
FROM SAFETY REQUIREMENTS TO SIMULATION-DRIVEN DESIGN OF SAFE
SYSTEMS

Alfredo Garro(a), Andrea Tundis(a), Lena Buffoni-Rogovchenko(b), Peter Fritzson(b)

(a)Department of Computer Engineering, Modeling, Electronics, and Systems Science (DIMES), University of Calabria,
via P. Bucci 41C, 87036, Rende (CS), Italy

(b)Department of Computer and Information Science (IDA), Linköping University, SE-581 83 Linköping, Sweden

(a){garro, atundis}@dimes.unical.it,(b){olena.rogovchenko, peter.fritzson}@liu.se

ABSTRACT
System safety is an important aspect of System
Dependability which should be taken in consideration
during the whole system lifecycle. However, often
systems are built by considering mainly their functional
aspects and safety requirements are verified and
validated in the latest stages of the development
process. For this reason and due to the deep integration
of modern systems in the daily life of people, regulatory
standards have been defined and have to be applied
during the development of critical systems to guarantee
a minimum and acceptable level of safety. In this
context, the paper proposes a model-driven process,
inspired by ISO-26262, which provides a
methodological support for the verification and
validation of safety requirements. In particular, the
proposed framework combines model-driven
engineering tools and techniques with OpenModelica,
an equation based simulation environment based on the
Modelica language. The proposal is experimented
through a case study concerning the safety analysis of
an Airbag System.

Keywords: Model-Based Systems Engineering, Safety
Analysis, Requirements Engineering, Verification and
Validation, Modelica, Automotive.

1. INTRODUCTION
The modeling of system requirements deals with
formally expressing constraints and requirements that
have an impact on the behavior of the system so as to
enable their verification through real or simulated
experiments and/or analytical techniques. The need of
models for representing system requirements as well as
for methods and techniques, especially centered on
model-based approaches, able to support the modeling,
evaluation, and validation of requirements and
constraints along with their traceability is today even
more prominent (Krause, Hintze, Magnus, and Diedrich
2012; Peraldi-Frati and Albinet 2010; Tundis,
Rogovchenko-Buffoni, Fritzson, and Garro 2013; Yu,
Xu, and Du 2009). In particular, while the modeling and
verification of functional requirements are well
supported by several tools and techniques, there is still a

lack of models and methods specifically conceived to
deal with non-functional requirements (such as
reliability, availability, maintainability, safety, security);
as a consequence, their verification is often postponed
to the late stages of the development process with the
risk of having to revise already implemented design
choices, and, consequently, to miss project deadlines
and exceed the budget (Garro, Tundis, and Chirillo
2011; Garro and Tundis 2012c).

Among non-functional requirements, Safety, which
represents an important requirement to be satisfied for a
wide range of systems (Laprie 1992), becomes even
more crucial in several industrial domains such as
nuclear plants, medical appliances, avionics, automotive
and satellite (Guillerm, Demmou, and Sadou 2010;
Garro, Tundis, Groß, and Riestenpatt Gen. Richter
2013; Lahtinen, Johansson, Ranta, Harju, and
Nevalainen 2010; Rierson 2013). In particular, in the
automotive domain, although Safety has always played
a key role, the importance that is attributed to it has
become far greater in recent times (Herpel and German
2009; Garro and Tundis 2012a; Navinkumar and
Archana 2011). In modern automobile design, Safety
Requirements can be generally categorized in three
main classes: (i) Passive safety, which aims to minimize
the severity of an accident; examples of passive safety
elements are seatbelts, crumple zones, airbags; (ii)
Active safety, which aims to avoid accidents and to
minimize their effects if they occur; examples of active
safety elements are: predictive emergency braking,
seatbelt pre-tensioning, anti-lock braking systems and
traction control; (iii) Functional safety, which aims to
ensure that both the electrical and electronic systems
(such as power supplies, sensors, communication
networks, actuators, etc.), also including all active
safety related systems, function correctly. In other
words, Functional safety aims to guarantee the absence
of unacceptable risk due to hazards caused by
malfunctioning behavior of electrical and electronic
systems.

The increasing importance that Safety is gaining as
one of the main selling points with which to
differentiate between car manufactures has led these
competitors to join together to foster the definition of

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

40

safety standards for automotive such as ISO-26262
(ISO-26262 2011). Its basis resides in the more generic
IEC-61508 (IEC-61508 2010) which has a broad field
of application (industrial process, control and
automation, oil/gas, nuclear, etc.). However, ISO-26262
is totally dedicated to the automotive sector and allows
car manufacturers to indemnify themselves from
liability in case a malfunction remains undetected when
following the standard (Lahtinen, Johansson, Ranta,
Harju, and Nevalainen 2010). At the process level, this
standard allows to follow a clear guidance on the
development and validation of electrical and electronic
systems, avoiding errors in the design and
implementation, which could otherwise induce more
expensive production activities and delay during the
development (Täubig, Frese, Hertzberg, Lüth, Mohr,
Vorobev, and Walter 2012). Moreover, a well-defined
and standardized development process, which goes
from the Requirements Analysis phases up to the
System Testing phases, allows supporting the
traceability of Safety Requirements during all the
intermediate development stages.

