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ABSTRACT 

With the current boom of multi-touch devices the 

recognition of multi-touch gestures is becoming an 

important field of research. Performing such gestures 

can be seen as a stochastic process, as there can be 

many little differences between each execution. 

Therefore stochastic models like Hidden Markov 

Models have been already utilized for gesture 

recognition. Although the modelling possibilities of 

Hidden Markov Models are limited, they achieve an 

acceptable recognition quality. But they have never 

been tested with gestures that only differ in execution 

speed. Therefore we propose to use Conversive Hidden 

non-Markovian Models for multi-touch gesture 

recognition. This extension of Hidden Markov Models 

enhances the modelling possibilities and adds timing 

features. In this work two multi-touch gesture 

recognition systems were developed and implemented 

based on these two model types. Experiments with a set 

of similar gestures show that the proposed model is a 

good and competitive alternative and can even be better 

than Hidden Markov Models. 
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1. INTRODUCTION 

 

1.1. Background 

Due to the big success of smartphones and tablets a 

ubiquitous presence of multi-touch devices is 

establishing itself around the world. While this multi-

touch input method offers manifold possibilities to 

control these devices, almost all of them are usually 

controlled by using a fixed set of simple gestures like 

tap, drag and pinch. Such systems can be realized quite 

easily using heuristics but they are not very flexible. 

To create a gesture recognition system using 

heuristics means that  the system has to have all of the 

gestures previously implemented. Adding a new gesture 

afterwards could make code adaptions of the previously 

implemented gestures necessary, especially when the 

gestures are very similar. In order to create a more 

flexible gesture recognition system other methods need 

to be used that define a gesture by providing some 

performed examples. This way the user of a touch 

device could define the gestures that suit him the most 

for certain actions. 

An existing flexible gesture recognition system for 

multi-touch devices is presented in the work of 

Damaraju and Kerne (2008). The system is based on 

Hidden Markov Models (HMM) and creates one HMM 

for each gesture according to sample inputs. 

While there are other pattern recognition methods 

that are deployed for multi-touch gesture recognition, 

the current work focuses on HMM and on a quite new 

model class: Conversive Hidden non-Markovian 

Models (CHnMM). With this work we want to evaluate 

whether CHnMMs are applicable for multi-touch 

gesture recognition and how they perform in 

comparison to HMMs. 

 

1.2. Motivation and Goals 

The idea to use non-Markovian Models for gesture 

recognition was first brought into consideration by 

Bosse et al. (2011). The goal was to show that a system 

based on Hidden non-Markovian Models (HnMM) 

could distinguish gestures that are similar in shape but 

differ in execution speed. This differentiation has not 

been considered for HMM gesture recognition systems 

before. For that reason an HMM- and an HnMM-system 

were developed to recognize gestures performed with a 

Nintendo Wiimote and both systems were compared in 

their recognition quality. 

Inspired by this, we want to apply a similar 

approach to multi-touch devices. Furthermore  

CHnMMs were used instead of HnMMs whose 

properties and differences are explained in Section 2.2 

in more detail. 

The general goal of this paper is to find out 

whether CHnMMs are applicable for multi-touch 

gesture recognition. Therefore the CHnMM-system 

needs to reach similar or better recognition rates than 

the HMM-system. Additionally the time needed for 

recognizing the gesture has to be competitive, so that 

the system could be used in real-time scenarios. 
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2. BACKGROUND INFORMATION 

 

2.1. Hidden Models 

In the context of this work the term Hidden Models 

stands for all model classes that are based on the 

concept that was introduced with Hidden Markov 

Models: inferring conclusions from a list of 

observations of a hidden system, a so called partially 

observable discrete stochastic (PODS) system 

(Buchholz 2012). The stochastic behaviour of such a 

system is known but its discrete states cannot be 

directly observed. Instead only arbitrary “messages”, so 

called symbols or signals, which are created by the 

system, can be recognized. Since the creation of these 

symbols is incorporated into the model, it is possible to 

infer conclusions about the state of the real system. 

