
SIMULATING CONTINUOUS TIME PRODUCTION FLOWS IN FOOD INDUSTRY BY

MEANS OF DISCRETE EVENT SIMULATION

Fabio Bursi
(a)

, Andrea Ferrara
(b)

, Andrea Grassi
(c)

, Chiara Ronzoni
(d)

(a,b,c)

 Dipartimento di Scienze e Metodi dell’Ingegneria

Università di Modena e Reggio Emilia

Via Amendola 2, 42122 Reggio Emilia, Italy

(a,b,c,d)

 Logistics & Automation Consulting srl

Via G. V. Catullo 22, 42124 Reggio Emilia, Italy

(a)

fabio.bursi@unimore.it ,
(b)

andrea.ferrara@unimore.it,
(c)

andrea.grassi@unimore.it,
(b)

chiara.ronzoni@lac-consulting.eu

ABSTRACT

The paper presents a new framework for carrying out

simulations of continuous-time stochastic processes by

exploiting a discrete event approach. The application

scope of this work mainly refers to industrial production

processes executed on a continuous flow of material

(e.g. food and beverage industry) as well as production

processes working on discrete units but characterized by

a high speed flow (e.g. automated packaging lines).

The proposed model, developed adopting the DEVS

formalism, defines a single generalized base unit able to

represent, by means of an event scheme generated by

state changes, the base behaviors needed for the

modeling of a generic manufacturing unit, that is, (i)

breakdowns and repairs, (ii) speed and accumulation,

and (iii) throughput time. Moreover, the possibility to

keep trace of additional measures of parameters related

to the process and the flowing material (i.e.

temperature, concentration of pollutant, and so on) is

also considered. Since these parameters can change over

time in a continuous manner with respect to some laws

that depend on contingent conditions, the possibility to

transmit those laws as functions is introduced in the

model.

Keywords: continuous flow simulation, DES, DEVS.

1. INTRODUCTION

It is widely known that simulation is effectively applied

in industry to address design and management issues in

complex production systems that cannot be easily

represented mathematically.

The use of simulation delivers added value to

customers both in the deployment of a new production

plant as well as in analyzing existing ones. Typical

applications regards the definition of work centers

capacity and buffers dimensioning and location, of

process control rules, of layout configuration,

accomplishing with specific design target in terms of

system performances also considering different

scenarios. Specially, Discrete Event Simulation (DES)

has been widely adopted in the industrial context thanks

to the advantages deriving from the discretization of

time, that is, the possibility to speed up computation

time and to ease model building activity.

As a consequence, in last decades the birth and the

development of numerous discrete event simulators has

been seen. However, there are industrial contexts of

great relevance for which the discrete event simulation

is not the best approach to represent the system since

approximations are typically requested to keep the

simulation time in line with industrial requirements.

These sectors are, for instance, fluid processing (e.g.

food and beverages industry) or high-speed automated

lines (e.g. packaging lines) that, for the high processing

speed, the system behaves as the same as it were a fluid

process.

While a large number of works addressing the discrete

event simulation of manufacturing systems have been

produced in years by scientists (see for a comprehensive

review Jahangirian et al. 2010), only recent papers have

focused on the problem of defining simulation models

able to consider the production flow as a if it were a

fluid, that is, continuous (Praehofer 1991, Tamani et al.

2009). Hence, further studies to develop new

approaches for the simulation analysis of production

system adopting a continuous flow approach are of

interest for both academics and practitioners.

The aim of this paper is to present a new modeling

framework for the simulation of flow manufacturing

processing following an approach that aims to

reproduce the behavior of a continuous-time stochastic

process. The innovation of the proposed paper resides in

the definition of a generalized model able to represent a

continuous-time process by using a discrete event

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

95

mailto:fabio.bursi@unimore.it
mailto:andrea.ferrara@unimore.it
mailto:andrea.grassi@unimore.it
mailto:chiara.ronzoni@lac-consulting.eu

approach, in which the events are signals related to state

changes of the simulation units. The structure of the

basic model is so that all of the minimum requirements

needed for modeling an industrial process are met and,

moreover, the possibility to consider continuous

functions for process parameters is also introduced. This

results in a very efficient and scalable modeling

framework.

