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ABSTRACT 

 

Manufacturing systems are dynamic systems which are 

influenced by various disturbances or frequently 

changing customer requests. A continuous process of 

decision making is required. Model Predictive Control 

is a common model-based approach for control but 

needs adaption to be applicable to discrete-event 

simulation. In this paper we introduce an approach to 

model and generate non trivial control options and 

decisions often made in the operation of manufacturing 

systems. We also show how complex scenarios can be 

generated. To support a wide-range of applications our 

approach is based on the core manufacturing simulation 

data (CMSD) information model. We implement the 

design and generation of complex scenarios by 

processing and combining modeled control options. By 

using our approach, which also applicable to decision 

support systems, we can enable model-based closed-

loop control based on a symbiotic simulation system 

and automated model generation and initialization. 

 

Keywords: simulation, CMSD-IM, design of 

experiments, decision support system, model predictive 

control 

 

1. INTRODUCTION 

Manufacturing systems are dynamic systems and 

subject to various internal and external disturbances, 

which often influence the expected behavior in an 

undesired way. Additionally, they have to deal with 

growing uncertainties, flexibility, and high cost 

pressure.  

These facts lead to changing circumstances for the 

decision making process. Decisions have to be made in 

higher frequency, which directly leads to a shorter time 

available for finding them. Therefore, a continuous 

process of decision making and controlling is required 

to make sure the aimed goals can be achieved. 

Additionally, the complexity of internal and external 

processes is rising. For the same reason the amount of 

gained data in the connected information systems is also 

increasing. 

To keep up with the tightened situation decision 

makers are forced to use Decision Support Systems 

(DSS). To also handle the complexity of today’s 

manufacturing systems discrete event simulation (DES) 

is used in conjunction with DSS. This leads to model-

driven DSS (Heilala et al. 2010). Related approaches 

are Online-Simulation (Davis 1999; Hanisch, Tolujew, 

and Schulze 2005), Simulation based Early Warning 

Systems (SEWS) (Hotz 2007), and Symbiotic 

Simulation Systems (Aydt et al. 2008a). 

In our research work we investigate an automated 

control approach called Model Predictive Control 

(MPC) to enable a closed-loop control for 

manufacturing systems, using techniques like Symbiotic 

Simulation and SEWS. While MPC is well studied in 

the field of automatic control engineering, there is very 

limited research and application of MPC using discrete 

event simulation techniques. To enable MPC to 

manufacturing control or decision support, we identified 

three major research tasks: the formal description of 

alternatives, the generation of complex scenarios based 

on combinations of these alternatives, and the 

generation and appropriate initialization of simulation 

models with the state of the real system. 

In this paper we focus on the methodology of how 

common decision and control alternatives in the 

operation of manufacturing systems can be formally 

described and automatically generated. We also show 

how based on this description complex scenarios can be 

designed and generated. Our modeling approach is 

based on an applied information model, provided by the 

Core Manufacturing Simulation Data Standard (SISO 

2010). Initialization, generation and execution of 

simulation models have been discussed in previous 

work (Bergmann, Stelzer, and Strassburger 2011). 

The remainder of this paper is structured as 

follows. In section 2, we discuss related work. In 

section 3, we illustrate requirements for model-

predictive control in manufacturing using discrete event 

simulation. We also introduce the information model 

used in our approach. In section 4, we discuss typical 

decisions and control options used to influence 

manufacturing systems and how they can be described 

using the CMSD-IM. In section 5, we describe our 
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methodology of how we intelligently and automatically 

generate simulation scenarios from the modeled control 

options. In section 6, we summarize the results of our 

approach and give an overview about current and future 

work. 

 

2. DISCUSSION 

2.1. Related Work 

The goal of decision makers and controllers is to 

find an optimal solution for a given situation from a set 

of alternatives. Therefore it is required to determine the 

current situation as correct as possible and to estimate 

the impact of all available decisions or control inputs. 

Due the high complexity of the internal processes and 

large amount of data, the estimation of the impact of an 

alternative to the manufacturing system can not be 

handled anymore by humans (Heilala et al. 2010). 

Discrete Event Simulation (Banks et al. 2000) is a 

well-accepted technique for planning, investigation and 

operation of manufacturing systems and supply chains 

(VDI 3633-1). The application of modeling and 

simulation for manufacturing systems is not a novel 

approach, but a dominating part of simulation 

applications are focused on the planning of new systems 

or their modification. When the actual operating of 

manufacturing systems is investigated, the discussed 

applications are often limited to scheduling problems. 

To extend the benefits of modeling and simulation 

to the operation of manufacturing systems a closer 

integration of simulation techniques and manufacturing 

systems is needed. In 2004, Fowler and Rose discussed 

the future of modeling and simulation and defined a 

couple of challenges for research and applications. 

Among them, the closer integration and interaction of 

simulation techniques and information systems was 

identified as grand challenge (Fowler and Rose 2004). 