There are some common problems that can be 

solved with Hidden Models and two of them are 

relevant to this paper: Evaluation and Training. 

Evaluation is the task of calculating the probability that 

a trace O (a sequence of observations) was produced by 

the hidden model λ, formally P(O | λ). This probability 

is often used to find out which model of a set of models 

was most likely responsible for a certain trace. The 

Training task is used to find a model λ, so that the result 

of the Evaluation task reaches a maximum according to 

a given trace O or a set of traces respectively: 

 

)|(maxarg 


OP   (1)  

 

Since it is very difficult to create the best model by only 

knowing the trace, the training is often done by 

improving an already given model so that P(O | λnew) > 

P(O | λ). 

 

2.2. Related Work 

In HMMs the hidden model is a simple discrete time 

Markov chain with additional information about symbol 

creation in each of its states. So with every discrete time 

step a certain symbol will be created depending on the 

current state. Each possible symbol in that state has a 

fixed probability to be created. This model class has an 

obvious limitation: only Markovian systems can be 

modelled. Most real systems are not Markovian though 

and therefore a lot of extensions to HMMs are being 

developed that try to circumvent its limitations. 

One of the latest developments in this research area 

has been achieved by Krull et al. (2009) with Hidden 

non-Markovian Models (HnMM), a powerful model 

class that is able to represent non-Markovian discrete 

systems like stochastic petri nets and combine them 

with the abilities of Hidden Models. This modelling 

power comes at the cost of complexity which can be 

reduced by focusing on a subclass of HnMMs. 

Buchholz (2012) has researched such a subclass in his 

work and named it Conversive Hidden non-Markovian 

Models (CHnMM). In this subclass the modelling 

potential is slightly restricted but the efficiency of 

computing solutions increases. For example  transitions 

are only allowed if they produce a symbol. For this 

reason every state change can be recognized and the 

calculation of the solution does not have to cope with 

hidden state changes. 

CHnMMs have already been employed in Bosse et 

al.’s (2011) work, even if they were not explicitly 

named as such. Furthermore they could not utilize the 

findings of Buchholz (2012) because they were simply 

not known at that time. Since this work is inspired by 

the work of Bosse et al. (2011), we have chosen to use 

CHnMMs as well. But in contrast to them we can also 

rely on the optimized algorithms and definitions that 

were developed by Buchholz. 

 

2.3. Environment 

For the experiments, a multi-touch tabletop, provided 

by the “User Interface & Software Engineering” (UISE) 

working group (at the computer science department of 

the Otto-von-Guericke-University Magdeburg), was 

used which was based upon the FTIR principle (Han 

2005) and provided the touch data via the TUIO-

protocol. Also a Java class by the UISE group that 

merges the TUIO messages to three simple events 

(stroke{Started, Updated, Finished}) was available. The 

software that processes camera images to TUIO 

messages has a frequency of approximately 15ms. 

 

3. IMPLEMENTATION 

In this section important aspects are covered that 

explain how both recognition systems are implemented 

and how they differ in certain details. 

 

3.1. Symbol Generation 

Symbols are very important for hidden models, because 

traces of them are used to deduce conclusions such as 

whether the trace was created by a certain model 

(evaluation) or which path of states the real system had 

probably taken (decoding). The symbol set used in this 

work consists of eight discrete directions: Up, UpLeft, 

Left, DownLeft, Down, DownRight, Right, UpRight. 

Each symbol represents the current direction of 

movement of a certain finger that touches the device, 

which is inspired by the symbol set used in the last 

experiment of Bosse et al. (2011). 

Although both systems use the same symbol set, 

the way the symbols are created is different. For HMMs 

the symbol emission is connected to states, whereas 

with CHnMMs it is connected to state transitions. 