The Discrete Event system Specification (DEVS)

formalism, firstly introduced by Zeigler (Zeigler 1976,

Zeigler 1984, Zeigler et al. 2000), is used in this paper

to define the base unit model. DEVS allows the

development of robust model representation based on

the concept of atomic models and on the concept of

higher-level models coupling. Several applications of

DEVS for the definition of models for simulating

manufacturing systems have been presented in

literature. Among them, interesting contributions are

Giambiasi and Carmona (2006) and Pujo et al. (2006).

The remaining of the paper is organized as follows.

Section 2 defines the problem statement, while Section

3 develops the model for the base unit. Finally, Section

4 provides concluding remarks.

2. PROBLEM STATEMENT

The aim of this paper is to present a new modeling

framework for the simulation of flow manufacturing

processing following an approach that aims to

reproduce the behavior of a continuous-time stochastic

process.

This aspect is of particular interest for modeling

manufacturing processes acting on a continuous flow of

material (i.e. food and beverage industry), as well as

processes working on discrete units but flowing at a

high rate (e.g. packaging lines). For the latter, discrete

event simulation is typically adopted to carry out

performance analysis and to address design tasks,

involving a huge overhead in terms of computation

time. In fact, simulating a high capacity production line

by means of a discrete event approach involves the need

to manage a large number of events just to represent the

flowing of the units.

Conversely, a continuous-time stochastic approach

determines states and transitions probabilities,

considering the manufacturing process as it were

working on a continuous flow. Typically, mathematical

modeling is used to model the system and to obtain the

closed form solutions. The base unit model is the so-

called two-machines one-buffer building block, whose

first models were proposed by Zimmern (1956),

Gershwin and Schick (1980), Yeralan and Tan (1997),

and that obtained several improvements in years to

enhance its capability to represent the behavior of real

systems (Tan and Gershwin 2009, Tolio 2011, Tan and

Gershwin 2011, Gebennini et al. 2011, Gebennini and

Gershwin 2013). This building block is able to represent

a simple series of two machines (a simple line) in which

the decoupling effect of a buffer is also considered, and

then it is the minimal requirement need to model a flow

based manufacturing system. To model more complex

systems, i.e. lines with more than one buffer,

decomposition techniques have been introduced (Tan

and Yeralan 1997, Gershwin and Burman 2000,

Levantesi et al. 2003).

The approach proposed in this paper uses a discrete

event mechanism to reproduce the behavior of a

continuous-time stochastic process. To reach this goal,

the base unit model (see Figure 1) has been conceived

so as to manage signals, coming from the other

connected units, that are delivered following a discrete

event scheme. A signal transmits information about a

state change in the upstream or in the downstream, then

producing changes in the internal states and parameters

of the unit itself. In this way, the need to model the very

production flow is avoided, and then computational

time is saved, while the accurate behavior of the system

is granted by the transmission of the only signals

needed to determine state changes.

To be able to represent production processes in

industry, the basic modeling unit has been engineered

so as to be able to represent three basic behaviors with

which the most general real-world working unit can be

modeled. In particular, those behaviors are:

1. failures and repairs;

2. working speed and accumulation;

3. throughput time.

Failures and repairs represent the operational state

of the unit and are related to the Time-To-Failure (TTF)

and the Time-To-Repair (TTR) profiles, that typically

are random variables. Those random variables

determine the occurrence of breaking and repair events,

then putting the unit in down and up states, respectively.

Working speed and accumulation make it possible to

model changes in working speed as a consequence of

state changes in the upstream and the downstream, on

one side, and in the internal accumulation level on the

other side. Moreover, internal accumulation level can

involve changes in working speed, and this is the reason

why those two aspects have to be jointly considered. It

has to be pointed out that accumulation is here related to

decoupling capability, so the capability of the unit to

vary its content of material from zero to a maximum

value. The throughput time represents a delay that has

to be applied to a signal exiting from the downstream

and generated as a consequence of an signal entering

from the upstream.

