EVALUATION AND MODELING THE AERODYNAMIC PROPERTIES OF MUNG BEAN SEEDS

Feizollah Shahbazi\(^{(a)}\), Ali Dolatshah\(^{(a)}\), Saman Valizadeh\(^{(a)}\)

\(^{(a)}\) Department of Agricultural Machinery, Faculty of Agriculture, Lorestan University, Iran

\(^{(a)}\) *Corresponding author’s e-mail: shahbazi.f@lu.ac.ir

ABSTRACT
Aerodynamic properties of solid materials have long been used to convey and separate seeds and grains during post harvest operations. The objective of this study was evaluation of the aerodynamic properties of mung bean seeds as a function of moisture content from 7.8 to 25\% (w.b) and two grades of A and B referred to above and below a cut point of 4.8 mm in length. The results showed that as the moisture content increased from 7.8 to 25\%, the terminal velocity of mung beans seeds increased following a polynomial relationship from 7.28 to 8.79 and 6.02 to 7.12 m/s, for grades A and B, respectively. Mung bean seeds at grade A had terminal velocities with a mean value of 8.05 m/s, while the seeds at grade B had a mean value of 6.46 m/s. The Reynold’s number of both grades A and B increased linearly with the increase of seeds moisture content. While, drag coefficient decreased with the increase of moisture content. Mathematical relationships were developed to relate the change in seeds moisture content with the obtained values of aerodynamics properties. The analysis of variance showed that moisture content was significant at the 1\% probability level on the all aerodynamics properties of mung bean seeds.

Keywords: aerodynamic properties, separation, post harvest operation, mung bean seed

1. INTRODUCTION
Mung bean (Vigna radiata (L.) Wilczek), also known as green bean, green gram, golden gram and mash (in Persian). It is primarily grown in Asia, Africa, South and North America, and Australia principally for its protein- rich edible seeds (Liu and Shen, 2007). Mung bean is similar in composition to other members of the legume family, with 24\% protein, 1\% fat, 63\% carbohydrate and 16\% dietary fiber (USDA, 2008). In addition to being an important source of human food and animal feed, mung bean also plays an important role in sustaining soil fertility by improving soil physical properties and fixing atmospheric nitrogen.

The behavior of particles in an air stream during pneumatic conveying and separation greatly depend on their aerodynamic properties. The aerodynamic forces which exist during relative motion between the air and the materials act differently on different particles. Separation of a mixture of particles in a vertical air stream is only possible when the aerodynamic characteristics of the particles are so different that the light particles are entrained in the air stream and the heavy particles fall through it. Knowledge of aerodynamic properties is therefore essential in the proper design of separating and cleaning equipments. When an air stream is used for separating a product such as mung bean seed from its associated foreign materials, such as straw and chaff, knowledge of aerodynamic characteristics of all the particles involved is necessary. This helps to define the range of air velocities for effective separation of the grain from foreign materials. For this reason, the terminal velocity has been used as an important aerodynamic characteristic of materials in such applications as pneumatic conveying and their separation from foreign materials (Mohsenin, 1978).

Several investigators determined the aerodynamic properties of various seeds such as rough rice by Arora (1991), African bread fruit seeds by Omobuwajo et al. (1999), amaranth seeds by Kram and Szot (1999), cheat seed by Hauhouot et al. (2000), chickpea by Konak et al. (2002), millet grain by Baryeh (2002), hemp seed by Sacilik et al. (2003), different varieties of rice, corn, wheat and barley by Matouk et al. (2005), pine nuts by Ozguven and Vursavus (2005), wheat kernel by Khoshtaghaza and Meh dizadeh (2006), makhana by Jha and Kachru (2007), pistachio nut by Razavi et al. (2007) and Turgenia latifolia seeds and wheat kernels by Nalbandi et al. (2010).

Information about the aerodynamic properties of mung bean seeds is limited. Hence, the objective of this study was to investigate the aerodynamic properties of mung bean seeds as a function of moisture content. Tests were conducted over a range of moisture contents from 7.8 to 25\% w.b., which spans the moisture range of harvest to the post harvest operations.