Therefore the emission for HMMs needs to be periodic 

in order to get clues about the current state. In contrast, 

a CHnMM works with symbol emissions that occur 

when the state of the system changes. 

As a result the generation of symbols for the HMM 

system is done as follows: every time a strokeUpdated 

event is received, the vector from the last known 

position to the current position is calculated and the 

direction of this vector is discretised to one of the eight 

directions defined in the symbol set. This direction is 

directly emitted as a symbol after calculation. It is done 

this way for every active finger separately, i.e. two 
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moving fingers would lead to the emission of two 

direction symbols per processing step. Timestamps of 

the emissions are not needed or cannot be used for 

HMMs although it seems to be an important source of 

information for gesture recognition with different 

execution speeds. 

The calculation of symbols for the CHnMM-

system is quite similar, but the symbols are only emitted 

if the current state or direction of the finger changes or 

if the finger touches the surface for the first time and 

therefore no previously moving state of the finger is 

known. This way a finger that moves in one direction 

should not emit any symbols until the direction changes. 

But in practice the data of a straightly moved finger can 

be noisy, so much so that symbols are emitted although 

the direction of the movement has not changed. To 

reduce this noise in the symbol stream, stroke updates 

are not considered for symbol emission if the calculated 

direction vector is shorter than an empirically defined 

threshold. For CHnMMs the timestamp is essential and 

it is taken from the last known point of a stroke that 

determines when this point was received as opposed to 

the time when the symbol was calculated. 

Furthermore the two symbols GestureStart and 

GestureEnd were used for both systems to determine 

when the execution of a gesture starts and when it ends. 

For this work we determined that a gesture starts with 

the first touch of a finger and ends when the last finger 

is removed from the surface. 

 

3.2. Modelling 

A main aspect of both systems is the creation of models 

as this is what the recognition method is based on. 

There are quite a lot of possibilities to do the modelling 

for the recognition systems, e.g. the scope of what a 

model represents could be one of the following: 

 

 A model represents the whole set of possible 

gestures 

 A model only represents a single gesture 

 Two or more models represent a single gesture 

 

The last concept was used in the work of Bosse et 

al. (2011) where a single gesture was modelled with 

three models, one for each axis of the acceleration 

sensors. Our approach is to use one model per gesture 

and this is the case for both recognition systems. 

The next step is to define what the states of the 

model will represent. Since symbols are used that give 

information about the direction of movement, it seems 

reasonable to separate a gesture into phases or states of 

movement directions. For example, a gesture consisting 

of a movement to the left and back to the right will be 

modelled with a single state for each of the movement 

phases left and right. While the HMM only consists of 

these movement states, the CHnMM is made of two 

additional states, namely the Start- and End-state. The 

Start-state is needed because CHnMMs are state change 

oriented, i.e. symbols are emitted when a state change 

occurs. If there were no state before the first movement 

phase, the first direction symbol could not be 

incorporated into the model, which would waste 

important evidence of the current state of the real 

system. The purpose of the End-state is mainly the 

ability of the model to refuse incomplete gestures. More 

details on that are given in Section 3.4. 

 

 
Figure 1: Example Models for a left-right Gesture 

(HMM: top, CHnMM: bottom) 

 

Of course all of these aforementioned states need 

to be connected. For HMMs the connection is expressed 

with fixed probabilities that state how likely it is to stay 

in a state or to change to another one in every discrete 

time step, i.e. in this case with every periodic symbol 

emission. The CHnMMs however are connected with 

transitions and each of them is described by a certain 

probability distribution that determines when a state 

change is happening. We assume that the time for a 

certain state change between two movement phases is 

normal distributed, so each transition needs an 

expectation value and a standard deviation. 