In this paper a comprehensive approach, inspired
by the ISO-26262 standard, for the definition of
Functional Safety Requirements of systems is proposed
along with a mechanism to enable their traceability and
support their verification through simulation. The
approach is based on an iterative process which is an
extension for the Safety Analysis of Physical Systems
of that proposed in (Garro and Tundis 2012b; Garro,
Tundis, Groß, and Riestenpatt Gen. Richter 2013) and is
constituted by the following main phases (see Figure 1):
Requirements Analysis, System Modeling and Virtual
Testing. Both the Requirements Analysis phase and the
System Modeling phase are based on UML/SysML
(System Modeling language) and supported by related
modeling tools (IBM Rational Rhapsody); whereas, the
Virtual Testing phase is enabled by the OpenModelica
environment (OpenModelica), an Open Source
simulation environment based on the Modelica
language which is an equation-based object-oriented
language for representing physical systems with
acausal features (Fritzson 2004).

The rest of the paper is structured as follow:
Section 2 introduces the safety analysis discipline along
with a brief survey on the most common related
techniques; then, in Section 3, the proposed simulation-
driven design process for the safety analysis of systems
is presented; in Section 4, this process is exemplified
through a case study in the automotive; finally,
conclusions are drawn and future work delineated.

2. SYSTEM SAFETY ANALYSIS AND

RELATED TECHNIQUES
Safety Analysis is a discipline of Safety Engineering
whose aim is to ensure that engineered systems provide
acceptable levels of safety through the identification of
safety related risks, eliminating or controlling them by
design and/or procedures, based on acceptable system
safety precedencies (FAA 2000; NASA).

System safety uses systems theory and systems
engineering approaches to prevent foreseeable accidents
and minimize the effects of unforeseen ones. It
considers losses in general, not just human death or
injury. Such losses may include destruction of property,
loss of mission and environmental harm. Safety of
systems needs to be planned in an integrated and
comprehensive engineering framework that requires
experience in the application of safety engineering
principles by exploiting well-known analysis techniques
to perform safety analysis for the identification and the
management of hazards. The general definition of
Safety is based on the main concept of risk which is the
combination of the probability of a failure event and the
severity resulting from the failure.

Several techniques for performing quantitative and
qualitative safety analyses are currently available.
Quantitative analysis techniques are based on the
identification and modeling of physical and logical
connections among system components and on their
analysis through statistical methods and techniques, but
very often probabilistic information is not so relevant or
desired, for example, when one wants to study the
reachability of a state of the system, as a consequence
Qualitative analysis techniques are often preferred
(Rouvroye and Van den Bliek 2002).

The Fault Hazard Analysis (FHA) is a deductive
method of analysis that can be used exclusively as a
qualitative analysis or, if desired, expanded to a
quantitative one (Pomeranz and Reddy 2009). The Fault
Hazard Analysis requires a detailed investigation of the
subsystems to determine component hazard modes,
causes of these hazards, and resultant effects to the
subsystem and its operation. This type of analysis
belongs to a family of reliability analysis techniques
which comprehends FMEA/FMECA (Failure Mode and
Effects Analysis/Failure mode effects and criticality
analysis). The main difference between the
FMEA/FMECA and the Fault Hazard Analysis is a
matter of depth. Wherein the FMEA or FMECA looks
at all failures and their effects, the Fault Hazard
Analysis deals only with those effects that are safety
related.

Fault Tree Analysis (FTA) is a popular and
productive hazard identification tool (Clifton 1999). A
FTA is a deductive or backward logic representation
which involves specifying a top event to analyze (a
system failure), followed by identifying all of the
associated elements in the system that could cause that
top event to occur. It provides a standardized discipline
to evaluate and control hazards. The FTA process is
used to solve a wide variety of problems ranging from
safety to management issues. This tool is used by the
professional safety and reliability community to both
prevent and resolve hazards and failures. Both
qualitative and quantitative methods are used to identify
areas in a system that are most critical to safe operation.
The output is a graphical presentation providing a map
of “failure or hazard” paths.

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

41

Event Tree Analysis (ETA) is an analysis technique
for identifying and evaluating the sequence of events in
a potential accident scenario following the occurrence
of an initiating event (Kenarangui 1991). ETA is an
inductive or forward logic representation, which starts
from an initiating event and includes all possible paths,
whose branch points represent successes and failures.
The objective of ETA is to determine whether the
initiating event will develop into a serious mishap or if
the event is sufficiently controlled by the safety systems
and procedures implemented in the system design. An
ETA can result in many different possible outcomes
from a single initiating event and it provides the
capability to obtain a probability for each outcome.

