
USING CONVERSIVE HIDDEN NON-MARKOVIAN MODELS FOR MULTI-TOUCH

GESTURE RECOGNITION

Tim Dittmar
(a)

, Claudia Krull
(b)

, Graham Horton
(c)

(a)(b)(c)

 Otto-von-Guericke-University Magdeburg

P.O. Box 4120

39016 Magdeburg, Germany

(a)

tim.dittmar@ovgu.de,
(b)

claudia.krull@ovgu.de,
(c)

graham.horton@ovgu.de

ABSTRACT

With the current boom of multi-touch devices the

recognition of multi-touch gestures is becoming an

important field of research. Performing such gestures

can be seen as a stochastic process, as there can be

many little differences between each execution.

Therefore stochastic models like Hidden Markov

Models have been already utilized for gesture

recognition. Although the modelling possibilities of

Hidden Markov Models are limited, they achieve an

acceptable recognition quality. But they have never

been tested with gestures that only differ in execution

speed. Therefore we propose to use Conversive Hidden

non-Markovian Models for multi-touch gesture

recognition. This extension of Hidden Markov Models

enhances the modelling possibilities and adds timing

features. In this work two multi-touch gesture

recognition systems were developed and implemented

based on these two model types. Experiments with a set

of similar gestures show that the proposed model is a

good and competitive alternative and can even be better

than Hidden Markov Models.

Keywords: HMM, CHnMM, gesture, recognition

1. INTRODUCTION

1.1. Background

Due to the big success of smartphones and tablets a

ubiquitous presence of multi-touch devices is

establishing itself around the world. While this multi-

touch input method offers manifold possibilities to

control these devices, almost all of them are usually

controlled by using a fixed set of simple gestures like

tap, drag and pinch. Such systems can be realized quite

easily using heuristics but they are not very flexible.

To create a gesture recognition system using

heuristics means that the system has to have all of the

gestures previously implemented. Adding a new gesture

afterwards could make code adaptions of the previously

implemented gestures necessary, especially when the

gestures are very similar. In order to create a more

flexible gesture recognition system other methods need

to be used that define a gesture by providing some

performed examples. This way the user of a touch

device could define the gestures that suit him the most

for certain actions.

An existing flexible gesture recognition system for

multi-touch devices is presented in the work of

Damaraju and Kerne (2008). The system is based on

Hidden Markov Models (HMM) and creates one HMM

for each gesture according to sample inputs.

While there are other pattern recognition methods

that are deployed for multi-touch gesture recognition,

the current work focuses on HMM and on a quite new

model class: Conversive Hidden non-Markovian

Models (CHnMM). With this work we want to evaluate

whether CHnMMs are applicable for multi-touch

gesture recognition and how they perform in

comparison to HMMs.

1.2. Motivation and Goals

The idea to use non-Markovian Models for gesture

recognition was first brought into consideration by

Bosse et al. (2011). The goal was to show that a system

based on Hidden non-Markovian Models (HnMM)

could distinguish gestures that are similar in shape but

differ in execution speed. This differentiation has not

been considered for HMM gesture recognition systems

before. For that reason an HMM- and an HnMM-system

were developed to recognize gestures performed with a

Nintendo Wiimote and both systems were compared in

their recognition quality.

Inspired by this, we want to apply a similar

approach to multi-touch devices. Furthermore

CHnMMs were used instead of HnMMs whose

properties and differences are explained in Section 2.2

in more detail.

The general goal of this paper is to find out

whether CHnMMs are applicable for multi-touch

gesture recognition. Therefore the CHnMM-system

needs to reach similar or better recognition rates than

the HMM-system. Additionally the time needed for

recognizing the gesture has to be competitive, so that

the system could be used in real-time scenarios.

