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ABSTRACT 
A number of time series methods – 13-month simple 
moving average (SMA13), single exponential 
smoothing (SES), Croston’s method, and the Syntetos-
Boylan approximation (SBA) – are well-referenced 
methods in the literature on intermittent or lumpy 
demand forecasting. We apply these four methods to an 
industrial dataset involving more than 1000 stock-
keeping units (SKUs) in the central warehouse of a firm 
operating in the professional electronics sector. Earlier 
studies have argued that the negative binomial 
distribution (NBD) satisfies both theoretical and 
empirical criteria for modeling intermittent demand. We 
have found that the NBD often does not provide a good 
fit. We apply an alternative approach, using a two-stage 
distribution involving the uniform and negative 
binomial distributions, in modeling actual demand. We 
use modeling and simulation to evaluate the four 
methods in terms of statistical forecast accuracy and, 
more importantly, inventory system efficiency. 
 
Keywords: lumpy demand forecasting, forecast 
accuracy, scale-free error statistics, inventory control, 
modeling and simulation 

 
1. INTRODUCTION 
 
When there are time intervals with no demand 
occurrences for an item of inventory, demand is said to 
be intermittent. Demand is erratic when there are large 
variations in the sizes of actual demand occurrences.  
Demand that is both intermittent and erratic is referred 
to as lumpy demand.  

Syntetos, Boylan, and Croston (2005) proposed to 
categorize demand patterns into four classes using 
cutoff values of CV2 = 0.49 and ADI = 1.32 (where 

2CV  and ADI are, respectively, the squared coefficient 
of variation of demand and average inter-demand 
interval) – for the stated purpose of assigning the best 
forecasting method. The four categories are (i) smooth, 
when ADI < 1.32 and CV2 < 0.49; (ii) erratic (but not 
very intermittent), when ADI < 1.32 and CV2 > 0.49; 
(iii) intermittent (but not very erratic) when ADI > 1.32 

and CV2 < 0.49; and (iv) lumpy, when ADI > 1.32 and 
CV2 > 0.49. These cutoff values and resulting categories 
have been cited in various other studies involving 
intermittent or lumpy demand (e.g., Ghobbar and Friend 
2002, 2003; Gutierrez, Solis, and Mukhopadhyay 2008; 
Boylan, Syntetos, and Karakostas 2008; 
Mukhopadhyay, Solis, and Gutierrez 2012).   

A number of studies (e.g., Syntetos and Boylan 
2006; Boylan, Syntetos, and Karakostas 2008; Syntetos, 
Babai, Dallery, and Teunter 2009) have proposed using 
a negative binomial distribution (NBD) to model the 
demand distribution of an item exhibiting intermittent 
demand. The NBD is a discrete probability distribution 
which may be specified by the density function: 
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having two parameters p and r, where the real number p 
satisfies 10  p  and r is a positive integer. The real 

number p is a probability of “success” in a Bernoulli 
trial, while r is a target number of successes (e.g., Feller 
1957; Mood, Graybill, and Boes 1974). The random 
variable X in this case represents, in a succession of the 
Bernoulli trials, the number of failures preceding the rth 
success. The NBD has mean 
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Since V[X] = E[X]/p, it follows that the variance of 

the NBD is greater than its mean. When r = 1, the NBD 
reduces to a geometric (or Pascal) distribution with 
discrete density function 
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Syntetos and Boylan (2006) have argued that the 
NBD satisfies both theoretical and empirical criteria.  

To generate an NBD to approximate the 
distribution of a random variable with mean  and 
variance 2, we simultaneously solve (2) and (3) to 
obtain: 
 

2
ˆ




p                     (5) 

 
and  
 






2

2

r̂ ,                      (6) 

 
as initial estimates of the NBD parameters. These 
expressions for p̂  and r̂ , however, represent values in 

the set  of real numbers, while the NBD parameter r is 
supposed to be integer-valued. In applying (5) and (6), 
we generally obtain a non-integer value of r̂ . Thus, in 
seeking to simulate the actual demand distributions, we 
have investigated the rounded up and rounded down 
values of r̂  while adjusting the value of p̂ .  

In the intermittent demand forecasting literature, 
many papers have been published on the relative 
performance with respect to statistical measures of 
accuracy of various forecasting methods, most notably 
simple exponential smoothing (SES), Croston’s method 
(Croston 1972), and an estimator proposed by Syntetos 
and Boylan (2005). Schultz (1987) suggested that 
separate smoothing constants, i  and s, be used for 
updating the inter-demand intervals and the nonzero 
demand sizes, respectively, in place of Croston’s single 
smoothing constant . We note, however, that 
Mukhopadhyay, Solis, and Gutierrez (2012) 
investigated separate smoothing constants, i  and s, in 
forecasting lumpy demand and did not observe any 
substantial improvement in forecast accuracy.   

Syntetos and Boylan (2001) pointed out a positive 
bias in Croston’s method arising from an error in his 
mathematical derivation of expected demand. They 
proposed (Syntetos and Boylan 2005) a correction 

factor of 




  21 i  – where i is the smoothing constant 

used in updating the inter-demand interval estimate – to 
be applied to Croston’s estimator of mean demand. The 
revised estimator is now often referred to (e.g., 
Gutierrez, Solis, and Mukhopadhyay 2008; Boylan, 
Syntetos, and Karakostas 2008; Babai, Syntetos, and 
Teunter 2010; Mukhopadhyay, Solis, and Gutierrez 
2012) in the intermittent demand forecasting literature 
as the Syntetos-Boylan approximation (SBA).  

We also evaluate the 13-month simple moving 
average (SMA13) method, which is based upon 
dividing the 52 weeks in a year into 13 four-week 
“months”. SMA13 has been applied in a number of 
recent intermittent demand forecasting studies (e.g., 
Syntetos and Boylan 2005, 2006; Boylan, Syntetos, and 

Karakostas 2008) in view of its being built into some 
commercially available forecasting software. 