Common Cause Failure Analysis (CCFA) is an
extension of FTA to identify “coupling factors” that can
cause component failures to be potentially
interdependent (Liudong and Wendai 2008). Primary
events of minimal cut sets from the FTA are examined
through the development of matrices to determine if
failures are linked to some common cause relating to
the environment, location, secondary causes, human
error, or quality control. A cut set is a set of basic events
(e.g. a set of component failures) whose occurrence
causes the system to fail. A minimum cut set is one that
has been reduced to eliminate all redundant “fault
paths”. CCFA provides a better understanding of the
interdependent relationship between FTA events and
their causes. It analyzes safety systems for “real”
redundancy.

Sneak Circuit Analysis (SCA) is a method for the
evaluation of electrical circuits (Price and Hughes
2002). SCA employs recognition of topological patterns
that are characteristic of all circuits and systems. The
purpose of this analysis technique is to uncover latent
(sneak) circuits and conditions that inhibit desired
functions or cause undesired functions to occur, without
a component having failed. The process converts
schematic diagrams to topographical drawings and
searches for sneak circuits.

The Energy Trace is a hazard analysis approach
addresses all sources of uncontrolled and controlled
energy that have the potential to cause an accident
(Booya, Arghami, Asilian, and Mortazavi 2007).
Examples include utility electrical power and aircraft
fuel. Sources of energy causing accidents can be
associated with the product or process. The purpose of
energy trace analysis is to ensure that all hazards and
their immediate causes are identified. Once the hazards
and their causes are identified, they can be used as top
events in a fault tree or used to verify the completeness
of a fault hazard analysis. Consequently, the energy
trace analysis method complements but does not replace
other analyses, such as fault trees, sneak circuit
analyses, event trees, and FMEAs.

Even though the above mentioned techniques are
fairly popular for the safety static analysis of systems,
nowadays, with the increase of complexity and
heterogeneity of modern systems, more dynamic and
flexible analysis techniques, based on simulation

methods as well as compliant with international safety
standards for specific domains, such as ISO-26262 in
the automotive one (Aljazzar, Fischer, Grunske, Kuntz,
Leitner-fischer, and Leue 2009; SAE 2003; Stapelberg
2008; Struble 2005), are even more required. As an
example, the Process Deployment Advisory Service
defined on ISO-26262 in order to help identifying gaps
in the development processes, including requirements
traceability and requirements based-testing, is fully
supported by popular tools such as MatLab/Simulink
(Mathworks).

3. A SIMULATION-DRIVEN PROCESS FOR

THE DESIGN OF SAFE SYSTEMS
In this section a methodological process for the
development of safe systems, based on the validation of
the design through simulation, is presented.

As shown in Figure 1, such process which is
inspired by the ISO-26262 standard, is defined in terms
of three main iterative phases: Requirements Analysis,
System Modeling, and Virtual Testing, which aim to
provide a methodological support according to the ISO-
26262 standard.

Figure 1: Main phases of the proposed simulation-
driven process for the design of safe systems

In the Requirements Analysis phase the system
safety objectives are analyzed and Safety requirements,
in terms of Functional, Technical and Physical
requirements, are identified (Rubio, Ponce, and Madrid
2011; Sommerville and Sawyer 2003). They may
consist of properties and safety performances to be
considered in order to eliminate the risk or to reduce it
to an acceptable level. Specifically, a process for their
elicitation, definition, formalization and validation is
defined according to a meta-model proposed in (Tundis,
Rogovchenko-Buffoni, Fritzson, and Garro 2013).

In particular, the first step consists in the
requirements elicitation that, according to the proposed
meta-model, is obtained through
RequirementAssertions. An iterative process between
the user and the analyst is typically executed in order to

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

42

state all the requirements, as much as possible, by
associating to each of them a Name for their
identification along with a possible Description in a text
format by using the natural language in order to provide
an explanation of specific or salient aspects,
characteristics, or features (e.g. functional, technical or
physical) of the system in a detailed way. At the end of
this step the so called User Requirements (URs) are
generated according to the meta-model.

The second step consists in the refinement of the
URs in order to generate System Requirements (SRs).
This step is very crucial to make URs machine readable
and executable in order to enable their verifiability
during the simulation, as a consequence, it is really
important what to represent and how to do it as well as
when to use such requirements. First of all a
RequirementAssertion could be involved in several
verification tasks grouped in different
RequirementModel, so the membership of each
requirement to at least one of those RequirementModels
must be identified. Then, the output values, associate to
the evaluation of requirements, for describing if a
requirement has been not violated, violated, and so on,
have to be fixed. At the end, a Metric needs to be
specified for each RequirementAssertion. In particular,
it specifies the purpose of a RequirementAssertion in
terms of verification mechanism. In Figure 2 the
relationships among the User Requirements, System
Requirements and Safety Requirements are represented.