2. MATERIALS AND METHODS
Samples of mung bean seeds at optimum maturity were harvested by hand in Lorestan province, Iran and cleaned in an air screen cleaner. The seeds were then classified into two grades based on their length, cut point being 4.8 mm. Grades A and B referred to above and below the cut point, respectively. The initial moisture content was 7.8\% (wet basis), determined with ASAE S352.2 (ASAE Standards, 1988). Higher
moisture content samples were prepared by adding calculated amounts of distilled water, then sealing in polyethylene bags, and storing at 5°C for 15 days. Samples were warmed to room temperature before each test and moisture content was verified. Sample mass was recorded with a digital electronic balance having an accuracy of 0.001 g.

The major dimensions of the seeds (L, W and T) were measured using a digital caliper with an accuracy of ± 0.01 mm (Gupta et al., 2007). The true density of the seeds was measured using toluene displacement method (Chakraverty and Poul, 2001; Mohsenin, 1978).

To determine the terminal velocity value of mung bean seeds, a vertical wind tunnel was designed and used. The apparatus is shown in Fig. 1. A centrifugal fan powered by one HP motor was used in the inlet of the wind tunnel to supply air flow. The air flow rate of the fan was controlled at inlet by adjusted by changing the velocity of the electric motor through an inverter set and a diaphragm. The final section of the wind tunnel consisted of a Plexiglas region where the terminal velocity of seed was measured. To determine the terminal velocity, each seed was placed in the centre of the cross section of the wind tunnel on the screen. The air flow was then increased until the seed flotation point. At this moment, when the rotational movement of the seed was lowest, the air velocity was measured using a hot-wire anemometer with an accuracy of 0.1 m/s. The terminal velocity of each seed was measured two times. For each condition the terminal velocity was calculated as the average of the velocity values obtained at the centre of the test section and at the four equidistantly distributed points on two orthogonal axes located at the test section. To determine the terminal velocity at each moisture content level, ten seeds were selected and used as ten replications in the statistical analysis. The values of air density and viscosity were taken as 1.2059 kg/m³ and 1.816×10⁻⁵ N.s/m², respectively, at room temperature of 20°C.

In free fall, the object will attain constant terminal velocity (Vt) at which the net gravitational accelerating force (Fg) equals the resisting upward drag force (Fr) under the condition where terminal velocity has been achieved the air velocity which equal to the terminal velocity (Vt). Substituting for Fg and Fr, the expression for terminal velocity will be as follows (Mohsenin, 1984):

\[
V_t = \sqrt{\frac{2mg \rho_f - \rho_p}{\rho_p \rho_f A_p C}}
\]  

(1)

And the drag coefficient can be derived as follows:

\[
C_d = \frac{2mg \rho_p - \rho_f}{\rho_p \rho_f \frac{A_p}{2} V_t^2}
\]  

(2)

\[
A_p = \frac{\pi}{4} LW
\]  

(3)

Where: \( A_p \) is projection area of the particle (m²), \( C_d \) is drag coefficient (decimal), \( g \) is acceleration due to gravity (9.81 m/s²), \( L \) is seeds length (m), \( m \) is mass of seeds (kg), \( V_t \) is terminal velocity (m/s), \( W \) is seeds width (m), \( \rho_f \) is density of air (1.2059 kg/m³), \( \rho_p \) is density of seeds (kg/m³).

In this study Reynold’s number (Re) was calculated using the terminal velocity of each seed sample. Reynold’s number (dimensionless) equations include a velocity term using the following relationship (Mohsenin, 1984):

\[
Re = \frac{\rho_f V_t D_g}{\mu}
\]  

(4)

\[
D_g = \left(LWT\right)^{\frac{1}{3}}
\]  

(5)

Where: \( D_g \) is geometric mean diameter of seeds (m), \( T \) is seeds thickness (m), \( \mu \) is air viscosity at room temp \( (1.816\times10^{-5} \text{ N.s/m}^2) \).

