temperature of the 

product, or the concentration of pollutant substances 

that can be generated by some unwanted situations in a 

process unit and then propagate in some way along the 

production flow. The need to track those kind of 

parameter is clear since the use of a flow simulator in 

food industry is mainly related to the definition of 

control policies in processes and of product traceability 

strategies, as well as product waste and net efficiency 

estimation. 

Hence, the modeling approach proposed in this 

paper allow for the addition of every parameter to 

monitor the user need to trace, thanks also to the a 

general scheme to define interactions among the 

monitored parameter and the basic behaviors. 

Moreover, the model has been conceived so as to allow 

the exchanging of functions between units, rather than 

simple values, by means of which parameter values can 

be calculated as a function of time without the need to 

generate additional events for updating parameter 

values. 

 

 
Figure 1: The Base Unit Model. 

 

In other words, we have also adopted the continuous-

time approach to model parameters value variations. 

To understand the importance of this last aspect we 

can refer to a typical case that can be found in food 

industry, that is, an accumulation unit working with a 

pure mixing strategy (i.e. a tank) having an entering 

product flow coming from an upstream process and an 

exiting flow sent to a downstream process. If, at a 

certain time, the upstream process start to fail producing 

a product characterized by a constant concentration of 

pollutant, the concentration of pollutant inside the 

accumulation unit begins to change over time following 

a law that depends on the amount of product present in 

the unit and the flow of pollutant entering the unit itself. 

As a consequence, the product sent to the downstream 

by the accumulation unit will be characterized by a 

concentration of pollutant following the same law, thus 

continuously varying over time. From here the need to 

allow the possibility to transmit functions among 

modeled units. If we can transmit functions, we have 

only to generate events related to a state change and 

then transmitting the new functions to trace parameter 

values, thus avoiding the need to generate polling 

events just to update the values of those parameters that 

are varying over time following continuous laws. 

 

3. THE BASE UNIT MODEL 

 

3.1. Base unit object 

 

3.1.1. Informal description 

The base unit model is composed by three atomic 

models representing the behaviors (i) failures and 

repairs, (ii) working speed and accumulation, (iii) 

throughput time, plus one interface and n additional 

parameter models. This purpose of this section is to 

illustrate the interaction between them. 

The Figure 1 shows the interactions between 

external signals, coming from the upstream and the 

downstream flows, and internal signals. The base unit is 

composed by standard objects and a interface whose 

task is to generate output signals. Considering a simple 

flow system, the base unit is provided with one input 

and two output ports for external signals, in order to 

send system variations both upstream and downstream 

the flow. 

Forward signals processed among internal objects 

follows a static logical scheme represented by a matrix 

of dependencies (see Figure 2) composed by:  

 

1. the minimal matrix managing signals among 

standard objects; 

2. the external signals; 

3. the set of rows and columns managing 

additional parameters signals. 

 

 
Figure 2: The Dependency Matrix. 

 

The vector S
*
 represents the internal set of data 

that are used for local storing purposes. 

The signal generated by the failures and repairs 

object (FR) is related to a state change due to the  

Proceedings of the International Conference on Modeling and Applied Simulation, 2013 
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds. 

97



occurrence of a TTF or of a TTR, that is, a change of 

the operative conditions of the unit. A signal 

(updateFR) is then sent to the working speed and 

accumulation object (WSA) for updating purposes. The 

opposite signaling direction (updateWSA) is also 

introduced, since a change in the speed of the unit can 

imply a variation in the way the TTF is consumed (i.e. 

if the failures are operation dependent or not). Updates 

in WSA conditions are also sent to the additional 

parameter objects (ADDk) to allow the update of their 

values and functions. 

The throughput time object (T) acts as a sort of 

final gateway by which every signal has to pass before 

being sent to the external units. The reason is that the 

object T is devoted to the computation of the delay with 

which external units located in the downstream and in 

the upstream realize that something has changed in the 

considered unit. Finally, the interface object (I) takes 

care of the broadcasting of the signal to the downstream 

and the upstream. 

 

3.1.2. Formal description 

 

                                            (1) 

 

Input event variable Xbu = (inputS) where: 

• ‘inputS’ = S where S = { f , s, param1, ... , 

paramk, ... , paramn}  

- f ={d,u} is the flow parameter, where 

? f = ‘d’ represents a message coming 

from a downstream unit while ? f = 

‘u’ represents a message from an 

upstream unit; 

- s is the working speed; 

- paramk, for k = 1, ... ,n, is the 

function describing the variation of 

the additional parameter k over time. 