Figure 2: Relationships among User Requirements
System Requirements and Safety Requirements

The representation of requirements is carried out

by using Requirement diagrams available in SysML, a
UML profile for modeling system, and exploiting tools
such as IBM Rational Rhapsody (IBM) or Papyrus
(Papyrus), in order to enable model-based system
engineering.

It is worth to notice that not all the requirements
can be formalized into something computable such as “a
cable must be well connected”, if the term “well
connected” is not represented in a machine readable
formalism.

In the System Modeling phase, a possible physical
model of the real system in terms of its components is
defined; in particular, the Structural and the Behavioral
views are generated by breaking down the system in
(sub)components.

Specifically the first step, according to the Physical
side of the meta-model proposed in (Tundis,
Rogovchenko-Buffoni, Fritzson, and Garro 2013),
consists in building a possible PhysicalSystemModel, of
the actual PhysicalSystem by specifying the models of
its physical components (PhysicalComponentModels)
and the related Attributes and, then, defining the
relationships among them as well as their behaviors. In
particular, the structural part of the system is described
by using Block Definition Diagrams and Internal Block
Diagrams in a top-down fashion. The behavior of the
system, which is modeled by following a bottom-up
approach, can be defined in terms of Activity, Sequence
or Parametric diagrams in order to model the internal
behavior of each system components as well as the
flows of actions and interactions between components.

Then SRs belonging to the RequirementModel
concerning Safety Requirements, can be further
formalized in order to make them machine executable.
In particular, a formal Measure, and its expected input
and output values, can be associated to the defined
Metric. Specifically, a Measure can be expressed by
adopting an appropriate ComputationalModel which in
turn could be represented through an Algorithm, a Finite
Automata, a Function, a set of Equation or by their
combination to enable the computational process.

Finally, the allocation between the
SafetyRequirements and the PhysicalSystemModel is
performed. Furthermore, inputs, required from the
Measure of a RequirementAssertion for its evaluation,
are explicitly included in the
PhysicalComponentModels.

In the Virtual Testing phase, the Models of the
system under consideration are transformed into
executable models and represented in terms of the
constructs offered by the OpenModelica platform (Open
Source Modelica Consortium), an Open Source
simulation environment based on the Modelica
language, an equation-based object-oriented language
for representing physical systems with acausal features,
(Modelica and the Modelica Association). In particular,
physical components are defined and integrated in order
to build the physical system model and then the safety
requirements to be verified are introduced into the
overall model. Then, different simulation scenarios are
set and simulations are executed; finally, simulation
results can be analyzed on the basis of the system safety
requirements identified in the first process phase. This
analysis allows to evaluate the safety properties of the
system, to compare different design choices for
improving, possibly, the safety of the system under
consideration.

As the process is iterative, if necessary, new partial
or complete process iterations can be executed.

3.1. Relationships between the ISO-26262 standard

and the proposed process
The above described process is inspired by the IEC-
61508 standard and, in particular, by the ISO-26262

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

43

whose goal is to demonstrate the capability to develop
certain products with acceptable risks.

ISO-26262 is organized in 10 parts as following:
− Part 1 - Vocabulary: which specifies the terms,

definitions and abbreviated terms for
application in all parts of ISO 26262;

− Part 2 - Management of Functional Safety:
which specifies the requirements for functional
safety management for automotive
applications, including (i) project-independent
requirements with regard to the organizations
involved (overall safety management), and (ii)
project-specific requirements with regard to the
management activities in the safety lifecycle
(i.e. management during the concept phase and
product development, and after the release for
production);

− Part 3 - Concept phase: which specifies the
requirements for the concept phase for
automotive applications (e.g. item definition,
functional safety concept, etc.);

− Part 4 - Product Development at system level:
which specifies the requirements for product
development at the system level for automotive
applications, such as the system design and
system integration and testing;

− Part 5 - Product Development at hardware
level: which specifies the requirements for
product development at the hardware level for
automotive applications (e.g. hardware design
and hardware architectural metrics, hardware
integration and validation);

− Part 6 - Product Development at software
level: which specifies the requirements for
product development at the software level for
automotive applications such as software
architectural design, software unit design and
implementation, software integration and
testing;

− Part 7: Production and Operation: which
specifies the requirements for production,
operation, service and decommissioning.

− Part 8: Supporting Processes: which specifies
the requirements for supporting processes
through qualified tools, system engineering
approaches and best practices;

− Part 9: Automotive Safety Integrity Level
(ASIL)-oriented and safety-oriented analyses:
concerning the measures required to avoid
unreasonable risks.

− Part 10: Guidelines on ISO-26262.
In the Table 1 the matching between ISO-26262

parts and the phases of the proposed process are shown,
by indicating in which phase of the process a specific
part of such standard should be considered.

In particular Vocabulary and Management of
Functional Safety Concept phase can be considered in
the Requirements Analysis phase for the definition, the
organization and categorization of requirements; then
Product Development at system level, Product

development at the hardware level and Product
development at the software level can be taken into
account in the System Modeling phase, when the design
of the system is under definition, whereas the
Supporting Process part can be considered during the
Virtual Testing phase of the proposed process.