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

23

2. BACKGROUND INFORMATION

2.1. Hidden Models

In the context of this work the term Hidden Models

stands for all model classes that are based on the

concept that was introduced with Hidden Markov

Models: inferring conclusions from a list of

observations of a hidden system, a so called partially

observable discrete stochastic (PODS) system

(Buchholz 2012). The stochastic behaviour of such a

system is known but its discrete states cannot be

directly observed. Instead only arbitrary “messages”, so

called symbols or signals, which are created by the

system, can be recognized. Since the creation of these

symbols is incorporated into the model, it is possible to

infer conclusions about the state of the real system.

There are some common problems that can be

solved with Hidden Models and two of them are

relevant to this paper: Evaluation and Training.

Evaluation is the task of calculating the probability that

a trace O (a sequence of observations) was produced by

the hidden model λ, formally P(O | λ). This probability

is often used to find out which model of a set of models

was most likely responsible for a certain trace. The

Training task is used to find a model λ, so that the result

of the Evaluation task reaches a maximum according to

a given trace O or a set of traces respectively:

)|(maxarg

OP (1)

Since it is very difficult to create the best model by only

knowing the trace, the training is often done by

improving an already given model so that P(O | λnew) >

P(O | λ).

2.2. Related Work

In HMMs the hidden model is a simple discrete time

Markov chain with additional information about symbol

creation in each of its states. So with every discrete time

step a certain symbol will be created depending on the

current state. Each possible symbol in that state has a

fixed probability to be created. This model class has an

obvious limitation: only Markovian systems can be

modelled. Most real systems are not Markovian though

and therefore a lot of extensions to HMMs are being

developed that try to circumvent its limitations.

One of the latest developments in this research area

has been achieved by Krull et al. (2009) with Hidden

non-Markovian Models (HnMM), a powerful model

class that is able to represent non-Markovian discrete

systems like stochastic petri nets and combine them

with the abilities of Hidden Models. This modelling

power comes at the cost of complexity which can be

reduced by focusing on a subclass of HnMMs.

Buchholz (2012) has researched such a subclass in his

work and named it Conversive Hidden non-Markovian

Models (CHnMM). In this subclass the modelling

potential is slightly restricted but the efficiency of

computing solutions increases. For example transitions

are only allowed if they produce a symbol. For this

reason every state change can be recognized and the

calculation of the solution does not have to cope with

hidden state changes.

CHnMMs have already been employed in Bosse et

al.’s (2011) work, even if they were not explicitly

named as such. Furthermore they could not utilize the

findings of Buchholz (2012) because they were simply

not known at that time. Since this work is inspired by

the work of Bosse et al. (2011), we have chosen to use

CHnMMs as well. But in contrast to them we can also

rely on the optimized algorithms and definitions that

were developed by Buchholz.

2.3. Environment

For the experiments, a multi-touch tabletop, provided

by the “User Interface & Software Engineering” (UISE)

working group (at the computer science department of

the Otto-von-Guericke-University Magdeburg), was

used which was based upon the FTIR principle (Han

2005) and provided the touch data via the TUIO-

protocol. Also a Java class by the UISE group that

merges the TUIO messages to three simple events

(stroke{Started, Updated, Finished}) was available. The

software that processes camera images to TUIO

messages has a frequency of approximately 15ms.

3. IMPLEMENTATION

In this section important aspects are covered that

explain how both recognition systems are implemented

and how they differ in certain details.

3.1. Symbol Generation

Symbols are very important for hidden models, because

traces of them are used to deduce conclusions such as

whether the trace was created by a certain model

(evaluation) or which path of states the real system had

probably taken (decoding). The symbol set used in this

work consists of eight discrete directions: Up, UpLeft,

Left, DownLeft, Down, DownRight, Right, UpRight.

Each symbol represents the current direction of

movement of a certain finger that touches the device,

which is inspired by the symbol set used in the last

experiment of Bosse et al. (2011).

Although both systems use the same symbol set,

the way the symbols are created is different. For HMMs

the symbol emission is connected to states, whereas

with CHnMMs it is connected to state transitions.

Therefore the emission for HMMs needs to be periodic

in order to get clues about the current state. In contrast,

a CHnMM works with symbol emissions that occur

when the state of the system changes.