 

Output event variables Ybu = (downstreamS,upstreamS) 

where: 

• ‘downstreamS’ = {‘u’, s*,param1, ... ,paramk, 

... , paramn } 

- ‘u’ indicates the unit in the 

downstream that the signal is coming 

from an unit in its upstream; 

- s*  is the value of the actual working 

speed; 

- paramk , for k = 1, ... ,n, is the 

function describing the actual law of 

variation of the additional parameter 

k over time. 

• ‘upstreamS’ = {‘d’, s*, param1, ... , paramk, ... , 

paramn} 

- ‘d’ indicates the unit in the upstream 

that the signal is coming from an unit 

in its downstream; 

- s
*
 is the value of the actual working 

speed; 

- paramk , for k = 1, ... ,n, is the 

function describing the actual law of 

variation of the additional parameter 

k over time. 
 

 
Figure 3: The Availability Object. 

 

3.2. Failures and repairs object model 

 

3.2.1. Informal description 

The failures and repairs object (FR) models the base 

unit availability, switching the system from ‘up’ state to 

‘down’ state and vice-versa (see Figure 3).  

Let us describe the behavior in the case of the unit 

entering the ‘up’ state. Considering the ‘set’ phase, the 

base unit is set in a working state, meaning state 

variable set to ‘1’, t variable set to the result of TTF 

profile function and s to t. After that initialization, the 

system switches to the ‘up’ state. Since then, two cases 

can happen: 

 

1. a working speed chage signal arrives from 

the WSA object; 

2. an internal state change happens. 

 

In the first case, the incoming signal represents a 

notification of a speed change and it makes the system 

jump from the state ‘up’ to the state ‘set’ in order to 

update the TTF function. Since this is a transitional 

state, the system returns immediately to the previous 

state, until the amount of time s (the TTF) has passed. 

After this time, an internal transition from the ‘up’ to 

the ‘down’ state happens.  

In the second case, the state is set to ‘0’ and σ is set 

to the TTR value. An internal update message is created 

in order to notice this operative change. After σ has 

passed, the system makes an internal transition from the 

‘down’ state to the ‘set’ state where a new TTF is 

computed and the state variable is set to ‘1’. After that, 

the system switches to the ‘up’ state for a time equal to 

σ. By changing the state from ‘down’ to ‘set’ an internal 

output signal is created. All internal signals generated 

are sent to the WSA object. 

 

3.2.2. Formal description 

 

                                 
                              (2) 
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Input event variable: Xf r = (updateWSA) where: 

 

• ‘updateWSA’ = {yes} indicates a work speed 

and accumulation variation. 

 

State variables: Tf r = (phase, state, t, σ) where: 

• ‘phase’ = {up,down, set} is a name 

representing the situation in the real world; 

• ‘state’ = {0,1} represents the availability of the 

base unit, where ?state = ‘0’ means the base 

unit is down and needs to be repaired, and 

?state = ‘1’ means the base unit is up; 

• ‘ f ’ ={TTR,TTF} represents the time to repair 

and the time to failure functions, that are 

probability distribution functions also 

considering the speed s
*
 for TTF consuming 

computations; 

• σ  ∈ ℝ  + 0 ⋃ ∞   is the life time of the current 

state. 

 

Output event variable: Yfr = (updateFR) where: 

 

• ‘updateFR’ = {0,1} indicates a variation in the 

system operativity. 

 

 
Figure 4: The Working Speed And Accumulation 

Object. 

 

3.3. Working speed and accumulation object model 

 

3.3.1. Informal description 

The purpose of this object (see Figure 4) is to model the 

operative conditions of the base unit system. 

Considering the ‘init’ state as initialization of the object 

variables, all parameters are set to ‘0’ and, by means of 

an internal transition, the system jumps in the ‘wait’ 

state. Thus, the working speed and accumulation object 

receives an !updateFR=‘1’ and the system switches to 

the ‘update’ state: s
*
i , s

*
o , s*,and Acc* variables are 

updated to the new calculated values obtained by 

reading previously stored values of s*i , s*o , s*,and 

Acc*. In this case, the base unit restarts calculating 

parameters using the stored ones. 

After the update have been done, the system switch 

to the ‘wait’ state creating an output signal !updateWSA 

= ‘yes’ in order to notice the changes made. The same 

path is followed also when there is an external signal 

?inputS = ‘S’ entering the unit, where information about 

speed changes, both upstream and downstream, are 

stored and then used to update the unit operative 

condition.  