Table 1: Matching between ISO-26262 and the
proposed process.

Parts of the Standard
ISO-26262

Simulation-Driven
Process for the Design

of Safe Systems
Vocabulary

Management of
Functional Safety

Concept phase

Requirements Analysis
phase

Product Development
at system level

Product development at
the hardware level

Product development at
the software level

System Modeling
phase

Supporting Process

Virtual Testing
 phase

4. FROM SAFETY REQUIREMENTS TO A

SAFE DESIGN IN THE AUTOMOTIVE
DOMAIN: A CASE STUDY

In this Section, a case study in the automotive domain
concerning the modeling of an airbag system, and the
validation and evaluation of its design according to the
safety requirements through simulation, is analyzed
following the proposed process. In particular, after a
brief introductive description of the system under
consideration, its safety analysis is performed.

4.1. Airbag description
Airbags are one of the most important components of a
motor vehicle system for the occupant protection. It is
used along with and as a supplement to the seatbelt
restraint system to provide passenger protection in case
of collision In addition to the standard airbags for the
driver and front passenger, an increasing number of
specialized airbag variants (such as curtain airbags,
kneebags, etc.) are used.

Each airbag should be specifically designed and
optimized for its intended purpose. In addition to the
deployment technology, which can in principle be based
on the uniform pressure approach or the more recent
corpuscular method, this includes the selection of the
inflow method (Wang-Nefske or hybrid approach, etc.)
as well as the verification and validation of the
associated inflow data. Moreover, the deployment
behavior is also determined by the correct adjustment of
contact, discharge opening and porosity parameters. As
a consequence a sensible and comprehensive simulation
of airbag behavior as part of a simulation of the entire
restraint system is indispensable.

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

44

An airbag is typically made of synthetic material
and equipped with holes in the rear; it is usually
composed by different subsystems such as:

− a sensor that detects the abrupt deceleration of
the vehicle caused by an impact and the
pressure;

− an Airbag Control Unit (ACU) that monitors
the readiness of the entire airbag system.

− a detonator that triggers the substance
contained in the explosive capsule through an
electric current or a bump of a ferrule;

− a possible second capsule (GasSoure) that
contains pre-compressed inert gas which
inflates the airbag;

− a warning light which is illuminated if a fault
is detected.

Specifically the ACU receives the signal of the
sensor, processes it and sends the command to switch
on a detonator; which in turn blows up the capsule of
the detonator by developing a large amount of gas, to
inflate the container.

4.2. Requirements Analysis phase
In this phase of the proposed process all the possible
user requirements need to be identified and elicited.

As an example, in the following some URs are
reported: (Req1) when the car decelerates very quickly,
as in a head-on crash, the electrical circuit has to be
turned on for initiating the process of inflating the
airbag; (Req2) the process, from the initial impact of the
crash to full inflation of the airbags, takes less than 40
milliseconds; (Req3) when a sensor detects a collision
an immediate trigger should be sent to enable the
deployment of the airbag; (Req4) in order for the airbag
to cushion the head and torso with air for maximum
protection, the airbag must begin to deflate (i.e.,
decrease its internal pressure) by the time the body hits
it, otherwise, the high internal pressure of the airbag
would create a hard surface instead of a protective
cushion; (Req5) the airbag is ignited within a well-
define threshold.

Starting from the collected URs the next step
consist into their rewriting in SRs for making them more
formal and by identifying their belonging
RequirementModel. For example:

− AbruptDeceleration(Req1): when the
deceleration d is greater than a threshold, a
signal to switch on the electronic circuit has to
be sent;

− InflationTime(Req2): The time to inflate the
airbag has to take less than 40ms,
inflationTime<=40;

− CollitionDetection(Req3): when the collision is
detected by the sensor, a collitionSignal has to
be generated;

− DeflationTime(Req4): the airbag has to be able
to deflate in a deflationTime lesser than a
deflation threshold.

− Activation(Req5): after a crash the airbag is
deployed in delayTime=45ms.

Specifically, the relationships among the above
mentioned safety requirements are represented in Figure
3. In particular the status of the DeflationTime is not
violated if at least the status of the requirement
InflationTime is not violated. In turn the status of the
InflationTime is not violated if at least the status of the
Activation requirement is fulfilled at least by both the
AbruptDeceleration requirement and the
CollitionDetection requirement. That is to say, the
status of both AbruptDeceleration and
CollitionDetection must be not violated.

Moreover different scenarios can be analyzed, such
as:

− the airbag is not ignited or is inflated too late
even though a critical crash occurred;

− the airbag is deployed unintentionally, which
means that it is ignited even though no crash at
all or only a non-critical crash has occurred;

Figure 3: Safety System Requirement relationships

4.3. System Modeling phase

In this phase both the physical structure of the
system is built by composing components and then the
behavior of each single component is specified.