This paper is organized as follows. In section 2, we 
discuss the forecasting methods under evaluation, the 
statistical measures of forecast accuracy that we use, 
and the nature of the industrial dataset and how data 
partitioning is performed. In the next section, we 
propose a two-stage approach to the modeling of 
demand distribution. We proceed to report on our 
empirical investigation of forecasting performance, 
based upon statistical accuracy measures, on the 
performance block of the actual data and on the 
simulated demand distribution. The performance of the 
forecasting methods in terms of inventory systems 
efficiency is reported in section 4. We present our 
conclusions in the final section.    
 
2. FORECASTING METHODS AND DEMAND 

DATA 
 

2.1. Forecasting Methods and Accuracy Measures 
Four methods that are well-referenced in the 
intermittent demand forecasting literature are evaluated 
in this paper: SMA13, SES, Croston’s, and SBA. For 
the SES, Croston’s, and SBA methods, low values of 
the exponential smoothing constant  of up to 0.20 have 
generally been suggested for lumpy demand (e.g., 
Croston 1972; Johnston and Boylan 1996). We test four 
 values of 0.05, 0.10, 0.15, and 0.20 as used in a 
number of recent studies (e.g., Syntetos and Boylan 
2005; Gutierrez, Solis, and Mukhopadhyay 2008; 
Mukhopadhyay, Solis, and Gutierrez 2012). 

In this paper, we apply three scale-free error 
statistics. The first is mean absolute percentage error 
(MAPE), which is the most widely used accuracy 
measure for ratio-scaled data. The traditional MAPE 
definition, which involves terms of the form tt AE ||  

(where At and Et, respectively, represent actual demand 
and forecast error in period t), fails when demand is 
intermittent. We applied an alternative specification 
(e.g., Gilliland 2002) of MAPE as a ratio estimate, 
which guarantees a nonzero denominator: 
 

100MAPE
11









 



n

t
t

n

t
t AE .            (7)        

 
This specification of MAPE has been used in evaluating 
lumpy demand forecasting (e.g., Gutierrez, Solis, and 
Mukhopadhyay 2008; Mukhopadhyay, Solis, and 
Gutierrez 2012).   

A second scale-free error statistic we use is the 
mean absolute scaled error (MASE). It was fairly 
recently proposed as a forecast accuracy measurement 
applicable for intermittent demand, without problems 
seen in other error statistics (Hyndman and Koehler 
2006). Using the naïve method, one-period-ahead 
forecasts are generated. A scaled error is defined as 
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which is independent of the scale of the data. A scaled 
error is less than one if it arises from a better forecast 
than the average one-step, naïve forecast computed in-
sample. It is greater than one if the forecast is worse. 
MASE is simply the mean value of tq . 

The third scale-free error statistic we apply in this 
paper is percentage best (PB) – the percentage of time 
periods in which a particular method performs better 
than any of the other methods with respect to a 
specified criterion. PB has been applied in a good 
number of intermittent demand forecasting studies (e.g., 
Syntetos and Boylan 2005; Gutierrez, Solis, and 
Mukhopadhyay 2008; Mukhopadhyay, Solis, and 
Gutierrez 2012). We used absolute error for assessing 
performance under the PB approach. 
 
2.2. Industrial Dataset and Partitioning 
In this paper, we apply the four methods to an industrial 
dataset involving more than 1000 SKUs in the central 
warehouse of a firm operating in the professional 
electronics sector. The raw data consist of actual stock 
withdrawals reported in the company’s enterprise 
resource planning system. We first aggregated the 
transactional data into usage quantities per calendar 
week, and further aggregated the weekly quantities in 
terms of 13 four-week “months” in a calendar year. The 
monthly usage quantities do not constitute actual 
demand quantities, since the inventory on hand at the 
time of a stock withdrawal may not meet the required 
quantity. Since demand is not traditionally tracked as 
well as actual usage in a transaction-based system, we 
treat monthly usage quantity as a surrogate measure of 
monthly demand.     

This process yielded 66 months of “demand” data, 
which we broke down into initialization, calibration, 
and performance measurement blocks (as in Boylan, 
Syntetos, and Karakostas 2008) with our blocks 
consisting of 23, 23, and 20 months, respectively. 

For each of the SES, Croston’s and SBA methods, 
we selected  based upon the minimum MAPE attained 
in the calibration block for use as the smoothing 
constant in the performance block. 

Given that the various SKUs represent end items, 
sub-assemblies, components, and spare parts that are 
used for building projects, retail sales, or servicing of 
professional electronic products, it is understandable 
that we found many of them to actually exhibit erratic 
or lumpy demand based on the earlier cited 
categorization scheme (Syntetos, Boylan, and Croston 
2005). We have, however, failed to find a SKU with 
intermittent demand (ADI > 1.32 and CV2 < 0.49) 
according to this scheme.   

In this paper, we report findings on a sample of 
fifteen SKUs, with demand statistics presented in Table 
1. The first six SKUs (1–6) are categorized as having 

erratic demand, while the remaining nine SKUs (7–10) 
exhibit lumpy demand. 
 

