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ABSTRACT 
System safety is an important aspect of System 
Dependability which should be taken in consideration 
during the whole system lifecycle. However, often 
systems are built by considering mainly their functional 
aspects and safety requirements are verified and 
validated in the latest stages of the development 
process. For this reason and due to the deep integration 
of modern systems in the daily life of people, regulatory 
standards have been defined and have to be applied 
during the development of critical systems to guarantee 
a minimum and acceptable level of safety. In this 
context, the paper proposes a model-driven process, 
inspired by ISO-26262, which provides a 
methodological support for the verification and 
validation of safety requirements. In particular, the 
proposed framework combines model-driven 
engineering tools and techniques with OpenModelica, 
an equation based simulation environment based on the 
Modelica language. The proposal is experimented 
through a case study concerning the safety analysis of 
an Airbag System. 
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1. INTRODUCTION 
The modeling of system requirements deals with 
formally expressing constraints and requirements that 
have an impact on the behavior of the system so as to 
enable their verification through real or simulated 
experiments and/or analytical techniques. The need of 
models for representing system requirements as well as 
for methods and techniques, especially centered on 
model-based approaches, able to support the modeling, 
evaluation, and validation of requirements and 
constraints along with their traceability is today even 
more prominent (Krause, Hintze, Magnus, and Diedrich 
2012; Peraldi-Frati and Albinet 2010; Tundis, 
Rogovchenko-Buffoni, Fritzson, and Garro 2013; Yu, 
Xu, and Du 2009). In particular, while the modeling and 
verification of functional requirements are well 
supported by several tools and techniques, there is still a 

lack of models and methods specifically conceived to 
deal with non-functional requirements (such as 
reliability, availability, maintainability, safety, security); 
as a consequence, their verification is often postponed 
to the late stages of the development process with the 
risk of having to revise already implemented design 
choices, and, consequently, to miss project deadlines 
and exceed the budget (Garro, Tundis, and Chirillo 
2011; Garro and Tundis 2012c). 

Among non-functional requirements, Safety, which 
represents an important requirement to be satisfied for a 
wide range of systems (Laprie 1992), becomes even 
more crucial in several industrial domains such as 
nuclear plants, medical appliances, avionics, automotive 
and satellite (Guillerm, Demmou, and Sadou 2010; 
Garro, Tundis, Groß, and Riestenpatt Gen. Richter 
2013; Lahtinen, Johansson, Ranta, Harju, and 
Nevalainen 2010; Rierson 2013). In particular, in the 
automotive domain, although Safety has always played 
a key role, the importance that is attributed to it has 
become far greater in recent times (Herpel and German 
2009; Garro and Tundis 2012a; Navinkumar and 
Archana 2011). In modern automobile design, Safety 
Requirements can be generally categorized in three 
main classes: (i) Passive safety, which aims to minimize 
the severity of an accident; examples of passive safety 
elements are seatbelts, crumple zones, airbags; (ii) 
Active safety, which aims to avoid accidents and to 
minimize their effects if they occur; examples of active 
safety elements are: predictive emergency braking, 
seatbelt pre-tensioning, anti-lock braking systems and 
traction control; (iii) Functional safety, which aims to 
ensure that both the electrical and electronic systems 
(such as power supplies, sensors, communication 
networks, actuators, etc.), also including all active 
safety related systems, function correctly. In other 
words, Functional safety aims to guarantee the absence 
of unacceptable risk due to hazards caused by 
malfunctioning behavior of electrical and electronic 
systems. 