Referring to Figure 1 the three aforementioned

basic behaviors have to be considered in the reported

sequence (1, 2, and 3), given the implicit

interdependence among them. By means of those three

basic behaviors, we are able to produce a general base

unit model that can represent the main categories of

working units found in real applications, such as:

• work centers continuously operating on the

flow, characterized by a specific maximum

production speed, zero accumulation and zero

throughput time;

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

96

• buffers, characterized by a maximum speed, an

accumulation greater than zero, and a

throughput time depending on the buffering

strategy (FIFO, LIFO, mixing, etc.);

• conveying units (i.e. conveyors, belts, pipes,

etc.), characterized by a fixed speed, zero

accumulation, and a throughput time

depending on the length and the speed.

Summarizing, the basic behavior allows for the

correct representation of the basic operation of a generic

line, making also possible the computation of the

classical performance measures such as throughput,

efficiency, stay time in different status, and so on.

Moreover, the modeling approach here proposed

provides the capability to include additional parameters

whose values need to be tracked during the simulation

and along the production flow. Classical examples,

referring to the food industry, are the temperature of the

product, or the concentration of pollutant substances

that can be generated by some unwanted situations in a

process unit and then propagate in some way along the

production flow. The need to track those kind of

parameter is clear since the use of a flow simulator in

food industry is mainly related to the definition of

control policies in processes and of product traceability

strategies, as well as product waste and net efficiency

estimation.

Hence, the modeling approach proposed in this

paper allow for the addition of every parameter to

monitor the user need to trace, thanks also to the a

general scheme to define interactions among the

monitored parameter and the basic behaviors.

Moreover, the model has been conceived so as to allow

the exchanging of functions between units, rather than

simple values, by means of which parameter values can

be calculated as a function of time without the need to

generate additional events for updating parameter

values.

Figure 1: The Base Unit Model.

In other words, we have also adopted the continuous-

time approach to model parameters value variations.

To understand the importance of this last aspect we

can refer to a typical case that can be found in food

industry, that is, an accumulation unit working with a

pure mixing strategy (i.e. a tank) having an entering

product flow coming from an upstream process and an

exiting flow sent to a downstream process. If, at a

certain time, the upstream process start to fail producing

a product characterized by a constant concentration of

pollutant, the concentration of pollutant inside the

accumulation unit begins to change over time following

a law that depends on the amount of product present in

the unit and the flow of pollutant entering the unit itself.

As a consequence, the product sent to the downstream

by the accumulation unit will be characterized by a

concentration of pollutant following the same law, thus

continuously varying over time. From here the need to

allow the possibility to transmit functions among

modeled units. If we can transmit functions, we have

only to generate events related to a state change and

then transmitting the new functions to trace parameter

values, thus avoiding the need to generate polling

events just to update the values of those parameters that

are varying over time following continuous laws.

3. THE BASE UNIT MODEL

3.1. Base unit object

3.1.1. Informal description

The base unit model is composed by three atomic

models representing the behaviors (i) failures and

repairs, (ii) working speed and accumulation, (iii)

throughput time, plus one interface and n additional

parameter models. This purpose of this section is to

illustrate the interaction between them.

The Figure 1 shows the interactions between

external signals, coming from the upstream and the

downstream flows, and internal signals. The base unit is

composed by standard objects and a interface whose

task is to generate output signals. Considering a simple

flow system, the base unit is provided with one input

and two output ports for external signals, in order to

send system variations both upstream and downstream

the flow.

Forward signals processed among internal objects

follows a static logical scheme represented by a matrix

of dependencies (see Figure 2) composed by:

1. the minimal matrix managing signals among

standard objects;

2. the external signals;

3. the set of rows and columns managing

additional parameters signals.

Figure 2: The Dependency Matrix.

The vector S
*
 represents the internal set of data

that are used for local storing purposes.

The signal generated by the failures and repairs

object (FR) is related to a state change due to the

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

97

occurrence of a TTF or of a TTR, that is, a change of

the operative conditions of the unit. A signal

(updateFR) is then sent to the working speed and

accumulation object (WSA) for updating purposes. The

opposite signaling direction (updateWSA) is also

introduced, since a change in the speed of the unit can

imply a variation in the way the TTF is consumed (i.e.

if the failures are operation dependent or not). Updates

in WSA conditions are also sent to the additional

parameter objects (ADDk) to allow the update of their

values and functions.