Figure 1 shows how an HMM and a CHnMM for a 

left-right gesture could look like. The dashed arrows 

mark possible symbol emissions and their probability. It 

can also be seen that the HMM only has fixed 

probabilities for state transitions whereas the CHnMM 

uses normal distributions in this case. Therefore an 

HMM is dependent on the discrete time step it was 

created or trained with and as a result will not work 

reliable with other devices that provide data with a 

different time step. Note that the HMM in Figure 1 

tolerates noisy symbols by giving them a low 

probability to occur. For the CHnMM case the filtering 

is not done on model level but on symbol generation 

level as it was explained in Section 3.1. 

It should be understandable now, how a certain 

gesture can be modelled with either an HMM or 

CHnMM. The last step to get a usable model is the 

training, which will be discussed in the next section. 
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3.3. Training 

After a model for a gesture has been developed the 

parameters like state change and symbol emission 

probabilities need to be adjusted, so that they fit the 

finger movement of a user performing the gesture. This 

section describes how this was done for HMMs and 

CHnMMs. 

The first step is to collect example data of the 

gesture, so it is performed twenty times with the HMM 

symbol generation and another twenty times with the 

CHnMM symbol generation method. Since a Java 

framework for HMMs is used, namely jahmm (François 

2009), the training is simply done by creating a base 

model of the gesture (as it was described in the previous 

section) and executing the provided training algorithm 

with the example traces. The framework uses the Baum-

Welch algorithm, a standard training algorithm for 

HMMs. With every iteration of this algorithm the model 

approaches a local optimum. That is why it is important 

to have a good base model to start with. 

However the training for CHnMMs is more 

complex and cannot be done with the usual Baum-

Welch algorithm. Buchholz (2012) developed an 

adapted version for CHnMMs that is nearly as powerful 

but sometimes creates even worse models. We therefore 

decided to train the CHnMMs manually similarly to 

how Bosse et al. (2011) proceeded in their works. This 

meant that sample traces were put into an excel sheet, 

movement phases or states were respectively identified 

and the expectation value and standard deviation for the 

normal distribution were calculated. 

Eventually the process of creating ready-to-use 

HMMs and CHnMMs was complete. 

 

3.4. Classifying the executed gesture 

In this section the process of classifying an executed 

gesture are elaborated. This is the last part of the 

implementation before the experiments can be 

conducted. 

The classification with HMMs is done by 

calculating the probability that the trace of the executed 

gesture O was created by the gesture model λ 

(evaluation) for each known gesture model. There is a 

function in the jahmm framework that does the 

evaluation based on the forward algorithm. The gesture, 

whose model created the highest probability, was 

returned as the classification result. 

For the CHnMM system a similar approach was 

used but the fact that there is an End-state in each model 

is exploited. So instead of calculating P(O|λ) the 

forward probability of the End-state at the point of time 

of the last symbol emission T is taken as a measurement 

for the likeliness of a gesture. Formally this forward 

probability is defined as 

 

λ)|sqP(O)(sα endTendT   (2) 

 

with send being the End-state and qT being the state of 

the model at time T. 

With this approach only traces are considered that 

reached the End-state and therefore are likely to be 

complete gestures whereas the evaluation approach 

would also accept incomplete gestures. For example a 

trace of a movement to the left could be classified as a 

left-right gesture, because its model can create such a 

trace. 

This technique could be easily used with HMMs 

too, but the jahmm framework is not suited for this 

technique. However, for the goal of this paper this 

circumstance is not a problem, because no incomplete 

gestures were executed in the experiments. 

 

4. EXPERIMENTS AND RESULTS 

Both implemented systems need to be evaluated in 

order to compare their recognition quality and 

performance. Since the recognition systems are 

classifiers, the commonly used Precision/Recall metric 

can and will be used, although the classifiers are not 

binary. The work of Sun and Lim (2001) shows how 

this metric is used for n-ary classifiers. 

The precision of gesture G equals the number of 

gestures correctly classified as G divided by the number 

of gestures classified as G. Whenever the classifier 

returns G the precision value of this gesture states how 

trustworthy this result is. The number of gestures 

correctly classified as G divided by the number of 

performed G gestures is the recall of gesture G. It is a 

measurement of how complete the classification is. 