As it is shown in Figure 4, a Block Definition
Diagram (BDD) of an Airbag System is depicted, in
terms of its subsystems and ports. Then, the interactions
among these components are better specified by using
the Internal Block Diagram (IBD), as it is shown in
Figure 5.

Figure 4: Physical System Model: Components of the
Airbag System

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

45

Figure 5: Physical System Model: Components
interactions of the Airbag System

After the structure is built, Parametric diagrams are

employed for representing the behavior of each
subsystem as well as dynamic interactions among them,
by exploiting a Computational Model based on
EquationsSet. As an example, in Figure 6 the diagram
concerning the behavior of the Airbag component is
reported. In particular, in the first section of the
diagram, the parameters taken in input from the model
are defined, secondly a brief description about the use
of such parameters is reported; then the behavior of the
Airbag component, which exploits such input
parameters, is represented in terms of equations.

Figure 6: Computational Model of the Airbag
component

Finally, requirements modeled in the previous

phase, which need to be verified, are allocated to (i) a
single physical component in order to check its behavior
or (ii) a set of physical components in order to check if
the interaction among them is or is not consistent as
expected. In Figure 7 the allocation of some
requirements to the airbag physical system model, is
shown.

In particular, such a scenario wants to verify, the
InflationTime of the airbag when a car-crash occurs.
Specifically, the requirement is not violated when the
status of the Activation requirement is not violated and
both the Acu component and the Airbag component
fulfill the internal rules specified by the InflactionTime.

Figure 7: Allocation of Safety Requirements to the
Airbag Physical System Model

4.4. Virtual Testing phase

In this phase the virtual testing is executed by
exploiting the simulation in order to study the behavior
of the system under consideration and analyze
interesting aspects or, possibly, to discover some issues
that are not immediately obvious when applying static
analysis techniques. In order to enable the simulation,
models generated in the previous phase need to be
translated into the desired simulation platform in order
to make them executable. In this case the
OpenModelica environment has been chosen as
simulation platform since: (i) it is equation based (by
implementing the Modelica Language) and, as a
consequence, compliant with the Computational Model
which has been used to represent the behavior of the
overall Airbag System; (ii) it is open source, thus
allowing the possibility to extend both the language and
the tool, to enable modeling of requirements and
introduce allocation mechanisms.

In Figure 8, a fragment of source code in Modelica
language, which represents the structure of the
AirbagSystemDesign, is reported.

Figure 8: Airbag System Design in Modelica

As we can see by looking at the source code, the

transformation between SysML notation and Modelica
constructs, is almost direct. In particular, each SysML
block can be represented as a Modelica Model, whereas
connections among SysML blocks can be enabled by the
connect construct, which is already available in the
Modelica language.

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

46

In Figure 9, a fragment of Modelica source code
concerning the implementation of the behavior of the
airbag component, is shown.

Figure 9: Representation of the behavior of the Airbag
component in Modelica

As we can see from the picture, the component

behavior, which was described in the System Modeling
phase through a SysML parametric diagram (see Figure
6), has been is translated in a set of equations by using
the Modelica language.

Similarly, the requirements identified in the
Requirements Analysis phase are formalized by
exploiting some extensions of the Modelica language,
proposed by the authors in (Rogovchenko-Buffoni,
Fritzson, Garro, Tundis, and Nyberg 2013); specifically:
(i) the requirement keyword is used for their
representations, (ii) the fulfill relationship is used both
for their allocation to the physical system and for their
traceability, (iii) the precondition equation section is
used to specify the conditions when the evaluation of
the requirement has to be performed.

In particular, the source code of the formalized
requirement InflationTime is reported in Figure 10,
where the evaluation is based on the inflation time that
the airbag takes to reach a specific safety level of
pressure after the airbag is activated.

Figure 10: Formalization of the InflationTime
requirement by using Modelica language extensions

The source code of the extend system design is

reported in Figure 11, where the fulfill keyword is
employed for creating the matching among the

requirements as well as between requirements and
physical components of the airbag system.

Figure 11: Formalization of the ExtendedSystemDesign
by using Modelica language extensions

After obtaining the executable models, the tuning

of the simulation parameters is performed in order to
reach a safe working state of the system according to
the specified requirements. Several simulations have
been executed for testing virtually the System in
different scenarios and evaluating its behavior.
Moreover three possible values can be reached by a
requirement.

In the considered experimentations (see Figure 12
and Figure 13) a pressure level (safePressureLevel in
yellow color) of 2.5 atmospheres (atm) has been
considered as minimum safe threshold, coupled with a
maximum inflation time (maxInflationTime) of 40
milliseconds (ms) in order to reach such safe pressure
level of the airbag, after that the activation airbag signal
(activateAirbag) is arrived.

As it is shown in Figure 12, even though the
AbruptDeceleration (in dark blue color) and
CollitionDetection (in dark green color) requirements
are satisfied as well as the Activation (in brown color)
requirement, the requirementStatus of the
InflactionTime (in red color) is negative, that is to say it
is violated. Indeed, as we can see, the airbagPressure
(in light blue color) is not able to reach the
safePressureLevel (in yellow color) within the
maxInflationTime (in 40 milliseconds) as expected.