The throughput time object (T) acts as a sort of

final gateway by which every signal has to pass before

being sent to the external units. The reason is that the

object T is devoted to the computation of the delay with

which external units located in the downstream and in

the upstream realize that something has changed in the

considered unit. Finally, the interface object (I) takes

care of the broadcasting of the signal to the downstream

and the upstream.

3.1.2. Formal description

 (1)

Input event variable Xbu = (inputS) where:

• ‘inputS’ = S where S = { f , s, param1, ... ,

paramk, ... , paramn}

- f ={d,u} is the flow parameter, where

? f = ‘d’ represents a message coming

from a downstream unit while ? f =

‘u’ represents a message from an

upstream unit;

- s is the working speed;

- paramk, for k = 1, ... ,n, is the

function describing the variation of

the additional parameter k over time.

Output event variables Ybu = (downstreamS,upstreamS)

where:

• ‘downstreamS’ = {‘u’, s*,param1, ... ,paramk,

... , paramn }

- ‘u’ indicates the unit in the

downstream that the signal is coming

from an unit in its upstream;

- s* is the value of the actual working

speed;

- paramk , for k = 1, ... ,n, is the

function describing the actual law of

variation of the additional parameter

k over time.

• ‘upstreamS’ = {‘d’, s*, param1, ... , paramk, ... ,

paramn}

- ‘d’ indicates the unit in the upstream

that the signal is coming from an unit

in its downstream;

- s
*
 is the value of the actual working

speed;

- paramk , for k = 1, ... ,n, is the

function describing the actual law of

variation of the additional parameter

k over time.

Figure 3: The Availability Object.

3.2. Failures and repairs object model

3.2.1. Informal description

The failures and repairs object (FR) models the base

unit availability, switching the system from ‘up’ state to

‘down’ state and vice-versa (see Figure 3).

Let us describe the behavior in the case of the unit

entering the ‘up’ state. Considering the ‘set’ phase, the

base unit is set in a working state, meaning state

variable set to ‘1’, t variable set to the result of TTF

profile function and s to t. After that initialization, the

system switches to the ‘up’ state. Since then, two cases

can happen:

1. a working speed chage signal arrives from

the WSA object;

2. an internal state change happens.

In the first case, the incoming signal represents a

notification of a speed change and it makes the system

jump from the state ‘up’ to the state ‘set’ in order to

update the TTF function. Since this is a transitional

state, the system returns immediately to the previous

state, until the amount of time s (the TTF) has passed.

After this time, an internal transition from the ‘up’ to

the ‘down’ state happens.

In the second case, the state is set to ‘0’ and σ is set

to the TTR value. An internal update message is created

in order to notice this operative change. After σ has

passed, the system makes an internal transition from the

‘down’ state to the ‘set’ state where a new TTF is

computed and the state variable is set to ‘1’. After that,

the system switches to the ‘up’ state for a time equal to

σ. By changing the state from ‘down’ to ‘set’ an internal

output signal is created. All internal signals generated

are sent to the WSA object.

3.2.2. Formal description

 (2)

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

98

Input event variable: Xf r = (updateWSA) where:

• ‘updateWSA’ = {yes} indicates a work speed

and accumulation variation.

State variables: Tf r = (phase, state, t, σ) where:

• ‘phase’ = {up,down, set} is a name

representing the situation in the real world;

• ‘state’ = {0,1} represents the availability of the

base unit, where ?state = ‘0’ means the base

unit is down and needs to be repaired, and

?state = ‘1’ means the base unit is up;

• ‘ f ’ ={TTR,TTF} represents the time to repair

and the time to failure functions, that are

probability distribution functions also

considering the speed s
*
 for TTF consuming

computations;

• σ ∈ ℝ + 0 ⋃ ∞ is the life time of the current

state.

Output event variable: Yfr = (updateFR) where:

• ‘updateFR’ = {0,1} indicates a variation in the

system operativity.

Figure 4: The Working Speed And Accumulation

Object.

3.3. Working speed and accumulation object model

3.3.1. Informal description

The purpose of this object (see Figure 4) is to model the

operative conditions of the base unit system.