The closer integration of simulation techniques and 

manufacturing enables the handling of complex 

processes and huge amounts of data required for 

decision support or control. The Online-Simulation 

approach (Hanisch, Tolujew, and Schulze 2005) focuses 

on a closer integration of simulation and manufacturing 

systems by obtaining or keeping simulation models up-

to-date with the investigated system. Besides the 

introduction of different methods for initializing the 

simulation with data from the real system, Hanisch et al. 

also discussed requirements and aspects of data and 

model quality. 

In previous work, we have already presented a 

solution for model generation and initialization as a 

potential way to obtain up-to-date simulation models 

(Bergmann and Strassburger 2010; Bergmann, Stelzer, 

and Strassburger 2011). The chosen approach is based 

on the Core Manufacturing Simulation Data 

Information Model (CMSD-IM). 

Symbiotic Simulation (Aydt et al. 2008a) and 

simulation based early warning systems (SEWS) 

(Hotz 2007) are further approaches which are focusing 

on the application of a closer integration of 

manufacturing information systems and simulation 

environments. While SEWS are an application of a 

close integration of information systems to monitor 

manufacturing systems, symbiotic simulation is 

discussing the possible interactions and benefits of 

simulation environments and manufacturing systems. 

Further, the aspects of symbiotic simulation systems 

enable a wide range of new applications of modeling 

and simulation. 

 The goal of both approaches is to enhance the 

quality of the decision making process. A key benefit of 

these approaches is the possibility to consider the 

current state of the system under investigation. This 

enables situation-based decision support and control, 

like prediction of the trajectory of crucial processes. It is 

also possible to predict the behavior of the investigated 

system after applying a control input or decision. This is 

also found in literature as “what-if”-analysis (WIA). 

Aydt et al. (2008b), for example, showed in a semi-

conductor manufacturing application how decision 

support can be enabled by variation of simple model 

parameters. There is no information given on modeling 

requirements or how to implement a symbiotic 

simulation.  

The observed applications of simulation-based 

decision support in manufacturing are limited to the 

variation of parameters or scheduling. This is primarily 

caused by the lack of appropriate methods for 

describing and modeling of complex control options 

and decisions. Beyond the simple variation of 

parameters or schedules, there is a wide variety of 

decisions and control options (discussed in section 4) 

which can not be described by simple parameters. The 

definition of complex scenarios often leads to an 

extensive manual modeling process. This makes it 

difficult to automatically generate such scenarios and 

iterate through them. We consider this an important 

requirement for simulation-based control. 

Neglecting these more complex control options, 

manufacturing control is already applied and discussed 

in several papers. A closed control loop involving 

manufacturing execution systems (MES) as controller is 

suggested by Kletti (2007) (Figure 1). His goal is to use 

a model of the system to evaluate a set of possible 

alternatives and choose the optimal one, regarding 

current objectives. These alternatives should consider 

the current system state and include possible decisions, 

strategies or control values. In reality there are no MES 

applications which implement an automatic control loop 

using discrete simulation techniques. Instead they used 

deterministic forward calculations (often wrongfully 

named “simulation”) and neglect the dynamic and 

stochastic behavior of the system. 

 

ERP
Manufacturing
System

Disturbance

Performance
Measurement

System
Input

System
Output

MES

Figure 1: Propagated control loop for manufacturing 

execution systems (according to Kletti 2007) 
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Figure 2: Overview of packages provided by CMSD-IM  

 

There is also related work in the area of automatic 

control engineering. Finding (semi)-optimal control 

vectors, analog to alternatives, using a model of the 

system is called model-predictive control (MPC). 

Model predictive control was applied to manufacturing 

systems by Wang et al. They were using analytical 

models (Wang, Rivera, and Kempf 2007), which are not 

available and applicable in most cases of manufacturing 

control and decision support. 

 To make MPC an accepted approach for 

manufacturing control it is necessary to use the discrete 

event simulation technique as a model base. This is 

caused by the lack of other modeling approaches which 

can describe the complex dynamic and stochastic 

properties of systems in this domain. 

Regarding the requirements for MPC, symbiotic 

simulation systems are well suited for establishing a 

closed-loop control. What is missing is a methodology 

of how common decision and control alternatives in the 

operation of manufacturing systems can be formally 

described and automatically generated.  

For this it is necessary to describe and model given 

alternatives in a way, which allows automated and 

enumerable combination. With this the controller will 

be enabled to directly evaluate the search space for 

finding an optimal scenario. 

We also show how based on this description 

complex scenarios can be designed, generated and 

afterwards be evaluated through simulation. 

Before we describe the modeling of alternatives in 

CMSD-IM, we have to discuss requirements for model 

predictive control based on a standard focusing on 

interoperability of manufacturing information systems 

and simulation environments. 