As a result the generation of symbols for the HMM

system is done as follows: every time a strokeUpdated

event is received, the vector from the last known

position to the current position is calculated and the

direction of this vector is discretised to one of the eight

directions defined in the symbol set. This direction is

directly emitted as a symbol after calculation. It is done

this way for every active finger separately, i.e. two

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

24

moving fingers would lead to the emission of two

direction symbols per processing step. Timestamps of

the emissions are not needed or cannot be used for

HMMs although it seems to be an important source of

information for gesture recognition with different

execution speeds.

The calculation of symbols for the CHnMM-

system is quite similar, but the symbols are only emitted

if the current state or direction of the finger changes or

if the finger touches the surface for the first time and

therefore no previously moving state of the finger is

known. This way a finger that moves in one direction

should not emit any symbols until the direction changes.

But in practice the data of a straightly moved finger can

be noisy, so much so that symbols are emitted although

the direction of the movement has not changed. To

reduce this noise in the symbol stream, stroke updates

are not considered for symbol emission if the calculated

direction vector is shorter than an empirically defined

threshold. For CHnMMs the timestamp is essential and

it is taken from the last known point of a stroke that

determines when this point was received as opposed to

the time when the symbol was calculated.

Furthermore the two symbols GestureStart and

GestureEnd were used for both systems to determine

when the execution of a gesture starts and when it ends.

For this work we determined that a gesture starts with

the first touch of a finger and ends when the last finger

is removed from the surface.

3.2. Modelling

A main aspect of both systems is the creation of models

as this is what the recognition method is based on.

There are quite a lot of possibilities to do the modelling

for the recognition systems, e.g. the scope of what a

model represents could be one of the following:

 A model represents the whole set of possible

gestures

 A model only represents a single gesture

 Two or more models represent a single gesture

The last concept was used in the work of Bosse et

al. (2011) where a single gesture was modelled with

three models, one for each axis of the acceleration

sensors. Our approach is to use one model per gesture

and this is the case for both recognition systems.

The next step is to define what the states of the

model will represent. Since symbols are used that give

information about the direction of movement, it seems

reasonable to separate a gesture into phases or states of

movement directions. For example, a gesture consisting

of a movement to the left and back to the right will be

modelled with a single state for each of the movement

phases left and right. While the HMM only consists of

these movement states, the CHnMM is made of two

additional states, namely the Start- and End-state. The

Start-state is needed because CHnMMs are state change

oriented, i.e. symbols are emitted when a state change

occurs. If there were no state before the first movement

phase, the first direction symbol could not be

incorporated into the model, which would waste

important evidence of the current state of the real

system. The purpose of the End-state is mainly the

ability of the model to refuse incomplete gestures. More

details on that are given in Section 3.4.

Figure 1: Example Models for a left-right Gesture

(HMM: top, CHnMM: bottom)

Of course all of these aforementioned states need

to be connected. For HMMs the connection is expressed

with fixed probabilities that state how likely it is to stay

in a state or to change to another one in every discrete

time step, i.e. in this case with every periodic symbol

emission. The CHnMMs however are connected with

transitions and each of them is described by a certain

probability distribution that determines when a state

change is happening. We assume that the time for a

certain state change between two movement phases is

normal distributed, so each transition needs an

expectation value and a standard deviation.

Figure 1 shows how an HMM and a CHnMM for a

left-right gesture could look like. The dashed arrows

mark possible symbol emissions and their probability. It

can also be seen that the HMM only has fixed

probabilities for state transitions whereas the CHnMM

uses normal distributions in this case. Therefore an

HMM is dependent on the discrete time step it was

created or trained with and as a result will not work

reliable with other devices that provide data with a

different time step. Note that the HMM in Figure 1

tolerates noisy symbols by giving them a low

probability to occur. For the CHnMM case the filtering

is not done on model level but on symbol generation

level as it was explained in Section 3.1.

It should be understandable now, how a certain

gesture can be modelled with either an HMM or

CHnMM. The last step to get a usable model is the

training, which will be discussed in the next section.