Table 1: Sample of 15 SKUs 
SKU # 1 2 3 4 5
Mean 7.1667 14.1667 11.4091 36.2273 8.9394
Std Dev 8.1930 16.3251 10.3804 32.1050 9.5545

1.3069 1.3279 0.8278 0.7854 1.1424
ADI 1.1186 1.1000 1.1379 1.0820 1.2692
z (% of Zero Demand) 10.61% 9.09% 12.12% 7.58% 21.21%
Category ERRATIC ERRATIC ERRATIC ERRATIC ERRATIC

SKU # 6 7 8 9 10
Mean 3.5152 1.0152 8.3333 29.0152 5.3667
Std Dev 4.0959 1.3977 11.8612 57.6463 7.9723

1.3577 1.8957 2.0259 3.9472 2.2068
ADI 1.2941 1.7838 1.6500 2.2000 1.6216
z (% of Zero Demand) 22.73% 43.94% 39.39% 54.55% 38.33%
Category ERRATIC LUMPY LUMPY LUMPY LUMPY

SKU # 11 12 13 14 15
Mean 3.1818 2.3333 3.9394 5.2879 2.2273
Std Dev 3.7700 2.9053 5.3805 6.2580 2.2790

1.4039 1.5504 1.8655 1.4006 1.0470
ADI 1.6098 1.5000 1.5000 1.3469 1.5000
z (% of Zero Demand) 37.88% 33.33% 33.33% 25.76% 33.33%
Category LUMPY LUMPY LUMPY LUMPY LUMPY

2CV

2CV

2CV

2CV

2CV 2CV

 
 
2.3. Modeling of Demand Distributions 

We sought to simulate demand distributions of the 
SKUs under study, performing 100 runs each consisting 
of 100 four-week “months”, for a total of 10,000 
months in each experiment. We used AnyLogic as our 
simulation platform. Some code was written in Java in 
order to address mathematical modeling which could 
not be readily undertaken within the standard AnyLogic 
library (the authors have a remarkable experience in 
developing simulation model for inventory and supply 
chain problems investigation, Curcio and Longo, 2009; 
Bruzzone and Longo, 2010). We used the mean x  and 
the variance s2 of the 66-month actual demand time 
series as values of  and 2, respectively, in (5) and (6) 
to generate initial estimates r̂  and p̂  of the NBD 

parameters. These initial estimates are then adjusted to 
obtain acceptable NBD parameters r and p. 

In the case of SKUs 1 and 7 (out of the 15 SKUs 
that we report on in the current paper), we found the 
proposed NBD approximation to yield a simulated 
distribution which fairly closely follows the actual 
demand distribution. The simulation results are reported 
in Table 2. In each case, the adjusted r value is 1 (i.e., 
the NBD reduces to a geometric distribution) and 

)0Pr(  Xp  closely approximates – in fact, slightly 

exceeds – the actual proportion z of zero demand 
occurrences. 

However, we have found that, for most of the other 
SKUs currently under study, it is not possible to 
accordingly obtain adjusted values of r̂  and p̂  that 

would lead to an NBD with mean, standard deviation, 
CV2, and ADI that are reasonably close to those of the 
actual demand distribution. To illustrate, in Table 3, we 
present NBD approximation results for SKUs 2 and 8. 
In each of these two cases, the NBD reduces to a 
geometric distribution, with the adjusted r value being 1 
However, )0Pr(  Xp  is less than the actual 

proportion z of zero demand occurrences, especially in 
the case of SKU 8 for which demand is lumpy (p = 
7.87% versus z = 39.39%). 

To more directly address the proportion z of 
periods with zero demand, we simulate the demand 
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distribution by way of a two-stage probability 
distribution (earlier applied by Solis, Nicoletti, 
Mukhopadhyay, Agosteo, Delfino, and Sartiano 2012). 

 
Table 2: Two SKUs with Good NBD Approximations 

SKU # 1 7
Mean 7.1667 1.0152
Std Dev 8.1930 1.3977

1.3069 1.8957
ADI 1.1186 1.7838
z  (% of Zero Demand) 10.61% 43.94%
Category ERRATIC LUMPY
r^ 0.8566 1.0981
p^ 0.1068 0.5196
SIMULATION
r 1 1
p 0.1177 0.4800
Mean 7.4544 1.0795
Std Dev 7.8854 1.4783

1.1310 1.9056
ADI 1.1319 1.9026
z  (% of Zero Demand) 11.64% 47.51%
Simulated vs Actual Mean 104.0% 106.3%
Simulated vs Actual Std Dev 96.2% 105.8%
Simulated vs Actual CV^2 86.5% 100.5%
Simulated vs Actual ADI 101.2% 106.7%
Difference in Simulated vs Actual z 1.03% 3.57%

2CV

2CV

2CV

2CV

 
 

Table 3: Two SKUs with Poor NBD Approximations 
SKU # 2 8
Mean 14.1667 8.3333
Std Dev 16.3251 11.8612

1.3279 2.0259
ADI 1.1000 1.6500
z  (% of Zero Demand) 9.09% 39.39%
Category ERRATIC LUMPY
r^ 0.7953 0.5247
p^ 0.0532 0.0592
SIMULATION
r 1 1
p 0.0591 0.0787
Mean 15.8662 11.7009
Std Dev 16.3433 11.9177

1.0716 1.0484
ADI 1.0641 1.0873
z  (% of Zero Demand) 5.99% 8.00%
Simulated vs Actual Mean 82.6% 190.4%
Simulated vs Actual Std Dev 73.0% 137.8%
Simulated vs Actual CV^2 80.7% 51.8%
Simulated vs Actual ADI 96.7% 65.9%
Difference in Simulated vs Actual z -3.10% -31.39%

2CV

2CV

 
  
The first stage is modeled with a uniform 

distribution initially based upon z1 = z, where z is the 
actual proportion of zero demand periods in the 66-
month time series. For the second stage, we determine 

the mean nzx  and variance 2
nzs  of the nonzero demands 

and use these to calculate first approximations of the 
parameters nzp̂  and nzr̂  in line with (5) and (6). The 

corresponding negative binomial probability 
0)0Pr(0  XP  is then used to adjust z1 (as 

applied in the first stage) downward, as follows: 
 

0

0
1 1 P
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z
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 ,                  (9) 

provided z > P0. As a result, the proportion of zero 
demand periods arising from the two-stage distribution 

is closer to z. We refine the parameter estimate nzp̂  as 

the values of mean, standard deviation, CV2, and ADI of 
the actual and simulated demand distributions are 
compared. 