Figure 12: Violation of the InflationTime requirement

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

47

As it is shown in Figure 13, by setting opportunely

some parameters of the airbag system, for example, by
increasing the pressure to be provided in input to the
airbag (pressureIn in light green color), it is possible to
reach the necessary parameters tuning which fulfills all
the requirements in the considered scenario.

Figure 13: Fulfillment of the InflationTime requirement

5. CONCLUSIONS AND FUTURE WORKS
The paper has presented a model-driven process for
supporting the safety analysis of systems which is
inspired by ISO-26262 standard and exploits simulation
techniques.

Two powerful languages for modeling systems
have been combined in a comprehensive system
engineering framework; specifically, SysML has been
exploited for platform independent representation of the
system; whereas, the Modelica language has been
exploited for the executable representation of the
systems according to an equation-based paradigm.

A prototype of the OpenModelica simulation
platform, able to support both the modeling of
requirements and their allocation, according to a well-
defined reference meta-model, has been used for the
simulation. Finally, a concrete experimentation has been
conducted in the automotive domain which has allowed
to point out both the flexibility and the effectiveness of
the overall proposed process for safety analysis.

Future work includes both the improvements of the
proposed model-driven process and its extension by
introducing (i) some approaches and possible patterns
for representing dysfunctional behavior and fault
injection and, (ii) a probability model for enabling the
representation of uncertainties in order to perform Fault
Tree Analysis of a Modelica-based system model.

ACKNOWLEDGMENTS
Andrea Tundis has been supported by a grant funded in
the framework of the “POR Calabria FSE 2007/2013”.
This work is part of an ongoing research project, the
MODRIO Project (ITEA 2), aiming at developing a
model-based approach for system requirements
verification and safety analysis through simulation.

REFERENCES

Aljazzar H., Fischer M., Grunske L., Kuntz M., Leitner-
fischer F., Leue S., 2009. Safety Analysis of an
Airbag System using Probabilistic FMEA and
Probabilistic Counterexamples. Proceedings of the
6th International Conference on the Quantitative
Evaluation of Systems (QEST). September 17-18,
Eger (Hungary).

Booya M., Arghami S., Asilian H., Mortazavi S., 2007.
Safety analysis of a corn processing industry by
energy trace and barrier analysis method: a case
study. Iran Occupational Health Journal, 4 (3),
27-34.

FAA 2000. System Safety Handbook.
Clifton E., 1999. Fault tree analysis - a history.

Proceedings of the 17th Inernational Systems
Safety Conference, pp. 1-9. August 16-21, Orlando
(Florida, USA).

Fritzson P., 2004. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1,
Wiley IEEE Press.

Garro A., Groß J., Riestenpatt Gen. Richter M., Tundis
A., 2013. Reliability Analysis of an Attitude
Determination and Control System (ADCS)
through the RAMSAS method. To appear in
Journal of Computational Science, Elsevier.

Garro A., Tundis A., 2012a. Enhancing the RAMSAS
method for System Reliability Analysis: an
exploitation in the automotive domain.
Proceedings of the 2nd International Conference
on Simulation and Modeling Methodologies,
Technologies and Applications (SIMULTECH).
July 28-31, Rome (Italy).

Garro A., Tundis A., 2012b. Modeling and Simulation
for System Reliability Analysis: The RAMSAS
Method. Proceedings of the 7th IEEE
International Conference on System of Systems
Engineering (IEEE SoSE). July 16-19, Genova
(Italy).

Garro A., Tundis A., 2012c. A model-based method for
system reliability analysis. Proceedings of the
Symposium on Theory of Modeling and Simulation
(TMS). March 26-29, Orlando (FL, USA).

Garro A., Tundis A., Chirillo N., 2011. System
reliability analysis: a model-based approach and a
case study in the avionics industry. Proceedings of
the 3rd Air and Space International Conference
(CEAS). October 24-28, Venice (Italy).

Guillerm R., Demmou H., Sadou N., 2010. Engineering
dependability requirements for complex systems -
A new information model definition. Proceedings
of the 4th Annual IEEE Systems Conference. April
5-8, San Diego (CA, USA).

Herpel T., German R., 2009. A simulation approach for
the design of safety-relevant automotive multi-
ECU systems. Proceedings of the 4th IEEE
International Conference on System of Systems
Engineering (IEEE SoSE). May 30 - June 03,
Albuquerque (New Mexico, USA).

IBM Rational Rhapsody web site -
http://www.ibm.com/.

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

48

IEC-61508, 2010. Functional safety of
electrical/electronic/programmable electronic
safety-related systems, Parts 1-7.

ISO-26262, 2011. Software Compliance: Achieving
Functional Safety in the Automotive Industry.