In this study, the effects of Mung bean seeds size (grades A and B) and moisture content (7.8, 12.5, 15, 17.5, 20 and 25%, wet basis) were studied on the terminal velocity, drag coefficient and Reynold’s number of seeds. Tests were conducted over a range of moisture contents from 7.8 to 25% which spans the moisture range of harvest to the processing operations. The factorial experiment was conducted as a randomized design with three replicates. For each test, 10 seeds were selected randomly from each sample and tested by using the airflow device. Mean comparison of factors was carried out at 5% probability level. The terminal velocity, drag coefficient, Reynold’s number and the moisture content data of different seed grades were fitted to linear, power, exponential and polynomial models. The models were evaluated according to the statistical criterion \( R^2 \) for verifying the adequacy of fit. The best model with the highest \( R^2 \) was selected to predict the terminal velocity, drag coefficient and Reynold’s number of seeds as a function of the moisture content. Data were analyzed by SPSS 17 software.
3. RESULTS AND DISCUSSION

3.1. Terminal velocity

The analysis of variance showed that there was a significant difference between the terminal velocity of mung bean seeds at grades A and B. Also the effect of seed moisture content on this property was significant (Table 1). Terminal velocities for grade A was observed to be higher than those obtained for grade B. Mung bean seeds at grade A had terminal velocities with a mean value of 8.05 m/s, at different moisture contents, while the seeds at grade B had a mean value of 6.46 m/s. This result can be explained by the fact that the seeds of grade A were bigger than that of the grade B. Since the square of terminal velocity is directly related to particle size and shape, it follows that larger particles of similar shape need higher terminal velocities than smaller ones. Similar results were obtained by Kahrs (1994) on three fractions of wheat seeds. Wheat seeds > 2.8 mm had mean terminal velocity of 8.8 m/s while the fraction < 2 mm had mean terminal velocity of 6.4 m/s.

The terminal velocity of mung bean seeds increased with increasing moisture content (Table 2). The terminal velocity of mung bean seeds at grades A and B increased from 7.28 to 8.79 m/s and from 6.02 to 7.12 m/s, respectively, as the moisture content of seeds increased from 7.8 to 25% (Fig. 2). The maximum terminal velocity value (8.79 m/s) was obtained in grade A at a moisture content of 25% and the minimum amount (6.02 m/s), was obtained in grade B at a moisture content of 7.8%. These results are in agreement with published literatures for some seeds. Gupta et al. (2007) showed that in the moisture range of 6 to 14% d.b., the terminal velocity of NSFH-36, PSF-118 and Hybrid SH-3322 variety of sunflower seed increased from 2.93 to 3.28, 2.54 to 3.04, and 2.98 to 3.53 m/s, respectively. Zewdu (2007) measured the terminal velocity of Tef grains. He reported that it increased linearly from 3.08 to 3.96 m/s with increasing moisture content from 6.5 to 30.1% w.b. Hauhouot et al. (2000) showed that the mean value of terminal velocity of wheat seeds was 7.84 m/s. The terminal velocity of millet grain varied from 2.75 to 4.63 m/s for an increase in moisture content from 5 to 22.5% d.b. (Baryeh, 2002). Matouk et al. (2008) reported that the terminal velocity of sunflower, soybean and canola seeds increased from 5.34 to 5.91, from 10.16 to 10.38 and from 5.10 to 5.32 m/s with the increasing of seeds moisture contents from 7.35 to 23.7, 9.52 to 24.64% and 7.11 to 25.72% w.b., respectively. Similar results were reported for cotton seeds (Tabak and Wolf, 1998), coffee cherries and beans (Afonso et al., 2007), African yam bean (Irtwange and Ugbeka, 2003). The increase in terminal velocity with an increase in moisture content may be attributed to the increase in mass of an individual seed per unit frontal area presented to the air stream. The other reason is probably that the drag force is affected by the moisture content of particle.