The increasing importance that Safety is gaining as 
one of the main selling points with which to 
differentiate between car manufactures has led these 
competitors to join together to foster the definition of 
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safety standards for automotive such as ISO-26262 
(ISO-26262 2011). Its basis resides in the more generic 
IEC-61508 (IEC-61508 2010) which has a broad field 
of application (industrial process, control and 
automation, oil/gas, nuclear, etc.). However, ISO-26262 
is totally dedicated to the automotive sector and allows 
car manufacturers to indemnify themselves from 
liability in case a malfunction remains undetected when 
following the standard (Lahtinen, Johansson, Ranta, 
Harju, and Nevalainen 2010). At the process level, this 
standard allows to follow a clear guidance on the 
development and validation of electrical and electronic 
systems, avoiding errors in the design and 
implementation, which could otherwise induce more 
expensive production activities and delay during the 
development (Täubig, Frese, Hertzberg, Lüth, Mohr, 
Vorobev, and Walter 2012). Moreover, a well-defined 
and standardized development process, which goes 
from the Requirements Analysis phases up to the 
System Testing phases, allows supporting the 
traceability of Safety Requirements during all the 
intermediate development stages. 

In this paper a comprehensive approach, inspired 
by the ISO-26262 standard, for the definition of 
Functional Safety Requirements of systems is proposed 
along with a mechanism to enable their traceability and 
support their verification through simulation. The 
approach is based on an iterative process which is an 
extension for the Safety Analysis of Physical Systems 
of that proposed in (Garro and Tundis 2012b; Garro, 
Tundis, Groß, and Riestenpatt Gen. Richter 2013) and is 
constituted by the following main phases (see Figure 1): 
Requirements Analysis, System Modeling and Virtual 
Testing. Both the Requirements Analysis phase and the 
System Modeling phase are based on UML/SysML 
(System Modeling language) and supported by related 
modeling tools (IBM Rational Rhapsody); whereas, the 
Virtual Testing phase is enabled by the OpenModelica 
environment (OpenModelica), an Open Source 
simulation environment based on the Modelica 
language which is an equation-based object-oriented 
language for representing physical systems with 
acausal features (Fritzson 2004). 

The rest of the paper is structured as follow: 
Section 2 introduces the safety analysis discipline along 
with a brief survey on the most common related 
techniques; then, in Section 3, the proposed simulation-
driven design process for the safety analysis of systems 
is presented; in Section 4, this process is exemplified 
through a case study in the automotive; finally, 
conclusions are drawn and future work delineated. 

 
2. SYSTEM SAFETY ANALYSIS AND 

RELATED TECHNIQUES 
Safety Analysis is a discipline of Safety Engineering 
whose aim is to ensure that engineered systems provide 
acceptable levels of safety through the identification of 
safety related risks, eliminating or controlling them by 
design and/or procedures, based on acceptable system 
safety precedencies (FAA 2000; NASA). 

System safety uses systems theory and systems 
engineering approaches to prevent foreseeable accidents 
and minimize the effects of unforeseen ones. It 
considers losses in general, not just human death or 
injury. Such losses may include destruction of property, 
loss of mission and environmental harm. Safety of 
systems needs to be planned in an integrated and 
comprehensive engineering framework that requires 
experience in the application of safety engineering 
principles by exploiting well-known analysis techniques 
to perform safety analysis for the identification and the 
management of hazards. The general definition of 
Safety is based on the main concept of risk which is the 
combination of the probability of a failure event and the 
severity resulting from the failure. 

Several techniques for performing quantitative and 
qualitative safety analyses are currently available. 
Quantitative analysis techniques are based on the 
identification and modeling of physical and logical 
connections among system components and on their 
analysis through statistical methods and techniques, but 
very often probabilistic information is not so relevant or 
desired, for example, when one wants to study the 
reachability of a state of the system, as a consequence 
Qualitative analysis techniques are often preferred 
(Rouvroye and Van den Bliek 2002). 

The Fault Hazard Analysis (FHA) is a deductive 
method of analysis that can be used exclusively as a 
qualitative analysis or, if desired, expanded to a 
quantitative one (Pomeranz and Reddy 2009). The Fault 
Hazard Analysis requires a detailed investigation of the 
subsystems to determine component hazard modes, 
causes of these hazards, and resultant effects to the 
subsystem and its operation. This type of analysis 
belongs to a family of reliability analysis techniques 
which comprehends FMEA/FMECA (Failure Mode and 
Effects Analysis/Failure mode effects and criticality 
analysis). The main difference between the 
FMEA/FMECA and the Fault Hazard Analysis is a 
matter of depth. Wherein the FMEA or FMECA looks 
at all failures and their effects, the Fault Hazard 
Analysis deals only with those effects that are safety 
related. 