As a transitional state, the system switch to the 

‘wait’ state and remain in this state for a time that is the 

minimum value between infinite and tb, the time when 

the base unit will be at one accumulation boundary. 

Boundaries are possible only when the base unit is 

configured as a buffer, so that boundaries are the empty 

level of the buffer and a level of the buffer equal to its 

capacity. 

At the boundary state, the actual level of the buffer 

is calculated (empty or full). The ‘boundary’ state is 

transitional, so that the system sets its parameters, 

creates an internal output signal to notice the changes 

and then switch into the ‘wait’ state in order to wait that 

a change signal occurs. After receiving an !updateFR = 

‘0’ the system switches from the ‘wait’ state to the 

‘down’ state and sets all its parameters to ‘0’. As a 

transitional state, the system switches to the ‘wait’ state 

after the creation of an internal output in order to notice 

an operative change. 

 

3.3.2. Formal description 

 

                                           
                                (3) 

 

Input event variable: XWSA = (inputS,updateFR) where: 

 

• ‘inputS’ = S where S = { f, s, param1, ... , 

paramk, ... , paramn} 

- f ={d,u} is the flowparameter, where 

?f =‘d’ represents amessage coming 

froma downstream unit while ?f = ‘u’ 

represents a message from an 

upstream unit; 

- s is the working speed; 

- paramk, for k = 1, ... ,n, is the 

function describing the variation of 

the additional parameter k over time. 

• ‘updateFR’ = {0,1} the internal signal that is 

generated as output by the failures and repairs 

object, where ?updateFR = ‘0’ indicates that 

the state of the base unit is down and 

?updateFR = ‘1’ indicates that the state of the 

base unit is up. 

 

State variables: TWSA = (phase, s
*
, s

*
i, s

*
o, acc∗, s ) 

where: 

 

• ‘phase’ ={init,down,wait,update,boundary} is 

a name representing the situation in the real 

world; 

• ‘s*’ = fs () represents a function which 

calculates the base unit working speed 
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considering the upstream and downstream base 

units working speed, the maximum working 

speed of the base unit, and the accumulation 

level. 

• ‘s*i’ = fsi () represents a function which 

determines the upstream base unit working 

speed. 

• ‘s*o’ = fso () represents a function which 

determines the downstream base unit working 

speed. 

• ‘acc∗’ = facc () represents a function which 

determines the accumulation level considering 

s*, s*i, s*o and the previous accumulation 

level. 

• σ ∈ ℝ  + 0 ⋃ ∞ is the life time of the current 

state. 

 

Output event variable: YWSA = (updateWSA) where: 

 

• ‘updateWSA’ = {yes} indicates a working 

speed and accumulation variation. 

 

3.4. Throughput time object model 

 

3.4.1. Informal description 

By referring to Figure 5, in the initial state ‘init’, the 

throughput time function tr is set for the first time. This 

function depends on the base unit speed, accumulation 

and the base unit state. Later, the object waits for an 

input signal in order to update its function. This 

function can be updated only when the object receives 

at least one of the two input signals. These two signals 

are sent by an additional parameter object or by the 

working speed and accumulation object. Finally, the 

object is able to send a signal to the Interface object. 

 

 
Figure 5: The Throughput Time Object. 

 

3.4.2. Formal description 

 

                            
                              (4) 

 

Input event variable: Xtr = (updateParamk ,updateWSA) 

where: 

• ‘updateParamk’ = {yes} indicates a variation 

in the k-th additional parameter function; 

• ‘updateWSA’ = {yes} indicates a work speed 

and accumulation variation. 

 

State variables: Ttr = (phase, tr, σ) where: 

 

• ‘phase’ = {init,wait,update} is a name 

representing the situation in the real world; 

• ‘tr’ = f ∗tr (s∗,acc∗, state) is the function that 

sets the throughput time and depends on: 

- the base unit speed s∗; 

- the current accumulation acc∗; 

- the base unit state. 

• σ ∈ ℝ  + 0 ⋃ ∞ is the life time of the current 

state. 

 

Output event variable: Ytr = (outputS) where: 

 

• ‘outputS’ = {yes} indicates a signal to be sent 

to the Interface object. 