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

25

3.3. Training

After a model for a gesture has been developed the

parameters like state change and symbol emission

probabilities need to be adjusted, so that they fit the

finger movement of a user performing the gesture. This

section describes how this was done for HMMs and

CHnMMs.

The first step is to collect example data of the

gesture, so it is performed twenty times with the HMM

symbol generation and another twenty times with the

CHnMM symbol generation method. Since a Java

framework for HMMs is used, namely jahmm (François

2009), the training is simply done by creating a base

model of the gesture (as it was described in the previous

section) and executing the provided training algorithm

with the example traces. The framework uses the Baum-

Welch algorithm, a standard training algorithm for

HMMs. With every iteration of this algorithm the model

approaches a local optimum. That is why it is important

to have a good base model to start with.

However the training for CHnMMs is more

complex and cannot be done with the usual Baum-

Welch algorithm. Buchholz (2012) developed an

adapted version for CHnMMs that is nearly as powerful

but sometimes creates even worse models. We therefore

decided to train the CHnMMs manually similarly to

how Bosse et al. (2011) proceeded in their works. This

meant that sample traces were put into an excel sheet,

movement phases or states were respectively identified

and the expectation value and standard deviation for the

normal distribution were calculated.

Eventually the process of creating ready-to-use

HMMs and CHnMMs was complete.

3.4. Classifying the executed gesture

In this section the process of classifying an executed

gesture are elaborated. This is the last part of the

implementation before the experiments can be

conducted.

The classification with HMMs is done by

calculating the probability that the trace of the executed

gesture O was created by the gesture model λ

(evaluation) for each known gesture model. There is a

function in the jahmm framework that does the

evaluation based on the forward algorithm. The gesture,

whose model created the highest probability, was

returned as the classification result.

For the CHnMM system a similar approach was

used but the fact that there is an End-state in each model

is exploited. So instead of calculating P(O|λ) the

forward probability of the End-state at the point of time

of the last symbol emission T is taken as a measurement

for the likeliness of a gesture. Formally this forward

probability is defined as

λ)|sqP(O)(sα endTendT (2)

with send being the End-state and qT being the state of

the model at time T.

With this approach only traces are considered that

reached the End-state and therefore are likely to be

complete gestures whereas the evaluation approach

would also accept incomplete gestures. For example a

trace of a movement to the left could be classified as a

left-right gesture, because its model can create such a

trace.

This technique could be easily used with HMMs

too, but the jahmm framework is not suited for this

technique. However, for the goal of this paper this

circumstance is not a problem, because no incomplete

gestures were executed in the experiments.

4. EXPERIMENTS AND RESULTS

Both implemented systems need to be evaluated in

order to compare their recognition quality and

performance. Since the recognition systems are

classifiers, the commonly used Precision/Recall metric

can and will be used, although the classifiers are not

binary. The work of Sun and Lim (2001) shows how

this metric is used for n-ary classifiers.

The precision of gesture G equals the number of

gestures correctly classified as G divided by the number

of gestures classified as G. Whenever the classifier

returns G the precision value of this gesture states how

trustworthy this result is. The number of gestures

correctly classified as G divided by the number of

performed G gestures is the recall of gesture G. It is a

measurement of how complete the classification is.

For the experiments also a fixed set of gestures is

needed. Figure 2 shows all six gestures that were

chosen. They can be split into two groups of similar

gestures: three DownUp and three circular gesture

variants. These gestures are special, because they are

similar in shape but different in execution speed.

Figure 2: Gesture Set used for the Experiments

The expectation for the experiments is that the

HMM-system will have problems to distinguish these

similar gestures, whereas the CHnMM-system will have

acceptable error rates. The needed computation time is

expected to be quite similar. However the CHnMM-

system might be even faster, because the number of

computation steps is smaller due to the lower number of

symbols created with the CHnMM-system.

4.1. First experiment

For the first experiment, each gesture was performed

twenty times for each system and the symbol traces

were recorded to produce training data for each gesture

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

26

and system. With this data HMMs and HnMMs were

created as described in Section 3 for each gesture.