Fig. 2 shows the variation of the terminal velocity with moisture content for grades A and B of mung bean seeds. The terminal velocity data for mung bean seeds in Fig. 2 were fitted as a function of moisture content to four mathematical models. These models were evaluated for verifying the adequacy of fit using the $R^2$ value. By comparing the average values of $R^2$, it was obvious that the polynomial model had the highest $R^2$ value. Accordingly, the polynomial model was selected as a suitable model to predict the terminal velocity of mung bean seeds as a function of moisture content. Razavi et al. (2007) developed a linear equation between the terminal velocity of pistachio nut and kernel as a function of moisture content. Zewda (2007) reported that the terminal velocity of Tef grain was linearly related to moisture content. However, Afonso et al. (2007) reported a nonlinear equation for the terminal velocity of coffee cherry and bean as a function of combination of moisture content and true density. Nalbandi et al. (2010) reported a polynomial relationship for the terminal velocity of wheat kernels as a function of moisture content. The following equations were found for the relationship between the terminal velocity ($V_t$, m/s) and moisture content ($M$, %), for each mung bean seeds grade:

$$V_t = -0.001M^2 + 0.114M + 6.351$$  \hspace{1cm} (6)

$$R^2 = 0.961 \quad \text{for: Grade A}$$

$$V_t = 0.002M^2 - 0.004M + 5.856$$  \hspace{1cm} (7)

$$R^2 = 0.945 \quad \text{for: Grade B}$$

3.2. Drag coefficient

The values of the drag coefficient and the projected area of mung bean seeds were calculated using equations (2) and (3) by measuring the terminal velocity, true density and the two principal dimensions (length and width) of seeds (Table 2). The analysis of variance showed that there was a significant difference between the drag coefficients of mung bean seeds at

<p>| Table 1. Analysis of variance of the data of the aerodynamic properties of mung bean seeds. |</p>
<table>
<thead>
<tr>
<th>Source of variation</th>
<th>df</th>
<th>Terminal velocity</th>
<th>Mean Squares</th>
<th>Reynolds’s Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed size (S)</td>
<td>1</td>
<td>104.535*</td>
<td>3.714*</td>
<td>5.592×10^6*</td>
</tr>
<tr>
<td>Moisture content (M)</td>
<td>5</td>
<td>17.972*</td>
<td>2.302*</td>
<td>3.211×10^6*</td>
</tr>
<tr>
<td>S×M</td>
<td>5</td>
<td>0.793*</td>
<td>0.357*</td>
<td>3.121×10^6*</td>
</tr>
<tr>
<td>Error</td>
<td>108</td>
<td>0.001</td>
<td>0.045</td>
<td>3922077.188</td>
</tr>
</tbody>
</table>

* Significant difference at 1% probability level.
different moisture content. But the drag coefficients were not affected significantly by mung bean seeds grade. The results showed that the drag coefficient of mung bean seeds decreased as moisture content increased. Afonso et al. (2007), Gupta et al. (2007) and Irkwange and Ugbekea (2003) reported similar results for coffee cherries, sunflower seed and African yam bean (cv. TSS 137), respectively. However, some odd results have been reported for some products. Irkwange and Ugbekea (2003) reported that the drag coefficient of African yam bean (cv. TSS 137) increased as moisture content increased from 4 to 16% w.b. Afonso et al. (2007) showed that the drag coefficient of coffee beans (cv Catual), coffee cherries and beans (cv. Conilon) increased as moisture content increased.

The drag coefficient values of mung bean seeds in grade A were found to be 0.845, 0.827, 0.773, 0.706, 0.619 and 0.565 (with a mean value of 0.722 and standard deviation of 0.113) for the moisture contents of 7.8, 12.5, 15, 17.5, 20 and 25%, respectively. In grade B, the drag coefficients of seeds were found to be 0.846, 0.826, 0.776, 0.703, 0.644 and 0.575 (with a mean value of 0.729 and standard deviation of 0.106) over this same moisture contents (Fig. 3). Hauhouot et al. (2000) reported that the drag coefficient of wheat seeds is 0.74. Matouk et al. (2008) reported that the drag coefficient of sunflower, soybean, and canola seeds, decreased from 0.75061 to 0.6178, from 0.6841 to 0.6829 and from 0.6301 to 0.5687, with the increasing of seeds moisture contents from 7.35 to 23.7, 9.52 to 24.64 and 7.11 to 25.722%, respectively.