Fault Tree Analysis (FTA) is a popular and 
productive hazard identification tool (Clifton 1999). A 
FTA is a deductive or backward logic representation 
which involves specifying a top event to analyze (a 
system failure), followed by identifying all of the 
associated elements in the system that could cause that 
top event to occur. It provides a standardized discipline 
to evaluate and control hazards. The FTA process is 
used to solve a wide variety of problems ranging from 
safety to management issues. This tool is used by the 
professional safety and reliability community to both 
prevent and resolve hazards and failures. Both 
qualitative and quantitative methods are used to identify 
areas in a system that are most critical to safe operation. 
The output is a graphical presentation providing a map 
of “failure or hazard” paths. 
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Event Tree Analysis (ETA) is an analysis technique 
for identifying and evaluating the sequence of events in 
a potential accident scenario following the occurrence 
of an initiating event (Kenarangui 1991). ETA is an 
inductive or forward logic representation, which starts 
from an initiating event and includes all possible paths, 
whose branch points represent successes and failures. 
The objective of ETA is to determine whether the 
initiating event will develop into a serious mishap or if 
the event is sufficiently controlled by the safety systems 
and procedures implemented in the system design. An 
ETA can result in many different possible outcomes 
from a single initiating event and it provides the 
capability to obtain a probability for each outcome. 

Common Cause Failure Analysis (CCFA) is an 
extension of FTA to identify “coupling factors” that can 
cause component failures to be potentially 
interdependent (Liudong and Wendai 2008). Primary 
events of minimal cut sets from the FTA are examined 
through the development of matrices to determine if 
failures are linked to some common cause relating to 
the environment, location, secondary causes, human 
error, or quality control. A cut set is a set of basic events 
(e.g. a set of component failures) whose occurrence 
causes the system to fail. A minimum cut set is one that 
has been reduced to eliminate all redundant “fault 
paths”. CCFA provides a better understanding of the 
interdependent relationship between FTA events and 
their causes. It analyzes safety systems for “real” 
redundancy. 

Sneak Circuit Analysis (SCA) is a method for the 
evaluation of electrical circuits (Price and Hughes 
2002). SCA employs recognition of topological patterns 
that are characteristic of all circuits and systems. The 
purpose of this analysis technique is to uncover latent 
(sneak) circuits and conditions that inhibit desired 
functions or cause undesired functions to occur, without 
a component having failed. The process converts 
schematic diagrams to topographical drawings and 
searches for sneak circuits. 

The Energy Trace is a hazard analysis approach 
addresses all sources of uncontrolled and controlled 
energy that have the potential to cause an accident 
(Booya, Arghami, Asilian, and Mortazavi 2007). 
Examples include utility electrical power and aircraft 
fuel. Sources of energy causing accidents can be 
associated with the product or process. The purpose of 
energy trace analysis is to ensure that all hazards and 
their immediate causes are identified. Once the hazards 
and their causes are identified, they can be used as top 
events in a fault tree or used to verify the completeness 
of a fault hazard analysis. Consequently, the energy 
trace analysis method complements but does not replace 
other analyses, such as fault trees, sneak circuit 
analyses, event trees, and FMEAs. 

Even though the above mentioned techniques are 
fairly popular for the safety static analysis of systems, 
nowadays, with the increase of complexity and 
heterogeneity of modern systems, more dynamic and 
flexible analysis techniques, based on simulation 

methods as well as compliant with international safety 
standards for specific domains, such as ISO-26262 in 
the automotive one (Aljazzar, Fischer, Grunske, Kuntz, 
Leitner-fischer, and Leue 2009; SAE 2003; Stapelberg 
2008; Struble 2005), are even more required. As an 
example, the Process Deployment Advisory Service 
defined on ISO-26262 in order to help identifying gaps 
in the development processes, including requirements 
traceability and requirements based-testing, is fully 
supported by popular tools such as MatLab/Simulink 
(Mathworks). 