We present in Table 4 the simulation results for the 
demand distributions of the 15 SKUs using the two-
stage approach, except for SKUs 1 and 7 (which were 
modeled using only the NBD approximation). For the 
other 13 SKUs, we selected z1 for stage 1 and the 
parameters r and p of the NBD in stage 2 based on what 
appeared to yield the best combination of values of 
mean, standard deviation, CV2, and ADI of the 
simulated distribution in comparison with those of the 
actual distribution. 
 
Table 4: Simulation of Demand Using the Two-Stage 
Distribution 
SKU # 1 2 3 4 5
Mean 7.1667 14.1667 11.4091 36.2273 8.9394
Std Dev 8.1930 16.3251 10.3804 32.1050 9.5545

1.3069 1.3279 0.8278 0.7854 1.1424
ADI 1.1186 1.1000 1.1379 1.0820 1.2692
z (% of Zero Demand) 10.61% 9.09% 12.12% 7.58% 21.21%
Category ERRATIC ERRATIC ERRATIC ERRATIC ERRATIC
Mean of nonzero demand 8.0169 15.5833 12.9828 39.1967 11.3462
Std Dev of nonzero demand 8.2639 16.4670 10.1038 31.5958 9.4077
r^ nonzero 1.0663 0.9502 1.8916 1.6019 1.6684
p^ nonzero 0.1174 0.0575 0.1272 0.0393 0.1282
SIMULATION
r 1 1 2 2 2
p 0.1177 0.0589 0.1271 0.0481 0.1491
Pr(X = 0) 0.1177 0.0589 0.0162 0.0023 0.0222
Final zero proportion in stage 1 0.00% 3.40% 10.68% 7.36% 19.42%
Mean 7.4544 15.3294 12.2154 37.1695 9.0884
Std Dev 7.8854 16.3021 10.6752 29.6808 8.9894

1.1310 1.14615 0.7738 0.6446 0.9853
ADI 1.1319 1.09857 1.1392 1.0807 1.2811
z (% of Zero Demand) 11.64% 9.02% 12.27% 7.46% 21.97%
Simulated vs Actual Mean 104.0% 108.2% 107.1% 102.6% 101.7%
Simulated vs Actual Std Dev 96.2% 99.9% 102.8% 92.4% 94.1%
Simulated vs Actual CV^2 86.5% 86.3% 93.5% 82.1% 86.2%
Simulated vs Actual ADI 101.2% 99.9% 100.1% 99.9% 100.9%
 in Simulated vs Actual z 1.03% -0.07% 0.15% -0.12% 0.76%

SKU # 6 7 8 9 10
Mean 3.5152 1.0152 8.3333 29.0152 5.3667
Std Dev 4.0959 1.3977 11.8612 57.6463 7.9723

1.3577 1.8957 2.0259 3.9472 2.2068
ADI 1.2941 1.7838 1.6500 2.2000 1.6216
z (% of Zero Demand) 22.73% 43.94% 39.39% 54.55% 38.33%
Category ERRATIC LUMPY LUMPY LUMPY LUMPY
Mean of nonzero demand 4.5490 1.8108 13.7500 63.8333 8.7027
Std Dev of nonzero demand 4.1246 1.4306 12.5734 71.7573 8.6212
r^ nonzero 1.6603 13.9098 1.3098 0.8013 1.1541
p^ nonzero 0.2674 0.8848 0.0870 0.0124 0.1171
SIMULATION
r 1 1 1 1 1
p 0.2100 0.4800 0.0730 0.0139 0.1150
Pr(X = 0) 0.2100 0.4800 0.0730 0.0139 0.1150
Final zero proportion in stage 1 2.19% 0.00% 34.62% 53.90% 30.32%
Mean 3.7000 1.0795 8.2722 31.6675 5.4287
Std Dev 4.1823 1.4783 11.9503 56.9295 7.7028

1.2968 1.9056 2.1254 3.3252 2.0692
ADI 1.2757 1.9026 1.6384 2.2202 1.6033
z (% of Zero Demand) 21.59% 47.51% 39.05% 54.83% 37.57%
Simulated vs Actual Mean 105.3% 106.3% 99.3% 109.1% 101.2%
Simulated vs Actual Std Dev 102.1% 105.8% 100.8% 98.8% 96.6%
Simulated vs Actual CV^2 95.5% 100.5% 104.9% 84.2% 93.8%
Simulated vs Actual ADI 98.6% 106.7% 99.3% 100.9% 98.9%
 in Simulated vs Actual z -1.14% 3.57% -0.34% 0.28% -0.76%

SKU # 11 12 13 14 15
Mean 3.1818 2.3333 3.9394 5.2879 2.2273
Std Dev 3.7700 2.9053 5.3805 6.2580 2.2790

1.4039 1.5504 1.8655 1.4006 1.0470
ADI 1.6098 1.5000 1.5000 1.3469 1.5000
z (% of Zero Demand) 37.88% 33.33% 33.33% 25.76% 33.33%
Category LUMPY LUMPY LUMPY LUMPY LUMPY
Mean of nonzero demand 5.1220 3.5000 5.9091 7.1224 3.3409
Std Dev of nonzero demand 3.5930 2.9294 5.6438 6.3002 2.0109
r^ nonzero 3.3686 2.4108 1.3459 1.5575 15.8781
p^ nonzero 0.3968 0.4079 0.1855 0.1794 0.8262
SIMULATION
r 3 1 1 1 15
p 0.3800 0.2764 0.1675 0.1380 0.8130
Pr(X = 0) 0.0549 0.2764 0.1675 0.1380 0.0448
Final zero proportion in stage 1 34.27% 7.86% 19.92% 13.87% 30.21%
Mean 3.1966 2.3502 4.0198 5.3850 2.3899
Std Dev 3.6903 2.9341 5.3374 6.5807 2.3267