 

3.5. Interface object model 

 

3.5.1. Informal description 

By referring to Figure 6, in the initial state ‘init’, the 

output signal is set to zero. When the interface receives 

a signal from the throughput time object, S is updated. 

For each input signal received, two different signals are 

generated: one is sent to upstream and the other one to 

the downstream. The first signal is S = {‘d’, s∗, param∗}, 

while the latter is S = {‘u’, s∗, param∗}. It means that the 

Interface object sends: 

 

• ‘flow’ = {‘d′, ‘u′}, that is, the information to 

the upstream and the downstream with the 

position reference of the considered base unit; 

• the speed of considered base unit; 

• the additional parameter functions of the 

considered base unit. 

 

 
Figure 6: The Interface Object. 

 

3.5.2. Formal description 

 

                      
                                 (5) 

 

Input event variable: Xint = (outputS) where: 

 

• ‘outputS’ = {yes} indicates the reception of a 

signal from the throughput time object. 

 

State variables: Tint = (phase, S, σ)  where: 
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• ‘phase’ = {init,wait, set1, set2} is a name 

representing the situation in the real world; 

• S = { f low, s∗, param∗} is the output signal and 

it consists of: 

- ‘flow’ = {‘u′, ‘d′}, ‘u′ indicates that 

the considered base unit is the 

upstream of the destination base unit, 

while ‘d′ indicates that the considered 

base unit is the downstream of the 

destination base unit; 

- s∗, the speed of the considered unit; 

- param∗, the additional parameter 

functions of the considered base unit. 

• σ ∈ ℝ  + 0 ⋃ ∞ is the life time of the current 

state. 

 

Output event variable: Yint = (upstreamS, downstreamS) 

where: 

 

• ‘upstreamS’ = {yes} indicates a signal to be 

sent to the upstream base unit; 

• ‘downstreamS’ = {yes} indicates a signal to be 

sent to the downstream base unit. 

 

3.6. Additional parameter object 

 

3.6.1. Informal description 

Looking at Figure 7, in the initial state ‘init’, the 

parameter of the additional function ‘tparam’ is set for 

the first time. This function depends on the base unit 

speed, accumulation, the base unit state and on the 

additional parameter itself. Later, the object waits for an 

input signal in order to update its function. This 

function can be updated only when the object receives a 

signal by the working speed and accumulation object. 

Finally, the object is able to send a signal to the 

throughput time object. 

 

 
Figure 7: The generic additional parameter object. 

 

3.6.2. Formal description 

 

                                 
                                      (6) 

 

Input event variable: Xparam = (updateWSA) where: 

 

• ‘updateWSA’ = {yes} indicates a work speed 

and accumulation variation. 

 

State variables: Tparam = (phase, t, σ ) where: 

 

• ‘phase’ = {init,wait,update} is a name 

representing the situation in the real world; 

• ‘t’ = {f∗tparam} represents the function 

associated to the additional parameter object. 

• σ ∈ ℝ  + 0 ⋃ ∞ is the life time of the current 

state. 

 

Output event variable: Yparam = (updateParamk) where: 

 

• ‘updateParamk’ = {0,1} indicates a variation in 

the additional parameter k function. 

 

4. CONCLUSIONS 

A new framework for addressing simulation of 

continuous-time stochastic processes by exploiting a 

discrete event approach is presented in the paper. The 

core of the framework is constituted by a base unit 

model able to represent the minimum set of behaviors 

required for the modeling of a generic unit working in a 

real manufacturing system (i.e. workcenter, 

accumulator/buffer, conveyor/pipe).  

The base unit is modeled by adopting the DEVS 

formalism and contains a set of other atomic objects 

whose interactions determine the sequence of events. 

The base concept is that events are generated by state 

changes in objects and propagates both in the upstream 

and in the downstream to notify connected objects that 

something has changed. In this way, the performances 

of each unit is determined by the staytime in states, 

while events are only related to state changes, thus 

saving a lot of computational time. 

Moreover, the possibility to keep trace of 

additional measures of parameters of interest for the 

production is also added. As the model is conceived, 

parameters undergoing variations over time defined by 

continuous laws is possible without generating 

overheads on the event generation. 

The presented work is particularly valuable for 

simulating manufacturing processes executed on a 

continuous flow of material (e.g. food and beverage 

industry) as well as production processes working on 

discrete units but characterized by a high speed flow 

(e.g. automated packaging lines). 

Being the presented base unit model general, its 

implementation in simulation systems is desirable, 

while further extensions can be easily developed. 
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