 
3. A SIMULATION-DRIVEN PROCESS FOR 

THE DESIGN OF SAFE SYSTEMS 
In this section a methodological process for the 
development of safe systems, based on the validation of 
the design through simulation, is presented. 

As shown in Figure 1, such process which is 
inspired by the ISO-26262 standard, is defined in terms 
of three main iterative phases: Requirements Analysis, 
System Modeling, and Virtual Testing, which aim to 
provide a methodological support according to the ISO-
26262 standard. 
 

 
Figure 1: Main phases of the proposed simulation-
driven process for the design of safe systems 
 

In the Requirements Analysis phase the system 
safety objectives are analyzed and Safety requirements, 
in terms of Functional, Technical and Physical 
requirements, are identified (Rubio, Ponce, and Madrid 
2011; Sommerville and Sawyer 2003). They may 
consist of properties and safety performances to be 
considered in order to eliminate the risk or to reduce it 
to an acceptable level. Specifically, a process for their 
elicitation, definition, formalization and validation is 
defined according to a meta-model proposed in (Tundis, 
Rogovchenko-Buffoni, Fritzson, and Garro 2013). 

In particular, the first step consists in the 
requirements elicitation that, according to the proposed 
meta-model, is obtained through 
RequirementAssertions. An iterative process between 
the user and the analyst is typically executed in order to 
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state all the requirements, as much as possible, by 
associating to each of them a Name for their 
identification along with a possible Description in a text 
format by using the natural language in order to provide 
an explanation of specific or salient aspects, 
characteristics, or features (e.g. functional, technical or 
physical) of the system in a detailed way. At the end of 
this step the so called User Requirements (URs) are 
generated according to the meta-model. 

The second step consists in the refinement of the 
URs in order to generate System Requirements (SRs). 
This step is very crucial to make URs machine readable 
and executable in order to enable their verifiability 
during the simulation, as a consequence, it is really 
important what to represent and how to do it as well as 
when to use such requirements. First of all a 
RequirementAssertion could be involved in several 
verification tasks grouped in different 
RequirementModel, so the membership of each 
requirement to at least one of those RequirementModels 
must be identified. Then, the output values, associate to 
the evaluation of requirements, for describing if a 
requirement has been not violated, violated, and so on, 
have to be fixed. At the end, a Metric needs to be 
specified for each RequirementAssertion. In particular, 
it specifies the purpose of a RequirementAssertion in 
terms of verification mechanism. In Figure 2 the 
relationships among the User Requirements, System 
Requirements and Safety Requirements are represented. 
 

 
Figure 2: Relationships among User Requirements 
System Requirements and Safety Requirements 

 
The representation of requirements is carried out 

by using Requirement diagrams available in SysML, a 
UML profile for modeling system, and exploiting tools 
such as IBM Rational Rhapsody (IBM) or Papyrus 
(Papyrus), in order to enable model-based system 
engineering. 

It is worth to notice that not all the requirements 
can be formalized into something computable such as “a 
cable must be well connected”, if the term “well 
connected” is not represented in a machine readable 
formalism. 

In the System Modeling phase, a possible physical 
model of the real system in terms of its components is 
defined; in particular, the Structural and the Behavioral 
views are generated by breaking down the system in 
(sub)components. 

Specifically the first step, according to the Physical 
side of the meta-model proposed in (Tundis, 
Rogovchenko-Buffoni, Fritzson, and Garro 2013), 
consists in building a possible PhysicalSystemModel, of 
the actual PhysicalSystem by specifying the models of 
its physical components (PhysicalComponentModels) 
and the related Attributes and, then, defining the 
relationships among them as well as their behaviors. In 
particular, the structural part of the system is described 
by using Block Definition Diagrams and Internal Block 
Diagrams in a top-down fashion. The behavior of the 
system, which is modeled by following a bottom-up 
approach, can be defined in terms of Activity, Sequence 
or Parametric diagrams in order to model the internal 
behavior of each system components as well as the 
flows of actions and interactions between components. 