1.3534 1.5946 1.7937 1.5183 0.9691
ADI 1.6025 1.5124 1.4889 1.3438 1.5016
z (% of Zero Demand) 37.67% 33.75% 32.86% 25.64% 33.56%
Simulated vs Actual Mean 100.5% 100.7% 102.0% 101.8% 107.3%
Simulated vs Actual Std Dev 97.9% 101.0% 99.2% 105.2% 102.1%
Simulated vs Actual CV^2 96.4% 102.9% 96.2% 108.4% 92.6%
Simulated vs Actual ADI 99.5% 100.8% 99.3% 99.8% 100.1%
 in Simulated vs Actual z -0.21% 0.42% -0.47% -0.12% 0.23%

2CV

2CV

2CV

2CV

2CV

2CV

 
 

Proceedings of the International Conference on Modeling and Applied Simulation, 2013 
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds. 

215



We must quickly point out, however, that even the 
two-stage approximation we apply fails in the case of 
SKUs with demand distributions that are lumpier. In 
Table 5, we provide three SKUs (16–18) out of a 
number of SKUs whose demand distributions we were 
unable to model adequately.    
 
Table 5: Some SKUs for which the Two-Stage 
Distribution Fails 
SKU # 16 17 18
Mean 59.3182 3.9848 7.7424
Std Dev 117.7808 10.2379 21.9638

3.9425 6.6009 8.0475
ADI 1.5349 1.7368 1.4667
z  (% of Zero Demand) 34.85% 42.42% 31.82%
Category LUMPY LUMPY LUMPY
Mean of nonzero demand 91.0465 6.9211 11.3556
Std Dev of nonzero demand 136.0571 12.7775 25.8977
r^ nonzero 0.4500 0.3064 0.1956
p^ nonzero 0.0049 0.0424 0.0169
SIMULATION
r 1 1 1
p 0.0080 0.0850 0.0400
Pr(X  = 0) 0.0080 0.0850 0.0400
Final zero proportion in stage 1 34.32% 37.08% 28.98%
Mean 83.9741 6.7120 16.9344
Std Dev 117.9103 10.2027 22.8629

2.0030 2.3956 1.8701
ADI 1.5199 1.7186 1.4643
z  (% of Zero Demand) 34.20% 41.87% 32.68%
Simulated vs Actual Mean 141.6% 168.4% 218.7%
Simulated vs Actual Std Dev 100.1% 99.7% 104.1%
Simulated vs Actual CV^2 50.8% 36.3% 23.2%
Simulated vs Actual ADI 99.0% 99.0% 99.8%
 in Simulated vs Actual z -0.65% -0.55% 0.86%

2CV

2CV

2CV

 
 
For such SKUs where even our two-stage 

approximation of the demand distribution failed, we 
have understandably been unable to proceed with the 
evaluation of forecast accuracy and inventory control 
performance.  

 
3. FORECASTING PERFORMANCE 
 
3.1. Forecast Accuracy: Performance Block 
The exponential smoothing constant  selected from 
among the candidate values (0.05, 0.10, 0.15, or 0.20) 
for each of the SES, Croston’s, and SBA methods, 
based upon the minimum MAPE in the calibration 
block, are shown in Table 6. The resulting error 
statistics when applying SMA13, SES, Croston’s, and 
SBA methods to actual demand data in the performance 
block (the final 20 months) are likewise reported in the 
table. There does not appear to be a method that 
exhibits a superior performance overall across the 15 
SKUs. 
   
3.2. Forecast Accuracy: Simulated Demand 
When applying the methods to the simulated demand 
distributions, however, we see in Table 7 that overall 
the SBA method outperforms SMA13, SES, and 
Croston’s methods – particularly for SKUs with lumpy 
demand – based on MAPE and MASE. While the 
forecast accuracy performance with respect to PB 
appears to be inconclusive, the reported results 
nevertheless suggest the overall superiority of SBA over 
the long run. 
 
 

Table 6: Error Statistics when Applying Various 
Methods to Actual Demand in the Performance Block 
SKU # 1 2 3 4 5
Category ERRATIC ERRATIC ERRATIC ERRATIC ERRATIC
Smoothing Constants Selected in Calibration Block
SES 0.20 0.05 0.10 0.05 0.15
Croston 0.20 0.05 0.05 0.05 0.05
SBA 0.20 0.05 0.10 0.05 0.10
MAPE (in %)
SMA13 71.92 86.83 76.34 61.59 109.87
SES 63.47 94.56 75.16 61.42 102.88
Croston 64.08 93.25 75.44 62.61 104.22
SBA 63.30 92.00 75.05 63.02 104.66
Best MAPE SBA SMA13 SBA SES SES
MASE
SMA13 0.8676 0.9343 0.7440 0.6685 1.1332
SES 0.7657 1.0175 0.7325 0.6668 1.0612
Croston 0.7731 1.0033 0.7352 0.6797 1.0750
SBA 0.7636 0.9899 0.7314 0.6841 1.0795
Best MASE SBA SMA13 SBA SES SES
PB (in %)
SMA13 25.00 60.00 25.00 35.00 25.00
SES 30.00 25.00 25.00 25.00 45.00
Croston 15.00 5.00 10.00 0.00 20.00
SBA 30.00 10.00 40.00 40.00 10.00
Best PB SES/SBA SMA13 SBA SBA SES