Considering the ‘init’ state as initialization of the object

variables, all parameters are set to ‘0’ and, by means of

an internal transition, the system jumps in the ‘wait’

state. Thus, the working speed and accumulation object

receives an !updateFR=‘1’ and the system switches to

the ‘update’ state: s
*
i , s

*
o , s*,and Acc* variables are

updated to the new calculated values obtained by

reading previously stored values of s*i , s*o , s*,and

Acc*. In this case, the base unit restarts calculating

parameters using the stored ones.

After the update have been done, the system switch

to the ‘wait’ state creating an output signal !updateWSA

= ‘yes’ in order to notice the changes made. The same

path is followed also when there is an external signal

?inputS = ‘S’ entering the unit, where information about

speed changes, both upstream and downstream, are

stored and then used to update the unit operative

condition.

As a transitional state, the system switch to the

‘wait’ state and remain in this state for a time that is the

minimum value between infinite and tb, the time when

the base unit will be at one accumulation boundary.

Boundaries are possible only when the base unit is

configured as a buffer, so that boundaries are the empty

level of the buffer and a level of the buffer equal to its

capacity.

At the boundary state, the actual level of the buffer

is calculated (empty or full). The ‘boundary’ state is

transitional, so that the system sets its parameters,

creates an internal output signal to notice the changes

and then switch into the ‘wait’ state in order to wait that

a change signal occurs. After receiving an !updateFR =

‘0’ the system switches from the ‘wait’ state to the

‘down’ state and sets all its parameters to ‘0’. As a

transitional state, the system switches to the ‘wait’ state

after the creation of an internal output in order to notice

an operative change.

3.3.2. Formal description

 (3)

Input event variable: XWSA = (inputS,updateFR) where:

• ‘inputS’ = S where S = { f, s, param1, ... ,

paramk, ... , paramn}

- f ={d,u} is the flowparameter, where

?f =‘d’ represents amessage coming

froma downstream unit while ?f = ‘u’

represents a message from an

upstream unit;

- s is the working speed;

- paramk, for k = 1, ... ,n, is the

function describing the variation of

the additional parameter k over time.

• ‘updateFR’ = {0,1} the internal signal that is

generated as output by the failures and repairs

object, where ?updateFR = ‘0’ indicates that

the state of the base unit is down and

?updateFR = ‘1’ indicates that the state of the

base unit is up.

State variables: TWSA = (phase, s
*
, s

*
i, s

*
o, acc∗, s)

where:

• ‘phase’ ={init,down,wait,update,boundary} is

a name representing the situation in the real

world;

• ‘s*’ = fs () represents a function which

calculates the base unit working speed

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

99

considering the upstream and downstream base

units working speed, the maximum working

speed of the base unit, and the accumulation

level.

• ‘s*i’ = fsi () represents a function which

determines the upstream base unit working

speed.

• ‘s*o’ = fso () represents a function which

determines the downstream base unit working

speed.

• ‘acc∗’ = facc () represents a function which

determines the accumulation level considering

s*, s*i, s*o and the previous accumulation

level.

• σ ∈ ℝ + 0 ⋃ ∞ is the life time of the current

state.

Output event variable: YWSA = (updateWSA) where:

• ‘updateWSA’ = {yes} indicates a working

speed and accumulation variation.

3.4. Throughput time object model

3.4.1. Informal description

By referring to Figure 5, in the initial state ‘init’, the

throughput time function tr is set for the first time. This

function depends on the base unit speed, accumulation

and the base unit state. Later, the object waits for an

input signal in order to update its function. This

function can be updated only when the object receives

at least one of the two input signals. These two signals

are sent by an additional parameter object or by the

working speed and accumulation object. Finally, the

object is able to send a signal to the Interface object.

Figure 5: The Throughput Time Object.

3.4.2. Formal description

 (4)

Input event variable: Xtr = (updateParamk ,updateWSA)

where:

• ‘updateParamk’ = {yes} indicates a variation

in the k-th additional parameter function;

• ‘updateWSA’ = {yes} indicates a work speed

and accumulation variation.