Then SRs belonging to the RequirementModel 
concerning Safety Requirements, can be further 
formalized in order to make them machine executable. 
In particular, a formal Measure, and its expected input 
and output values, can be associated to the defined 
Metric. Specifically, a Measure can be expressed by 
adopting an appropriate ComputationalModel which in 
turn could be represented through an Algorithm, a Finite 
Automata, a Function, a set of Equation or by their 
combination to enable the computational process. 

Finally, the allocation between the 
SafetyRequirements and the PhysicalSystemModel is 
performed. Furthermore, inputs, required from the 
Measure of a RequirementAssertion for its evaluation, 
are explicitly included in the 
PhysicalComponentModels. 

In the Virtual Testing phase, the Models of the 
system under consideration are transformed into 
executable models and represented in terms of the 
constructs offered by the OpenModelica platform (Open 
Source Modelica Consortium), an Open Source 
simulation environment based on the Modelica 
language, an equation-based object-oriented language 
for representing physical systems with acausal features, 
(Modelica and the Modelica Association). In particular, 
physical components are defined and integrated in order 
to build the physical system model and then the safety 
requirements to be verified are introduced into the 
overall model. Then, different simulation scenarios are 
set and simulations are executed; finally, simulation 
results can be analyzed on the basis of the system safety 
requirements identified in the first process phase. This 
analysis allows to evaluate the safety properties of the 
system, to compare different design choices for 
improving, possibly, the safety of the system under 
consideration. 

As the process is iterative, if necessary, new partial 
or complete process iterations can be executed. 

 
3.1. Relationships between the ISO-26262 standard 

and the proposed process 
The above described process is inspired by the IEC-
61508 standard and, in particular, by the ISO-26262 
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whose goal is to demonstrate the capability to develop 
certain products with acceptable risks. 

ISO-26262 is organized in 10 parts as following: 
− Part 1 - Vocabulary: which specifies the terms, 

definitions and abbreviated terms for 
application in all parts of ISO 26262; 

− Part 2 - Management of Functional Safety: 
which specifies the requirements for functional 
safety management for automotive 
applications, including (i) project-independent 
requirements with regard to the organizations 
involved (overall safety management), and (ii) 
project-specific requirements with regard to the 
management activities in the safety lifecycle 
(i.e. management during the concept phase and 
product development, and after the release for 
production); 

− Part 3 - Concept phase: which specifies the 
requirements for the concept phase for 
automotive applications (e.g. item definition, 
functional safety concept, etc.); 

− Part 4 - Product Development at system level: 
which specifies the requirements for product 
development at the system level for automotive 
applications, such as the system design and 
system integration and testing; 

− Part 5 - Product Development at hardware 
level: which specifies the requirements for 
product development at the hardware level for 
automotive applications (e.g. hardware design 
and hardware architectural metrics, hardware 
integration and validation); 

− Part 6 - Product Development at software 
level: which specifies the requirements for 
product development at the software level for 
automotive applications such as software 
architectural design, software unit design and 
implementation, software integration and 
testing; 

− Part 7: Production and Operation: which 
specifies the requirements for production, 
operation, service and decommissioning. 

− Part 8: Supporting Processes: which specifies 
the requirements for supporting processes 
through qualified tools, system engineering 
approaches and best practices; 

− Part 9: Automotive Safety Integrity Level 
(ASIL)-oriented and safety-oriented analyses: 
concerning the measures required to avoid  
unreasonable risks. 

− Part 10: Guidelines on ISO-26262. 
In the Table 1 the matching between ISO-26262 

parts and the phases of the proposed process are shown, 
by indicating in which phase of the process a specific 
part of such standard should be considered. 

In particular Vocabulary and Management of 
Functional Safety Concept phase can be considered in 
the Requirements Analysis phase for the definition, the 
organization and categorization of requirements; then 
Product Development at system level, Product 

development at the hardware level and Product 
development at the software level can be taken into 
account in the System Modeling phase, when the design 
of the system is under definition, whereas the 
Supporting Process part can be considered during the 
Virtual Testing phase of the proposed process. 
 
Table 1: Matching between ISO-26262 and the 
proposed process. 