SKU # 6 7 8 9 10
Category ERRATIC LUMPY LUMPY LUMPY LUMPY
Smoothing Constants Selected in Calibration Block
SES 0.05 0.05 0.10 0.20 0.20
Croston 0.15 0.05 0.05 0.05 0.05
SBA 0.20 0.05 0.05 0.05 0.05
MAPE (in %)
SMA13 117.48 97.01 80.51 90.97 104.90
SES 126.44 98.60 81.56 95.47 115.53
Croston 112.24 90.72 78.10 93.53 96.07
SBA 102.76 89.98 78.24 93.60 96.03
Best MAPE SBA SBA Croston SMA13 SBA
MASE
SMA13 0.7921 0.6635 0.7520 0.7533 0.6766
SES 0.8524 0.6744 0.7618 0.7906 0.7453
Croston 0.7567 0.6205 0.7295 0.7746 0.6197
SBA 0.6928 0.6155 0.7308 0.7751 0.6194
Best MASE SBA SBA Croston SMA13 SBA
PB (in %)
SMA13 5.00 30.00 25.00 40.00 25.00
SES 20.00 15.00 20.00 20.00 10.00
Croston 15.00 10.00 10.00 5.00 20.00
SBA 60.00 45.00 45.00 35.00 45.00
Best PB SBA SBA SBA SMA13 SBA

SKU # 11 12 13 14 15
Category LUMPY LUMPY LUMPY LUMPY LUMPY
Smoothing Constants Selected in Calibration Block
SES 0.20 0.05 0.10 0.05 0.20
Croston 0.20 0.05 0.10 0.05 0.05
SBA 0.20 0.05 0.20 0.05 0.05
MAPE (in %)
SMA13 56.58 86.50 81.57 67.36 90.21
SES 53.46 84.31 76.97 67.53 90.51
Croston 61.39 82.85 76.50 67.35 89.32
SBA 63.44 82.27 78.45 67.51 89.24
Best MAPE SES SBA Croston Croston SBA
MASE
SMA13 0.8909 0.7546 1.1952 0.7359 0.6983
SES 0.8418 0.7356 1.1278 0.7378 0.7006
Croston 0.9667 0.7228 1.1209 0.7358 0.6914
SBA 0.9989 0.7178 1.1495 0.7376 0.6908
Best MASE SES SBA Croston Croston SBA
PB (in %)
SMA13 25.00 20.00 15.00 35.00 30.00
SES 40.00 25.00 35.00 20.00 35.00
Croston 15.00 5.00 20.00 5.00 15.00
SBA 20.00 50.00 30.00 40.00 20.00
Best PB SES SBA SES SBA SES  
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Table 7: Error Statistics when Applying Various 
Methods to the Simulated Demand Distributions 
SKU # 1 2 3 4 5
Category ERRATIC ERRATIC ERRATIC ERRATIC ERRATIC
Smoothing Constants Selected in Calibration Block
SES 0.20 0.05 0.10 0.05 0.15
Croston 0.20 0.05 0.05 0.05 0.05
SBA 0.20 0.05 0.10 0.05 0.10
MAPE (in %)
SMA13 80.64 81.26 69.72 64.62 79.89
SES 81.78 79.36 68.84 62.88 80.10
Croston 81.46 79.07 67.56 62.38 77.82
SBA 78.96 78.45 67.95 62.02 78.06
Best MAPE SBA SBA Croston SBA Croston
MASE
SMA13 0.7637 0.7709 0.7554 0.7578 0.7650
SES 0.7737 0.7529 0.7458 0.7373 0.7667
Croston 0.7711 0.7501 0.7321 0.7317 0.7451
SBA 0.7475 0.7442 0.7363 0.7275 0.7474
Best MASE SBA SBA Croston SBA Croston
PB (in %)
SMA13 34.53 41.24 30.05 37.56 26.29
SES 20.75 15.43 16.32 19.96 26.02
Croston 8.64 9.01 34.03 5.97 33.85
SBA 36.08 34.32 19.60 36.51 13.84
Best PB SBA SMA13 Croston SMA13 Croston

SKU # 6 7 8 9 10
Category ERRATIC LUMPY LUMPY LUMPY LUMPY
Smoothing Constants Selected in Calibration Block
SES 0.05 0.05 0.10 0.20 0.20
Croston 0.15 0.05 0.05 0.05 0.05
SBA 0.20 0.05 0.05 0.05 0.05
MAPE (in %)
SMA13 87.57 107.04 111.30 129.28 106.65
SES 86.65 103.93 109.81 130.74 108.27
Croston 87.96 102.21 105.77 121.36 102.34
SBA 85.61 101.45 105.08 120.55 101.68
Best MAPE SBA Croston SBA SBA SBA
MASE
SMA13 0.7801 0.8241 0.8199 0.8495 0.8031
SES 0.7720 0.8000 0.8088 0.8585 0.8148
Croston 0.7836 0.7869 0.7792 0.7974 0.7709
SBA 0.7628 0.7810 0.7741 0.7922 0.7660
Best MASE SBA SBA SBA SBA SBA
PB (in %)
SMA13 23.43 36.84 31.14 22.46 22.99
SES 30.52 13.46 19.21 32.65 46.90
Croston 9.65 15.71 12.73 12.20 8.43
SBA 36.40 33.99 36.92 32.69 21.65
Best PB SBA SMA13 SBA SBA SES

SKU # 11 12 13 14 15
Category LUMPY LUMPY LUMPY LUMPY LUMPY
Smoothing Constants Selected in Calibration Block
SES 0.20 0.05 0.10 0.05 0.20
Croston 0.20 0.05 0.10 0.05 0.05
SBA 0.20 0.05 0.20 0.05 0.05
MAPE (in %)
SMA13 95.95 96.13 101.66 93.39 84.25
SES 97.25 94.61 101.00 90.98 85.34
Croston 95.54 93.67 100.91 90.28 82.39
SBA 93.74 92.95 98.69 89.70 82.25
Best MAPE SBA SBA SBA SBA SBA
MASE
SMA13 0.7939 0.7914 0.7999 0.7805 0.7958
SES 0.8041 0.7788 0.7944 0.7603 0.8056
Croston 0.7907 0.7714 0.7938 0.7545 0.7786
SBA 0.7759 0.7654 0.7766 0.7497 0.7774
Best MASE SBA SBA SBA SBA SBA
PB (in %)
SMA13 24.63 39.72 27.54 39.87 23.95
SES 29.35 15.36 12.52 14.57 32.88
Croston 12.97 12.13 24.18 11.43 16.65
SBA 33.05 32.79 35.76 34.13 26.52
Best PB SBA SMA13 SBA SMA13 SES  
 

 
4. INVENTORY CONTROL PERFORMANCE 
Demand forecasting and inventory control performance 
have traditionally been considered independently of 
each other (Tiacci and Saetta 2009).  In reality, forecast 
accuracy may not translate into inventory systems 
efficiency (Syntetos, Nikolopoulos, and Boylan 2010).   