The result is an HMM and a CHnMM recognition

system for the defined gesture set. Again each gesture

was performed twenty times for each system and the

classified (most likely) gesture was recorded. In the

case that no most likely gesture is present (all

probabilities are zero) this attempt is recorded as not

classified.

Table 1 presents the results obtained for the HMM-

system that shows an overall precision of 0.737 and a

recall of 0.725. These values are worse than usually

measured with HMM gesture recognition systems.

Especially the DownUp and DoubleDownUp gestures

were problematic and could not be distinguished

properly. Also the EllipseHorizontal gesture was

classified as CircleBig five times. Other gestures,

however, reached acceptable recognition rates. In only

two cases no classification could be made, probably due

to symbol traces that did not occur while training. This

phenomenon is also known as overfitting.

Table 1: Results with HMM-System

Gesture Correctly

classified

Not

classified

Pre-

cision

Re-

call

DU 10 - 0.526 0.500

DUF 17 - 1.000 0.850

DDU 9 2 0.409 0.450

CB 19 - 0.704 0.950

CS 17 - 0.944 0.850

EH 15 - 1.000 0.750

 87 2 0.737 0.725

The results of the CHnMM-system are presented in

Table 2 and show a precision of 0.955 and a recall of

0.883, which are clearly better than the ones of the

HMM-system. The DownUpFast gesture has the worst

recall, because it was classified four times as a DownUp

gesture which is why its precision is lower than the rest.

The reason for this is probably that the gesture was

performed faster for training than it was performed for

classification.

Table 2: Results with CHnMM-System

Gesture Correctly

classified

Not

classified

Pre-

cision

Re-

call

DU 20 - 0.833 1.000

DUF 15 1 1.000 0.750

DDU 19 1 1.000 0.950

CB 19 1 0.950 0.950

CS 16 4 1.000 0.800

EH 17 2 1.000 0.850

 106 9 0.955 0.883

Another observation is that the general precision is

better than the recall. This basically means that you can

have a good trust in the classification results but that not

all gestures were classified. For real applications where

a certain recognized gesture activates a certain

command or behaviour the precision needs to be

especially high. Otherwise a gesture is performed and

the wrong command or behaviour is executed which

will lead to a bad user experience.

4.2. Experiment with Training Data

As mentioned in the section before, a possible source of

error is the discrepancy of gestures performed during

training and classification. To avoid this, the experiment

was reconducted, but instead of performing gestures the

training data was used as input.

The results that can be seen in Table 3 and Table 4

show much better precision and recall values for both

systems as expected. The CHnMM-system even

reached a perfect precision; its recall though is slightly

lower than the one of the HMM-system. This is because

the gesture models of the CHnMM-system were

modelled quite strictly, i.e. they did not take noisy data,

which occurred a few times in the training, into account.

This way the time consuming manual training was

performed a little bit easier.

Table 3: Results with HMM-System and Training Data

Gesture Correctly

classified

Pre-

cision

Re-

call

DU 20 0.741 1.000

DUF 20 1.000 1.000

DDU 13 1.000 0.650

CB 20 0.952 1.000

CS 19 1.000 0.950

EH 20 1.000 1.000

 112 0.933 0.933

Table 4: Results with CHnMM and Training Data

Gesture Correctly

classified

Not

classified

Pre-

cision

Re-

call

DU 20 - 1.000 1.000

DUF 20 - 1.000 1.000

DDU 18 2 1.000 0.900

CB 20 - 1.000 1.000

CS 16 4 1.000 0.800

EH 16 4 1.000 0.800

 110 10 1.000 0.917

Besides the good overall precision and recall

values, the HMM-system had huge problems

recognizing the DoubleDownUp-gesture. The reason

seems to be that the HMMs of DownUp and

DoubleDownUp are nearly the same although

DoubleDownUp gesture emits quite exactly the doubled

number of symbols. However, a HMM cannot express

this movement because the probability to change from

Down-state to Up-state is approximately the same in

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

27

both gestures. This also explains the problems with this

gesture in the first experiment and also shows a

weakness of HMMs, even if it recognized the other

gestures better than expected.