Parts of the Standard 
ISO-26262  

Simulation-Driven 
Process for the Design 

of Safe Systems 
Vocabulary 

Management of 
Functional Safety 

Concept phase 

Requirements Analysis 
phase 

Product Development 
at system level  

Product development at 
the hardware level 

Product development at 
the software level 

System Modeling 
phase 

 

Supporting Process 
 

Virtual Testing 
 phase 

 
4. FROM SAFETY REQUIREMENTS TO A 

SAFE DESIGN IN THE AUTOMOTIVE 
DOMAIN: A CASE STUDY 

In this Section, a case study in the automotive domain 
concerning the modeling of an airbag system, and the 
validation and evaluation of its design according to the 
safety requirements through simulation, is analyzed 
following the proposed process. In particular, after a 
brief introductive description of the system under 
consideration, its safety analysis is performed. 

4.1. Airbag description 
Airbags are one of the most important components of a 
motor vehicle system for the occupant protection. It is 
used along with and as a supplement to the seatbelt 
restraint system to provide passenger protection in case 
of collision In addition to the standard airbags for the 
driver and front passenger, an increasing number of 
specialized airbag variants (such as curtain airbags, 
kneebags, etc.) are used. 

Each airbag should be specifically designed and 
optimized for its intended purpose. In addition to the 
deployment technology, which can in principle be based 
on the uniform pressure approach or the more recent 
corpuscular method, this includes the selection of the 
inflow method (Wang-Nefske or hybrid approach, etc.) 
as well as the verification and validation of the 
associated inflow data. Moreover, the deployment 
behavior is also determined by the correct adjustment of 
contact, discharge opening and porosity parameters. As 
a consequence a sensible and comprehensive simulation 
of airbag behavior as part of a simulation of the entire 
restraint system is indispensable. 
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An airbag is typically made of synthetic material 
and equipped with holes in the rear; it is usually 
composed by different subsystems such as: 

− a sensor that detects the abrupt deceleration of 
the vehicle caused by an impact and the 
pressure; 

− an Airbag Control Unit (ACU) that monitors 
the readiness of the entire airbag system. 

− a detonator that triggers the substance 
contained in the explosive capsule through an 
electric current or a bump of a ferrule; 

− a possible second capsule (GasSoure) that 
contains pre-compressed inert gas which 
inflates the airbag; 

− a warning light which is illuminated if a fault 
is detected. 

Specifically the ACU receives the signal of the 
sensor, processes it and sends the command to switch 
on a detonator; which in turn blows up the capsule of 
the detonator by developing a large amount of gas, to 
inflate the container. 

4.2. Requirements Analysis phase 
In this phase of the proposed process all the possible 
user requirements need to be identified and elicited. 

As an example, in the following some URs are 
reported: (Req1) when the car decelerates very quickly, 
as in a head-on crash, the electrical circuit has to be 
turned on for initiating the process of inflating the 
airbag; (Req2) the process, from the initial impact of the 
crash to full inflation of the airbags, takes less than 40 
milliseconds; (Req3) when a sensor detects a collision 
an immediate trigger should be sent to enable the 
deployment of the airbag; (Req4) in order for the airbag 
to cushion the head and torso with air for maximum 
protection, the airbag must begin to deflate (i.e., 
decrease its internal pressure) by the time the body hits 
it, otherwise, the high internal pressure of the airbag 
would create a hard surface instead of a protective 
cushion; (Req5) the airbag is ignited within a well-
define threshold. 

Starting from the collected URs the next step 
consist into their rewriting in SRs for making them more 
formal and by identifying their belonging 
RequirementModel. For example: 

− AbruptDeceleration(Req1): when the 
deceleration d is greater than a threshold, a 
signal to switch on the electronic circuit has to 
be sent; 

− InflationTime(Req2): The time to inflate the 
airbag has to take less than 40ms, 
inflationTime<=40; 

− CollitionDetection(Req3): when the collision is 
detected by the sensor, a collitionSignal has to 
be generated; 

− DeflationTime(Req4): the airbag has to be able 
to deflate in a deflationTime lesser than a 
deflation threshold. 