For the experiments also a fixed set of gestures is 

needed. Figure 2 shows all six gestures that were 

chosen. They can be split into two groups of similar 

gestures: three DownUp and three circular gesture 

variants. These gestures are special, because they are 

similar in shape but different in execution speed. 

 

 
Figure 2: Gesture Set used for the Experiments 

 

The expectation for the experiments is that the 

HMM-system will have problems to distinguish these 

similar gestures, whereas the CHnMM-system will have 

acceptable error rates. The needed computation time is 

expected to be quite similar. However the CHnMM-

system might be even faster, because the number of 

computation steps is smaller due to the lower number of 

symbols created with the CHnMM-system. 

 

4.1. First experiment 

For the first experiment, each gesture was performed 

twenty times for each system and the symbol traces 

were recorded to produce training data for each gesture 
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and system. With this data HMMs and HnMMs were 

created as described in Section 3 for each gesture. 

The result is an HMM and a CHnMM recognition 

system for the defined gesture set. Again each gesture 

was performed twenty times for each system and the 

classified (most likely) gesture was recorded. In the 

case that no most likely gesture is present (all 

probabilities are zero) this attempt is recorded as not 

classified. 

Table 1 presents the results obtained for the HMM-

system that shows an overall precision of 0.737 and a 

recall of 0.725. These values are worse than usually 

measured with HMM gesture recognition systems. 

Especially the DownUp and DoubleDownUp gestures 

were problematic and could not be distinguished 

properly. Also the EllipseHorizontal gesture was 

classified as CircleBig five times. Other gestures, 

however, reached acceptable recognition rates. In only 

two cases no classification could be made, probably due 

to symbol traces that did not occur while training. This 

phenomenon is also known as overfitting. 

 

Table 1: Results with HMM-System 

Gesture Correctly 

classified 

Not 

classified 

Pre-

cision 

Re-

call 

DU 10 - 0.526 0.500 

DUF 17 - 1.000 0.850 

DDU 9 2 0.409 0.450 

CB 19 - 0.704 0.950 

CS 17 - 0.944 0.850 

EH 15 - 1.000 0.750 

 87 2 0.737 0.725 

 

The results of the CHnMM-system are presented in 

Table 2 and show a precision of 0.955 and a recall of 

0.883, which are clearly better than the ones of the 

HMM-system. The DownUpFast gesture has the worst 

recall, because it was classified four times as a DownUp 

gesture which is why its precision is lower than the rest. 

The reason for this is probably that the gesture was 

performed faster for training than it was performed for 

classification. 

 

Table 2: Results with CHnMM-System 

Gesture Correctly 

classified 

Not 

classified 

Pre-

cision 

Re-

call 

DU 20 - 0.833 1.000 

DUF 15 1 1.000 0.750 

DDU 19 1 1.000 0.950 

CB 19 1 0.950 0.950 

CS 16 4 1.000 0.800 

EH 17 2 1.000 0.850 

 106 9 0.955 0.883 

 

Another observation is that the general precision is 

better than the recall. This basically means that you can 

have a good trust in the classification results but that not 

all gestures were classified. For real applications where 

a certain recognized gesture activates a certain 

command or behaviour the precision needs to be 

especially high. Otherwise a gesture is performed and 

the wrong command or behaviour is executed which 

will lead to a bad user experience. 

 

4.2. Experiment with Training Data 

As mentioned in the section before, a possible source of 

error is the discrepancy of gestures performed during 

training and classification. To avoid this, the experiment 

was reconducted, but instead of performing gestures the 

training data was used as input. 

The results that can be seen in Table 3 and Table 4 

show much better precision and recall values for both 

systems as expected. The CHnMM-system even 

reached a perfect precision; its recall though is slightly 

lower than the one of the HMM-system. This is because 

the gesture models of the CHnMM-system were 

modelled quite strictly, i.e. they did not take noisy data, 

which occurred a few times in the training, into account. 