Sani and Kingsman (1997) have recommended a 
periodic review inventory control system to address 
intermittent demand. An order-up-to (T,S) periodic 
review system, where T and S denote the review period 
and the base stock (or ‘order-up-to’ level), respectively, 
has been applied in recent intermittent demand 
forecasting studies (e.g., Eaves and Kingsman 2004; 
Syntetos and Boylan 2006; Syntetos, Nikolopoulos, 
Boylan, Fildes, and Goodwin, 2009; Syntetos, Babai, 
Dallery, and Teunter 2009; Syntetos, Nikolopoulos, and 
Boylan 2010; Teunter, Syntetos, and Babai 2010) that 
look into both forecast accuracy and inventory control 
performance. 

In this paper, we assume a (T,S) system with full 
backordering, with inventory reviewed on a monthly 
basis (T = 1). The reorder lead time for most SKUs is 
about one month (L = 1). The literature suggests a 
safety stock component to compensate for uncertainty 
in demand during the ‘protection interval’ T+L. For 

each SKU, we calculated trs , the standard deviation of 

monthly demand during the initialization and 
calibration blocks (the first 46 months of actual usage 
quantities). We apply a ‘safety factor’ k to yield a safety 
stock level of trsk  . This approach differs, of course, 

from that suggested (e.g., Silver, Pyke, and Peterson 
1998) under an assumption that daily demand is 
identically and independently normally distributed 
during the protection interval. If Ft is the forecast 
calculated at the end of month t, and tI  and tB  are, 

respectively, on-hand inventory and backlog, the 
replenishment quantity at the time of review is 

 

tttrtt BIskFLTQ  )( .              (10) 

 
4.1. Service Levels 
Silver, Pyke, and Peterson (1998) identified the two 
most commonly specified service level criteria in 
inventory systems. One is a target average probability 
of no stockout (PNS) per review period.  The other is a 
target fill rate (FR), or average percentage of demand to 
be satisfied from on-hand inventory. FR is noted to 
have considerably more appeal for practitioners. We 
simulated inventory control performance with respect to 
two values of the target FR (95% and 98%) and two 
values of the target PNS (90% and 95%). We performed 
simulation searches to find the safety factor k that 
would yield the target FR or PNS. 

  
4.2. Average Inventory on Hand 
For a target FR of 98%, resulting averages of inventory 
on hand are reported in Table 8. We proceeded to index 
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the average inventory on hand, as reported in Table 8, 
using SBA as base (SBA index = 100). Indices 
corresponding to a target FR of 98% are reported in 
Table 9 and depicted graphically in Figure 1. This 
figure suggests the overall superiority of SBA over 
SMA13 and SES in terms of resulting average on-hand 
inventory levels, but does not seem to indicate a similar 
comparison with respect to Croston’s method. In fact, 
Figure 1 appears to suggest that Croston’s method leads 
to slightly better average on-hand inventory than SBA 
for erratic demand (SKUs 1–6). When conducting t 
tests, the mean indices for SMA13 and SES exceed 100 
at the 1% and 5% levels of significance, respectively. 
However, testing the mean index for Croston’s method 
does not yield a statistically significant conclusion.  
 
Table 8: Average Inventory on Hand for a 98% Target 
Fill Rate 
SKU # 1 2 3 4 5
SMA13 25.5024 53.2450 28.7932 76.4457 24.6869
SES 25.8652 51.8753 28.1311 72.4345 24.4925
Croston 25.7067 51.7261 27.3639 72.3506 23.7126
SBA 25.5968 51.7647 27.9113 72.3894 23.9568

SKU # 6 7 8 9 10
SMA13 13.9749 5.2988 44.7181 240.5282 28.8782
SES 13.5985 5.0813 44.0254 242.5799 28.8763
Croston 13.9830 5.0115 43.1597 238.3088 28.3105
SBA 14.0235 5.0069 43.2253 238.3386 28.2883

SKU # 11 12 13 14 15
SMA13 10.1452 10.0599 19.8695 22.4635 5.3829
SES 10.2395 9.7714 19.6909 21.6916 5.4407
Croston 10.2056 9.7606 19.9021 21.6139 4.9807
SBA 10.0786 9.8166 19.7692 21.5828 4.9790  
 
Table 9: Indices of Average Inventory on Hand for a 
98% Target Fill Rate 
SKU # 1 2 3 4 5
SMA13 99.6 102.9 103.2 105.6 103.0
SES 101.0 100.2 100.8 100.1 102.2
Croston 100.4 99.9 98.0 99.9 99.0
SBA 100.0 100.0 100.0 100.0 100.0

SKU # 6 7 8 9 10
SMA13 99.7 105.8 103.5 100.9 102.1
SES 97.0 101.5 101.9 101.8 102.1
Croston 99.7 100.1 99.8 100.0 100.1
SBA 100.0 100.0 100.0 100.0 100.0

SKU # 11 12 13 14 15
SMA13 100.7 102.5 100.5 104.1 108.1
SES 101.6 99.5 99.6 100.5 109.3
Croston 101.3 99.4 100.7 100.1 100.0
SBA 100.0 100.0 100.0 100.0 100.0  
 

Similar results arise for the 95% target FR, as well 
as for the 90% and 95% PNS target levels – except that 
the mean index for SES with a target PNS of 95% does 
not exceed 100 at the 5% significance level. Figure 2 
graphically shows indices for the 90% target PNS.       
 