−  Activation(Req5): after a crash the airbag is 
deployed in delayTime=45ms. 

Specifically, the relationships among the above 
mentioned safety requirements are represented in Figure 
3. In particular the status of the DeflationTime is not 
violated if at least the status of the requirement 
InflationTime is not violated. In turn the status of the 
InflationTime is not violated if at least the status of the 
Activation requirement is fulfilled at least by both the 
AbruptDeceleration requirement and the 
CollitionDetection requirement. That is to say, the 
status of both AbruptDeceleration and 
CollitionDetection must be not violated. 

Moreover different scenarios can be analyzed, such 
as: 

− the airbag is not ignited or is inflated too late 
even though a critical crash occurred; 

−  the airbag is deployed unintentionally, which 
means that it is ignited even though no crash at 
all or only a non-critical crash has occurred; 

 

 
Figure 3: Safety System Requirement relationships 

 
4.3. System Modeling phase 

In this phase both the physical structure of the 
system is built by composing components and then the 
behavior of each single component is specified. 

As it is shown in Figure 4, a Block Definition 
Diagram (BDD) of an Airbag System is depicted, in 
terms of its subsystems and ports. Then, the interactions 
among these components are better specified by using 
the Internal Block Diagram (IBD), as it is shown in 
Figure 5. 

 

 
Figure 4: Physical System Model: Components of the 
Airbag System 
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Figure 5: Physical System Model: Components 
interactions of the Airbag System 

 
After the structure is built, Parametric diagrams are 

employed for representing the behavior of each 
subsystem as well as dynamic interactions among them, 
by exploiting a Computational Model based on 
EquationsSet. As an example, in Figure 6 the diagram 
concerning the behavior of the Airbag component is 
reported. In particular, in the first section of the 
diagram, the parameters taken in input from the model 
are defined, secondly a brief description about the use 
of such parameters is reported; then the behavior of the 
Airbag component, which exploits such input 
parameters, is represented in terms of equations. 

 

 
Figure 6: Computational Model of the Airbag 
component 

 
Finally, requirements modeled in the previous 

phase, which need to be verified, are allocated to (i) a 
single physical component in order to check its behavior 
or (ii) a set of physical components in order to check if 
the interaction among them is or is not consistent as 
expected. In Figure 7 the allocation of some 
requirements to the airbag physical system model, is 
shown. 

In particular, such a scenario wants to verify, the 
InflationTime of the airbag when a car-crash occurs. 
Specifically, the requirement is not violated when the 
status of the Activation requirement is not violated and 
both the Acu component and the Airbag component 
fulfill the internal rules specified by the InflactionTime. 

 

 
Figure 7: Allocation of Safety Requirements to the 
Airbag Physical System Model 

 
4.4. Virtual Testing phase 

In this phase the virtual testing is executed by 
exploiting the simulation in order to study the behavior 
of the system under consideration and analyze 
interesting aspects or, possibly, to discover some issues 
that are not immediately obvious when applying static 
analysis techniques. In order to enable the simulation, 
models generated in the previous phase need to be 
translated into the desired simulation platform in order 
to make them executable. In this case the 
OpenModelica environment has been chosen as 
simulation platform since: (i) it is equation based (by 
implementing the Modelica Language) and, as a 
consequence, compliant with the Computational Model 
which has been used to represent the behavior of the 
overall Airbag System; (ii) it is open source, thus 
allowing the possibility to extend both the language and 
the tool, to enable modeling of requirements and 
introduce allocation mechanisms. 

In Figure 8, a fragment of source code in Modelica 
language, which represents the structure of the 
AirbagSystemDesign, is reported. 

 

 
Figure 8: Airbag System Design in Modelica 

 
As we can see by looking at the source code, the 

transformation between SysML notation and Modelica 
constructs, is almost direct. In particular, each SysML 
block can be represented as a Modelica Model, whereas 
connections among SysML blocks can be enabled by the 
connect construct, which is already available in the 
Modelica language. 
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In Figure 9, a fragment of Modelica source code 
concerning the implementation of the behavior of the 
airbag component, is shown. 