State variables: Ttr = (phase, tr, σ) where:

• ‘phase’ = {init,wait,update} is a name

representing the situation in the real world;

• ‘tr’ = f ∗tr (s∗,acc∗, state) is the function that

sets the throughput time and depends on:

- the base unit speed s∗;

- the current accumulation acc∗;

- the base unit state.

• σ ∈ ℝ + 0 ⋃ ∞ is the life time of the current

state.

Output event variable: Ytr = (outputS) where:

• ‘outputS’ = {yes} indicates a signal to be sent

to the Interface object.

3.5. Interface object model

3.5.1. Informal description

By referring to Figure 6, in the initial state ‘init’, the

output signal is set to zero. When the interface receives

a signal from the throughput time object, S is updated.

For each input signal received, two different signals are

generated: one is sent to upstream and the other one to

the downstream. The first signal is S = {‘d’, s∗, param∗},

while the latter is S = {‘u’, s∗, param∗}. It means that the

Interface object sends:

• ‘flow’ = {‘d′, ‘u′}, that is, the information to

the upstream and the downstream with the

position reference of the considered base unit;

• the speed of considered base unit;

• the additional parameter functions of the

considered base unit.

Figure 6: The Interface Object.

3.5.2. Formal description

 (5)

Input event variable: Xint = (outputS) where:

• ‘outputS’ = {yes} indicates the reception of a

signal from the throughput time object.

State variables: Tint = (phase, S, σ) where:

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

100

• ‘phase’ = {init,wait, set1, set2} is a name

representing the situation in the real world;

• S = { f low, s∗, param∗} is the output signal and

it consists of:

- ‘flow’ = {‘u′, ‘d′}, ‘u′ indicates that

the considered base unit is the

upstream of the destination base unit,

while ‘d′ indicates that the considered

base unit is the downstream of the

destination base unit;

- s∗, the speed of the considered unit;

- param∗, the additional parameter

functions of the considered base unit.

• σ ∈ ℝ + 0 ⋃ ∞ is the life time of the current

state.

Output event variable: Yint = (upstreamS, downstreamS)

where:

• ‘upstreamS’ = {yes} indicates a signal to be

sent to the upstream base unit;

• ‘downstreamS’ = {yes} indicates a signal to be

sent to the downstream base unit.

3.6. Additional parameter object

3.6.1. Informal description

Looking at Figure 7, in the initial state ‘init’, the

parameter of the additional function ‘tparam’ is set for

the first time. This function depends on the base unit

speed, accumulation, the base unit state and on the

additional parameter itself. Later, the object waits for an

input signal in order to update its function. This

function can be updated only when the object receives a

signal by the working speed and accumulation object.

Finally, the object is able to send a signal to the

throughput time object.

Figure 7: The generic additional parameter object.

3.6.2. Formal description

 (6)

Input event variable: Xparam = (updateWSA) where:

• ‘updateWSA’ = {yes} indicates a work speed

and accumulation variation.

State variables: Tparam = (phase, t, σ) where:

• ‘phase’ = {init,wait,update} is a name

representing the situation in the real world;

• ‘t’ = {f∗tparam} represents the function

associated to the additional parameter object.

• σ ∈ ℝ + 0 ⋃ ∞ is the life time of the current

state.

Output event variable: Yparam = (updateParamk) where:

• ‘updateParamk’ = {0,1} indicates a variation in

the additional parameter k function.

4. CONCLUSIONS

A new framework for addressing simulation of

continuous-time stochastic processes by exploiting a

discrete event approach is presented in the paper. The

core of the framework is constituted by a base unit

model able to represent the minimum set of behaviors

required for the modeling of a generic unit working in a

real manufacturing system (i.e. workcenter,

accumulator/buffer, conveyor/pipe).

The base unit is modeled by adopting the DEVS

formalism and contains a set of other atomic objects

whose interactions determine the sequence of events.

The base concept is that events are generated by state

changes in objects and propagates both in the upstream

and in the downstream to notify connected objects that

something has changed. In this way, the performances

of each unit is determined by the staytime in states,

while events are only related to state changes, thus

saving a lot of computational time.

Moreover, the possibility to keep trace of

additional measures of parameters of interest for the

production is also added. As the model is conceived,

parameters undergoing variations over time defined by

continuous laws is possible without generating

overheads on the event generation.