ITEA 2 Projects: MODRIO web site -
http://www.itea2.org/.

Kenarangui R., 1991. Event-tree analysis by fuzzy
probability. IEEE Transaction on Reliability, 40
(1), 120-124.

Krause J., Hintze E., Magnus S., Diedrich C., 2012.
Model based specification, verification and test
generation for a safety fieldbus profile.
Proceedings of the 31st International Conference
on Computer Safety, Reliability and Security
(SafeComp). September 25, Magdeburg
(Germany).

Lahtinen J., Johansson M., Ranta J., Harju H.,
Nevalainen R., 2010. Comparison between IEC
60880 and IEC 61508 for certification purposes in
the nuclear domain. Proceedings of the 29th
International Conference on Computer Safety,
Reliability and Security (SafeComp). September
14-17, Vienna (Austria).

Laprie J.C., 1992. Dependability: Basic Concepts and
Terminology, Springer-Verlag.

Liudong X., Wendai W., 2008. Probabilistic common-
cause failures analysis. Proceedings of Annual
Reliability and Maintainability Symposium, pp.
354-358. January 28-31, Las Vegas (NV, USA).

Mathworks MatLab/Simulink web site -
http://www.mathworks.com/.

Modelica and the Modelica Association web site -
https://www.modelica.org/.

NASA - http://askmagazine.nasa.gov/pdf/pdf31/
NASA_APPEL_ASK_31i_introduction_to_syste
m_safety.pdf

Navinkumar V.K., Archana R.K., 2011. Functional
safety management aspects in testing of
automotive safety concern systems (electronic
braking system). Proceedings of the 3rd
International Conference on Electronics Computer
Technology (ICECT). April 8-10, India.

OpenModelica - Open Source Modelica Consortium
(OSMC) web site -
https://www.openmodelica.org/.

Papyrus - Eclipse project web site -
http://www.eclipse.org/papyrus/.

Peraldi-Frati M., Albinet A., 2010. Requirement
traceability in safety critical systems. Proceedings
of the 1st Workshop on Critical Automotive
applications: Robustness & Safety (CARS). April
27, Valencia (Spain).

Pomeranz I., Reddy S.M., 2009. Hazard-Based
Detection Conditions for Improved Transition
Fault Coverage of Functional Test Sequences.
Proceedings of the 24th IEEE International
Symposium on Defect and Fault Tolerance in VLSI
Systems, pp. 358 - 366. October 7-9, Chicago (IL,
USA).

Price C.J., Hughes N., 2002. Effective automated sneak
circuit analysis. Proceedings of Annual Reliability
and Maintainability Symposium, pp. 356 – 360.
January 28-31, Seattle (WA, USA).

Rierson L., 2013. Developing Safety-Critical Software:
A Practical Guide for Aviation Software and DO-
178C Compliance, CRC Press.

Rogovchenko-Buffoni L., Fritzson P., Garro A., Tundis
A., Nyberg M., 2013. Requirement Verification
and Dependency Tracing During Simulation in
Modelica. To appear in proceedings of the 8th
EUROSIM Congress on Modelling and
Simulation. September 10-13, Cardiff (Wales,
UK).

Rouvroye J.L., Van den Bliek E.G., 2002. Comparing
safety analysis techniques. Journal of Reliability
Engineering & System Safety, Elseiver, 75 (3),
289–294.

Rubio D., Ponce S., Madrid F., 2011. ISO/IEC 17025
technical requirements in electrical safety
laboratory for electromedical devices. Proceedings
of Pan American Health Care Exchanges (PAHCE
2011). March 28 – April 1, Rio de Janeiro (Brazil).

SAE International, 2003. Airbags and Safety Test
Methodology, Society of Automotive Engineers.

Stapelberg R.F., 2008. Handbook of Reliability,
Availability, Maintainability and Safety in
Engineering Design, 1st ed. Spinger-Verlag.

Sommerville I., Sawyer P., 2003. Requirements
Engineering: A good practice guide. Wiley.

Struble D.E., 2005. Advances in Side Airbag Systems,
Society of Automotive Engineers Inc.

Systems Modeling Language (SysML) web site -
http://www.omgsysml.org/.

Tundis A., Rogovchenko-Buffoni L., Fritzson P., Garro
A., 2013. Modeling System Requirements in
Modelica: Definition and Comparison of
Candidate Approaches. Proceedings of the 5th
International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools
(EOOLT). April 19, Nottingham (UK).

Täubig H., Frese U., Hertzberg C., Lüth C., Mohr S.,
Vorobev E., Walter D., 2012. Guaranteeing
functional safety: design for provability and
computer-aided verification. Journal Autonomous
Robots, 32, Springer, 303-331.

Yu G., Xu Z., Du J., 2009. An Approach for Automated
Safety Testing of Safety-Critical Software System
Based on Safety Requirements. Proceedings in the
International Forum on Information Technology
and Applications (IFITA). May 15-17, Chengdu
(China).

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

49