In both experiments the time from finishing the

gesture to getting the classification result was measured.

This time was always 0ms if the input data could not be

classified. Otherwise the values were mostly 31 or 32ms

and sometimes 47ms for both recognition systems.

Since the reaction times appear fixed, we assume that

this is because of the scheduling side-effects of the

operating system (Windows) and that the pure

calculation time of the recognition systems is even

lower.

5. CONCLUSION

The goal of the paper was to show that CHnMMs can

be used in the field of multi-touch gesture recognition

and that they are an alternative to HMM recognition

systems. The results of the experiments show that the

CHnMM-system reached better, if not the same level of

recognition quality as the HMM. Additionally both

systems are on par regarding recognition speed, which

makes CHnMM-systems also usable for real-time

scenarios. Therefore all goals of this work have been

achieved.

Further observations suggest that HMMs are not

suited to distinguish certain gestures apart from others,

as was seen with the DownUp and DoubleDownUp

gestures, where both are described by nearly the same

model. Nevertheless the HMM-system worked better

than expected. It can be assumed that although HMMs

are timeless, they get fed with timing information

through the periodic emission of symbols (approx.

every 15ms in our HMM experiments). This way they

are able to even distinguish similar gestures with

different execution speeds. Systems that do not emit

symbols periodically will have more problems with that

when using HMMs.

However a big advantage of HMMs is that they

can be trained automatically with the Baum-Welch

algorithm, making them easier to implement in

comparison to manual training. For CHnMMs an

efficient training algorithm was developed based on the

Baum-Welch one by Buchholz (2012). The quality of

this training algorithm in the field of multi-touch

gesture recognition needs to be evaluated in future work

though.

Further experiments and extensions to this work

could be:

 a bigger gesture set,

 using other symbol generation methods,

 more complex multi-touch gestures,

 comparison to other gesture recognition

methods (Artificial Neural Networks, Dynamic

Time Warping, Support Vector Machines etc.).

 As a consequence, CHnMMs could be used to

develop flexible multi-touch recognition systems that

are independent of the frequency of symbol emission

and therefore are independent of the device.

Furthermore there are less symbols generated resulting

in lesser calculations than HMM or similar systems.

This and the time step independency make a CHnMM

recognition system suitable for mobile multi-touch

devices.

REFERENCES

Bosse, S., Krull, C., Horton, G., 2011. MODELING OF

GESTURES WITH DIFFERING EXECUTION

SPEEDS: Are Hidden non-Markovian Models

Applicable for Gesture Recognition. Proceedings

of the 10th International Conference on Modelling

& Applied Simulation (MAS), 12th-14th

September. Rome, Italy.

Buchholz, R., 2012. Conversive Hidden non-Markovian

Models. Dissertation. Otto-von-Guericke-

Universität Magdeburg.

Damaraju, S., Kerne, A., 2008. Multitouch Gesture

Learning and Recognition System. Interface

Ecology Lab at Texas A&M University.

François, J.-M., 2009. jahmm. Google Code. Available

from: http://code.google.com/p/jahmm/ [29.

September 2012]

Han, J. Y., 2005. Low-cost multi-touch sensing through

frustrated total internal reflection. Proceedings of

the 18th annual ACM symposium on User

interface software and technology (UIST '05), pp.

115-118, New York, USA.

Krull, C., Horton, G., 2009. HIDDEN NON-

MARKOVIAN MODELS: Formalization and

solution approaches, Proceedings MATHMOD 09

Vienna. Wien.

Lazarova-Molnar, S., 2005. The Proxel-Based Method:

Formalisation, Analysis and Applications.

Dissertation. Otto-von-Guericke-Universität

Magdeburg.

Sun, A., Lim, E.-P., 2001. Hierarchical Text

Classification and Evaluation, Proceedings of the

2001 IEEE International Conference on Data

Mining (ICDM 2001), pp. 521-528, California,

USA.

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

28

http://code.google.com/p/jahmm/