The presented work is particularly valuable for

simulating manufacturing processes executed on a

continuous flow of material (e.g. food and beverage

industry) as well as production processes working on

discrete units but characterized by a high speed flow

(e.g. automated packaging lines).

Being the presented base unit model general, its

implementation in simulation systems is desirable,

while further extensions can be easily developed.

REFERENCES
Gebennini, E. and Gershwin, S. B., 2013. Modeling

waste production into two-machine one-buffer

transfer lines. IIE Transactions 45 (6): 591–604.

Gebennini, E., Grassi, A., Fantuzzi, C., Gershwin, S. B.

and Schick, I. C., 2011. Discrete time model for

two-machine one-buffer transfer lines with restart

policy. Annals of Operations Research: 1–25.

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

101

Gershwin, S. B. and Burman, M. H., 2000. A

decomposition method for analyzing

inhomogeneous assembly/disassembly systems.

Annals of Operations Research 93:91–115.

Gershwin, S. B. and Schick I. C., 1980. Continuous

Model of an Unreliable Two-Stage Material Flow

System with a Finite Interstage Buffer. Technical

Report LIDS-R-1039, OSPNo. 87049, Laboratory

for Information and Decision Systems,

Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA.

Giambiasi, N. and Carmona J., 2006. Generalized

discrete event abstraction of continuous systems:

GDEVS formalism. Simulation Modelling

Practice and Theory 14 (1): 47–70.

Jahangirian, M., Eldabi, T., Naseer, A., Stergioulas, L.

and Young, T., 2010. Simulation in manufacturing

and business: A review. European Journal of

Operational Research 203 (1): 1–13.

Levantesi, R., Matta, A. and Tolio, T., 2003.

Performance evaluation of continuous production

lines with machines having different processing

times and multiple failure modes. Performance

Evaluation 51:247–268.

Praehofer, H., 1991. System theoretic formalisms for

combined discrete-continuous system simulation.

International Journal of General Systems 19:226–

240.

Pujo, P., Pedetti, M. and Giambiasi, N., 2006. Formal

DEVS modelling and simulation of a flow-shop

relocation method without interrupting the

production. Simulation Modelling Practice and

Theory 14 (7): 817–842.

Tamani, K., Boukezzoula, R. and Habchi, G., 2009.

Intelligent distributed and supervised flow control

methodology for production systems. Engineering

Applications of Artificial Intelligence 22 (7):

1104– 1116.

Tan, B. and Gershwin, S. B., 2009. Analysis of a

general Markovian two-stage continuous-flow

production system with a finite buffer.

International Journal of Production Economics

120 (2): 327–339.

Tan, B. and Gershwin, S. B., 2011. Modelling and

analysis of Markovian continuous flow systems

with a finite buffer. Annals of Operations

Research 182 (1): 5–30.

Tan, B. and Yeralan, S., 1997. Analysis of multistation

production systems with limited buffer capacity.

Part II: The decomposition method. Mathematical

and Computer Modelling 25 (11): 109–123.

Tolio, T., 2011. Performance evaluation of two-

machines line with multiple up and down states

and finite buffer capacity. In Proceedings of the

8th International Conference on Stochastic

Models of Manufacturing and Service Operations,

117–127. 2011, Kusadasi, Turkey.

Yeralan, S. and Tan, B., 1997. Analysis of multistation

production systems with limited buffer capacity.

Part I: The subsystem model. Mathematical and

Computer Modelling 25 (7): 109–122.

Zeigler, B., 1976. Theory of modelling and simulation.

New York: John Wiley.

Zeigler, B., 1984. Multifacetted Modelling and Discrete

Event Simulation. London: Academic Press.

Zeigler, B., Praehofer, H. and Kim, T., 2000. Theory of

Modeling and Simulation: Integrating Discrete

Event and Continuous Complex Dynamic Systems.

Second ed. New York, NY: Academic Press.

Zimmern, B., 1956. ´Etudes de la propagation des

arrˆets al´eatoires dans les chaˆınes de production.

Rev. Statist. Appl. 4:85–104.

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

102