 

 
Figure 9: Representation of the behavior of the Airbag 
component in Modelica 

 
As we can see from the picture, the component 

behavior, which was described in the System Modeling 
phase through a SysML parametric diagram (see Figure 
6), has been is translated in a set of equations by using 
the Modelica language. 

Similarly, the requirements identified in the 
Requirements Analysis phase are formalized by 
exploiting some extensions of the Modelica language, 
proposed by the authors in (Rogovchenko-Buffoni, 
Fritzson, Garro, Tundis, and Nyberg 2013); specifically: 
(i) the requirement keyword is used for their 
representations, (ii) the fulfill relationship is used both 
for their allocation to the physical system and for their 
traceability, (iii) the precondition equation section is 
used to specify the conditions when the evaluation of 
the requirement has to be performed. 

In particular, the source code of the formalized 
requirement InflationTime is reported in Figure 10, 
where the evaluation is based on the inflation time that 
the airbag takes to reach a specific safety level of 
pressure after the airbag is activated. 

 

 
Figure 10: Formalization of the InflationTime 
requirement by using Modelica language extensions 

 
The source code of the extend system design is 

reported in Figure 11, where the fulfill keyword is 
employed for creating the matching among the 

requirements as well as between requirements and 
physical components of the airbag system. 

 

 
Figure 11: Formalization of the ExtendedSystemDesign 
by using Modelica language extensions 

 
After obtaining the executable models, the tuning 

of the simulation parameters is performed in order to 
reach a safe working state of the system according to 
the specified requirements. Several simulations have 
been executed for testing virtually the System in 
different scenarios and evaluating its behavior. 
Moreover three possible values can be reached by a 
requirement. 

In the considered experimentations (see Figure 12 
and Figure 13) a pressure level (safePressureLevel in 
yellow color) of 2.5 atmospheres (atm) has been 
considered as minimum safe threshold, coupled with a 
maximum inflation time (maxInflationTime) of 40 
milliseconds (ms) in order to reach such safe pressure 
level of the airbag, after that the activation airbag signal 
(activateAirbag) is arrived. 

As it is shown in Figure 12, even though the 
AbruptDeceleration (in dark blue color) and 
CollitionDetection (in dark green color) requirements 
are satisfied as well as the Activation (in brown color) 
requirement, the requirementStatus of the 
InflactionTime (in red color) is negative, that is to say it 
is violated. Indeed, as we can see, the airbagPressure 
(in light blue color) is not able to reach the 
safePressureLevel (in yellow color) within the 
maxInflationTime (in 40 milliseconds) as expected. 

 

 
Figure 12: Violation of the InflationTime requirement 
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As it is shown in Figure 13, by setting opportunely 

some parameters of the airbag system, for example, by 
increasing the pressure to be provided in input to the 
airbag (pressureIn in light green color), it is possible to 
reach the necessary parameters tuning which fulfills all 
the requirements in the considered scenario. 

 

 
Figure 13: Fulfillment of the InflationTime requirement  

 
5. CONCLUSIONS AND FUTURE WORKS 
The paper has presented a model-driven process for 
supporting the safety analysis of systems which is 
inspired by ISO-26262 standard and exploits simulation 
techniques. 

Two powerful languages for modeling systems 
have been combined in a comprehensive system 
engineering framework; specifically, SysML has been 
exploited for platform independent representation of the 
system; whereas, the Modelica language has been 
exploited for the executable representation of the 
systems according to an equation-based paradigm. 

A prototype of the OpenModelica simulation 
platform, able to support both the modeling of 
requirements and their allocation, according to a well-
defined reference meta-model, has been used for the 
simulation. Finally, a concrete experimentation has been 
conducted in the automotive domain which has allowed 
to point out both the flexibility and the effectiveness of 
the overall proposed process for safety analysis. 

Future work includes both the improvements of the 
proposed model-driven process and its extension by 
introducing (i) some approaches and possible patterns 
for representing dysfunctional behavior and fault 
injection and, (ii) a probability model for enabling the 
representation of uncertainties in order to perform Fault 
Tree Analysis of a Modelica-based system model. 
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