Fig. 3 shows the variation of the drag coefficient with moisture content for two grades of mung bean seeds. The values of this interaction varied from 0.565 to 0.846 that occurred in the grade A at the highest moisture content and in the grade B at the lowest moisture content, respectively. The models fitted to the data using the regression technique showed that the drag coefficient decreased linearly with increases in the moisture content for two grades of mung bean seeds. Similar results were also reported by Matouk et al. (2005) for rice, corn, wheat and barley. They stated that, the relationship between terminal velocity and moisture content may be described by an exponential model while, drag coefficient and Reynold’s number has linearly relationships. So the following equations were found for the relationship between drag coefficient ($C_d$) and moisture content ($M$, %), for each grade of mung bean seeds:

$\begin{align*}
C_d &= -0.018M + 1.021, \quad R^2=0.969 \\
C_d &= -0.017M + 1.011, \quad R^2=0.945
\end{align*}$

for: Grade A \quad (8)

for: Grade B \quad (9)

3.3. Reynold’s number
The values of the Reynold’s number and the geometric mean diameter of mung bean seeds were calculated using equations (4) and (5) by measuring the terminal velocity and the three principal dimensions (length, width and thickness) of seeds (Table 2). The analysis of variance showed that there was a significant difference between the Reynold’s number of mung bean seeds at grades A and B. Also the effect of seed moisture content on this property was significant. The results showed that the Reynold’s number of mung bean seeds increased with moisture content. Similar results were reported by Arora, (1991) for three varieties of rough rice and Matouk et al. (2005) for rice, corn, wheat and barley. The Reynold’s number values of mung bean seeds in grade A were found to be 2281.402, 2423.524, 2579.805, 2714.513, 2937.160 and 3129.219 (with a mean value of 2677.604 and standard deviation of 317.422) for the moisture contents of 7.8, 12.5, 15, 17.5, 20 and 25%, respectively. In grade B, the Reynold’s number of seeds were found to be 1494.057, 1524.342, 1579.693, 1673.520, 1793.911 and 1934.339 (with a mean value of 1666.644 and standard deviation of 170.588) over this same moisture contents (Fig. 4). Matouk et al. (2008) reported that the Reynold’s number of sunflower and soybean seeds in the ranges of 2226.476 to 2571.506 and 4379.706 to 4652.204, with the increase of seeds moisture contents from 7.35 to 23.7% and from 9.52 to 24.64%, respectively.

Fig. 4 shows the variation of the Reynold’s number with moisture content for two grades of mung bean seeds. The models fitted to the data using the regression technique showed that the Reynold’s number increased linearly with increases in the moisture content. Similar results were also reported by Matouk et al. (2005) for rice, corn, wheat and barley. So the following equations were found for the relationship between the Reynold’s number ($R_n$) and moisture content ($M$, %), for each grade of mung bean seeds:

$\begin{align*}
R_n &= 52.42M + 1823, \quad R^2=0.988, \quad \text{for: Grade A (10)} \\
R_n &= 27.50M + 1218, \quad R^2=0.973, \quad \text{for: Grade B (11)}
\end{align*}$

Fig. 3. Drag coefficient variation versus seed moisture content: ● grade A, ■ grade B.
4. CONCLUSIONS

From the results of this study, the following conclusions can be drawn:

1. The analysis of variance showed that there was a significant difference between the terminal velocity, and Reynold’s number of mung bean seeds at both grades, and at different moisture contents.

2. Terminal velocity of mung beans seeds increased following a polynomial relationship from 7.28 to 8.79 and 6.02 to 7.12 m/s, for grades A and B, respectively, as the moisture content increased from 7.8 to 25%. Mung bean seeds at grade A had terminal velocities with a mean value of 8.05 m/s, at different moisture contents, while the seeds at grade B had a mean value of 6.46 m/s.

3. There was significant difference between the drag coefficients of mung bean seeds at different moisture content. But the drag coefficients were not affected significantly by the mung bean seeds grade.

4. The Reynold’s number of mung bean seeds increased linearly with the increase of seeds moisture content. While, drag coefficient decreased with the increase of moisture content.

5. Mathematical relationships were developed to predict the terminal velocity, drag coefficient and Reynold’s number of seeds as a function of the moisture content.