This way the time consuming manual training was 

performed a little bit easier. 

 

Table 3: Results with HMM-System and Training Data 

Gesture Correctly 

classified 

Pre-

cision 

Re-

call 

DU 20 0.741 1.000 

DUF 20 1.000 1.000 

DDU 13 1.000 0.650 

CB 20 0.952 1.000 

CS 19 1.000 0.950 

EH 20 1.000 1.000 

 112 0.933 0.933 

 

Table 4: Results with CHnMM and Training Data 

Gesture Correctly 

classified 

Not 

classified 

Pre-

cision 

Re-

call 

DU 20 - 1.000 1.000 

DUF 20 - 1.000 1.000 

DDU 18 2 1.000 0.900 

CB 20 - 1.000 1.000 

CS 16 4 1.000 0.800 

EH 16 4 1.000 0.800 

 110 10 1.000 0.917 

 

Besides the good overall precision and recall 

values, the HMM-system had huge problems 

recognizing the DoubleDownUp-gesture. The reason 

seems to be that the HMMs of DownUp and 

DoubleDownUp are nearly the same although 

DoubleDownUp gesture emits quite exactly the doubled 

number of symbols. However, a HMM cannot express 

this movement because the probability to change from 

Down-state to Up-state is approximately the same in 
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both gestures. This also explains the problems with this 

gesture in the first experiment and also shows a 

weakness of HMMs, even if it recognized the other 

gestures better than expected. 

In both experiments the time from finishing the 

gesture to getting the classification result was measured. 

This time was always 0ms if the input data could not be 

classified. Otherwise the values were mostly 31 or 32ms 

and sometimes 47ms for both recognition systems. 

Since the reaction times appear fixed, we assume that 

this is because of the scheduling side-effects of the 

operating system (Windows) and that the pure 

calculation time of the recognition systems is even 

lower. 

 

5. CONCLUSION 

The goal of the paper was to show that CHnMMs can 

be used in the field of multi-touch gesture recognition 

and that they are an alternative to HMM recognition 

systems. The results of the experiments show that the 

CHnMM-system reached better, if not the same level of 

recognition quality as the HMM. Additionally both 

systems are on par regarding recognition speed, which 

makes CHnMM-systems also usable for real-time 

scenarios. Therefore all goals of this work have been 

achieved. 

Further observations suggest that HMMs are not 

suited to distinguish certain gestures apart from others, 

as was seen with the DownUp and DoubleDownUp 

gestures, where both are described by nearly the same 

model. Nevertheless the HMM-system worked better 

than expected. It can be assumed that although HMMs 

are timeless, they get fed with timing information 

through the periodic emission of symbols (approx. 

every 15ms in our HMM experiments). This way they 

are able to even distinguish similar gestures with 

different execution speeds. Systems that do not emit 

symbols periodically will have more problems with that 

when using HMMs. 

However a big advantage of HMMs is that they 

can be trained automatically with the Baum-Welch 

algorithm, making them easier to implement in 

comparison to manual training. For CHnMMs an 

efficient training algorithm was developed based on the 

Baum-Welch one by Buchholz (2012). The quality of 

this training algorithm in the field of multi-touch 

gesture recognition needs to be evaluated in future work 

though. 

Further experiments and extensions to this work 

could be: 

 

 a bigger gesture set, 

 using other symbol generation methods, 

 more complex multi-touch gestures, 

 comparison to other gesture recognition 

methods (Artificial Neural Networks, Dynamic 

Time Warping, Support Vector Machines etc.). 

 

 As a consequence, CHnMMs could be used to 

develop flexible multi-touch recognition systems that 

are independent of the frequency of symbol emission 

and therefore are independent of the device. 

Furthermore there are less symbols generated resulting 

in lesser calculations than HMM or similar systems. 

This and the time step independency make a CHnMM 

recognition system suitable for mobile multi-touch 

devices. 
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