Average On-Hand Inventory Indices: FR = 98% 
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Figure 1: Average On-Hand Inventory Indices for a 
98% Target Fill Rate 
 

Average On-Hand Inventory Indices: PNS = 90% 
(SBA = 100.0)
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Figure 2: Average On-Hand Inventory Indices for a 
90% Target Probability of No Stockout 
 
4.3. Cumulative Backlogs 

In Table 10, the SBA row shows the average 
(across 100 replications) of the cumulative backlogs 
over 100 months when the target FR is 98%. The rows 
corresponding to SMA13, SES, and Croston’s methods 
indicate respective differences with the SBA value. In 
the last three rows, a negative figure (in parentheses) 
represents a lower average, while a positive figure 
means a higher average. The differences, in absolute 
terms, are all less than one, indicating that there is 
hardly any difference in performance with respect to 
100-month cumulative backlogs for the given target FR. 
The same observation holds for a target FR of 95%.          
 
Table 10: Comparison of Mean 100-Month Backlogs 
(SBA vs. Other Methods) for a 98% Target Fill Rate 
SKU # 1 2 3 4 5
SBA 15.16 30.89 24.28 73.73 18.47
SMA13 0.00 0.04 0.05 (0.22) (0.18)
SES (0.03) (0.01) 0.05 (0.05) (0.02)
Croston (0.02) (0.01) 0.04 (0.03) 0.03

SKU # 6 7 8 9 10
SBA 7.49 2.27 17.28 66.53 11.19
SMA13 0.00 (0.10) (0.12) (0.33) (0.08)
SES 0.02 0.00 (0.10) (0.42) (0.08)
Croston (0.04) 0.00 (0.01) (0.01) (0.01)

SKU # 11 12 13 14 15
SBA 6.44 4.73 8.04 11.07 4.66
SMA13 0.05 (0.03) (0.07) (0.20) (0.09)
SES 0.01 0.00 (0.01) (0.04) (0.01)
Croston (0.01) 0.00 (0.01) (0.01) 0.00  
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Table 11 provides analogous results for a 90% target 
PNS. With the exception of SKU 9 in which SES and 
SMA13 respectively exhibit favorable 18-unit and 5-
unit average advantages over SBA, the 100-month 
cumulative backlogs appear to be more or less similar 
overall across the four methods. We note that SKU 9 is 
quite lumpy, characterized by relatively high values of 
CV2 (3.9472), ADI (2.2), and z (54.55%). Similar 
observations arise under a 95% target PNS.     
 
Table 11: Comparison of Mean 100-Month Backlogs 
(SBA vs. Other Methods) for a 90% Target PNS 
SKU # 1 2 3 4 5
SBA 85.64 171.14 100.18 252.37 81.42
SMA13 (0.17) 0.83 (0.66) 2.56 1.45
SES (0.40) 1.20 (0.71) (0.85) 0.90
Croston 0.31 0.50 0.23 (0.51) 1.26

SKU # 6 7 8 9 10
SBA 48.62 19.72 133.36 699.79 89.81
SMA13 0.45 (0.13) 1.28 (5.26) (1.45)
SES (0.19) (2.20) (1.41) (18.02) (1.13)
Croston (0.09) (0.86) 0.28 (1.20) 0.01

SKU # 11 12 13 14 15
SBA 35.67 35.78 64.28 74.35 20.03
SMA13 (0.03) 0.20 (0.88) 1.14 0.10
SES 0.17 0.41 0.93 1.03 (1.76)
Croston (0.26) 0.09 0.01 0.37 0.03  
 
5. CONCLUSION 
Earlier studies have argued that the negative binomial 
distribution (NBD) satisfies both theoretical and 
empirical criteria for modeling intermittent demand. We 
tested the NBD on an industrial dataset involving more 
than 1000 stock-keeping units (SKUs) in the central 
warehouse of a firm operating in the professional 
electronics sector. We have established that the NBD 
often does not provide a good fit for most of the SKUs 
tested. We used a two-stage approach (applied 
preliminarily by Solis, Nicoletti, Mukhopadhyay, 
Agosteo, Delfino, and Sartiano 2012) involving uniform 
and negative binomial distributions. In the current 
paper, we report on 15 SKUs, of which six exhibit 
erratic demand while the remaining nine have lumpy 
demand. The simulated demand distributions arising 
from the two-stage modeling approach more closely 
approximate the actual demand distributions of the 
SKUs under consideration. The SMA13, SES, 
Croston’s, and SBA methods are well-referenced in the 
literature on intermittent or lumpy demand forecasting. 
We investigated the statistical accuracy of these 
forecasting methods using three scale-free error 
statistics. In testing statistical accuracy on the 
performance block (the final 20 months of the 66-month 
actual distribution), we found none of the methods 
under consideration to be consistently superior to the 
others. However, SBA is found to be the best 
performing method overall when the four methods are 
tested over the longer term (100 replications of 100 
months, or a total of 10,000 months). We subsequently 
simulated the inventory control performance of each 
method, applying the demand estimates on the basis of 

the simulated demand distribution for a given SKU. A 
(T,S) periodic review inventory control system with full 
backordering, with a one-month review period and a 
one-month replenishment leadtime, was assumed. Using 
either a target fill rate or a target probability of no 
stockout, we have found SBA to yield the lowest 
average levels of inventory on hand in almost all cases. 
At the same time, the expected cumulative backlogs 
under SBA are comparable to those using the other 
forecasting methods. Accordingly, it appears that SBA 
generally leads to better inventory systems efficiency. 
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