REFERENCES


<table>
<thead>
<tr>
<th>Moisture Content (%)</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Thickness (mm)</th>
<th>Projected area (mm²)</th>
<th>Geometric mean diameter (mm)</th>
<th>True density (kg m⁻³)</th>
<th>Terminal velocity (m s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Grade A</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.8</td>
<td>4.339 (0.24)*</td>
<td>3.701 (0.19)</td>
<td>3.251 (0.14)</td>
<td>12.606 (1.03)</td>
<td>3.737 (0.11)</td>
<td>1252.97 (13.63)</td>
<td>6.021 (0.21)</td>
</tr>
<tr>
<td>12.5</td>
<td>4.423 (0.32)</td>
<td>3.712 (0.21)</td>
<td>3.262 (0.23)</td>
<td>12.888 (1.06)</td>
<td>3.769 (0.08)</td>
<td>1303.13 (12.24)</td>
<td>6.092 (0.35)</td>
</tr>
<tr>
<td>15</td>
<td>4.512 (0.31)</td>
<td>3.779 (0.20)</td>
<td>3.329 (0.35)</td>
<td>13.384 (0.98)</td>
<td>3.843 (0.14)</td>
<td>1346.24 (17.98)</td>
<td>6.198 (0.12)</td>
</tr>
<tr>
<td>17.5</td>
<td>4.523 (0.21)</td>
<td>3.790 (0.33)</td>
<td>3.346 (0.29)</td>
<td>13.486 (1.12)</td>
<td>3.859 (0.19)</td>
<td>1376.16 (11.85)</td>
<td>6.531 (0.46)</td>
</tr>
<tr>
<td>20</td>
<td>4.632 (0.42)</td>
<td>3.871 (0.24)</td>
<td>3.421 (0.58)</td>
<td>14.075 (1.23)</td>
<td>3.943 (0.15)</td>
<td>1402.43 (10.12)</td>
<td>6.851 (0.22)</td>
</tr>
<tr>
<td>25</td>
<td>4.793 (0.37)</td>
<td>4.012 (0.34)</td>
<td>3.561 (0.52)</td>
<td>15.092 (1.31)</td>
<td>4.091 (0.23)</td>
<td>1425.13 (11.02)</td>
<td>7.120 (0.52)</td>
</tr>
<tr>
<td><strong>Grade B</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.8</td>
<td>5.541 (0.65)</td>
<td>4.613 (0.44)</td>
<td>4.112 (0.63)</td>
<td>20.065 (2.12)</td>
<td>4.719 (0.36)</td>
<td>1186.33 (13.65)</td>
<td>7.280 (0.41)</td>
</tr>
<tr>
<td>12.5</td>
<td>5.821 (0.56)</td>
<td>4.617 (0.54)</td>
<td>4.219 (0.52)</td>
<td>21.100 (1.05)</td>
<td>4.840 (0.27)</td>
<td>1193.52 (10.87)</td>
<td>7.542 (0.52)</td>
</tr>
<tr>
<td>15</td>
<td>5.905 (0.43)</td>
<td>4.671 (0.34)</td>
<td>4.235 (0.63)</td>
<td>22.672 (2.04)</td>
<td>4.886 (0.35)</td>
<td>1202.42 (11.25)</td>
<td>7.951 (0.31)</td>
</tr>
<tr>
<td>17.5</td>
<td>6.102 (0.75)</td>
<td>4.807 (0.39)</td>
<td>4.302 (0.32)</td>
<td>23.025 (1.25)</td>
<td>5.015 (0.52)</td>
<td>1296.36 (18.98)</td>
<td>8.150 (1.02)</td>
</tr>
<tr>
<td>20</td>
<td>6.152 (0.81)</td>
<td>5.022 (0.46)</td>
<td>4.419 (0.25)</td>
<td>24.252 (0.98)</td>
<td>5.149 (0.41)</td>
<td>1325.63 (14.52)</td>
<td>8.591 (0.58)</td>
</tr>
<tr>
<td>25</td>
<td>6.715 (0.88)</td>
<td>5.098 (0.54)</td>
<td>4.501 (0.22)</td>
<td>26.827 (1.54)</td>
<td>5.361 (0.47)</td>
<td>1369.87 (14.25)</td>
<td>8.792 (0.62)</td>
</tr>
</tbody>
</table>

*Standard deviation.