 

3. REQUIREMENTS FOR MODEL 

PREDICTIVE CONTROL 

The requirements for enabling a closed-loop control or 

decision support of manufacturing systems can be 

separated into four major aspects. Most of them are 

based on requirements for data exchange, model 

generation, symbiotic simulation, and online simulation. 

At first we have to discuss the representation of the 

investigated manufacturing system and secondly the 

automated generation and initialization of simulation 

models. The third aspect is the aggregation of results 

and the last aspect concerns how to generate complex 

scenarios to formulate WIAs. 

Based on our work on automated model generation 

and initialization we are using the CMSD-IM as 

standard for data exchange and modeling manufacturing 

systems. 

 

3.1. CMSD 

The primary objective of the CMSD Information Model 

is to facilitate interoperability between simulation 

systems and other manufacturing applications. The 

CMSD standard provides data structures and an 

information model (Figure 2) which was designed to 

firstly support the exchange of modeling information. 

To cover the complexity of production and logistic 

systems and a wide range of modeling approaches, the 

standard allows aspects of the system to be mapped in 

CMSD in multiple ways. 

The capabilities of CMSD were demonstrated in 

several research projects (Leong et al. 2006; Johansson 

et al. 2007), which mostly focus on the developing of 

new and modified production systems. Our own work 

has focused on using CMSD to support the operational 

phase of manufacturing systems (Bergmann, Stelzer, 

and Strassburger 2011). 

 

3.2. Modeling of Manufacturing Systems 

The basic idea of model-driven approaches like 

symbiotic simulation or model predictive control is to 

use a model of the investigated system to obtain 

information about its behavior. To assure the 

correctness of these results, a verified and validated 

model is needed. In our work we are using the CMSD-

IM to store and structure information. This is done by 

analyzing the real system or collecting information from 

information systems connected to the real system. 

Information about processes, resources and materials 

can, for instance, be imported from Enterprise Resource 

Planning (ERP) or Manufacturing Execution Systems 

(MES). 

CMSD-IM enables a data-driven modeling 

approach decoupled from modeling or simulation tools. 

The information model of CMSD-IM consists of several 

classes representing common objects found in 

manufacturing systems like machines and workers. It is 

also capable of defining process plans as well as 

representing job and order information. 
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Figure 3: Model Predictive Control / Decision Support System based 

on automated model generation and initialization 

 

CMSD-IM further allows the checking for logical 

correctness and therefore facilitates the detection of any 

missing information extracted from the external 

information systems. 

By using our web-based interface, decision makers 

can interactively complete necessary data. It is also 

possible to manipulate the conceptual model via the 

web-based user-interface. 

All objects and attributes of the CMSD-IM are 

presentable in an XML description using an associated 

schema. This characteristic enables the automated 

processing which is required for model generation. 

 

3.3. Description of Alternatives and Generation of 

complex Scenarios 

In contrast to systems which are analytically describable 

manufacturing systems are modeled using discrete event 

simulation models. With this, we have no simple way to 

determine an optimal solution. 

In the case of non-trivial manufacturing scenarios, 

we therefore have multiple dependencies of the system 

on potentially many parameters. We therefore cannot 

simply single out a simple variable for optimization.  

We therefore require a way to explicitly describe 

and model the different alternatives, which can 

afterwards be selected and combined by the controller 

or the decision support system. To achieve the 

automated processing of model descriptions we choose 

CMSD-IM to describe the alternatives (see section 4). 

To combine the modeled alternatives it is required 

to process them and build logically correct and valid 

scenarios, which afterwards will be automatically 

generated and executed (section 5).  

 

3.4. Automated Model Generation and Initialization 

To support decision makers or enable control to systems 

using discrete event simulation different opportunities 

have to be evaluated by simulating them. Therefore an 

executable simulation model is required. Finding 

(semi)-optimal solutions to an actual situation typically 

requires a huge amount of simulation runs, with 

different model variations. 

From previous work we already know that CMSD-

IM is well suited for representing manufacturing 

systems. To transform the CMSD-IM description into 

executable simulation models we are using an 

automated model generation approach. The model 

generation allows the creation of simulation models for 

different simulation tools, for example Plant Simulation 

(Siemens 2012) or SLX (Henriksen 1999). 

To use simulation as an operational decision 

support tool we also need to appropriately initialize the 

simulation model, i.e., a mechanism to keep the 

simulation model up-to-date with the real system. In 

previous work we described a methodology based on 

CMSD-IM to do this. This approach combines the 

automated model generation and initialization. This is 

enabled by CMSD-IMs ability to keep system load and 

state information of modeled entities as well. 

 

3.5. Distribution of Experiments and Result 

Aggregation 

After the scenario is designed and an executable model 

is built by the automatic model generation, the model 

has to be executed. In our framework we are able to 

distribute large amounts of scenarios which have to be 

evaluated. This is described by Bergmann, Stelzer, and 

Strassburger (2012). 
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The results of parallel executed simulation 

experiments have to be collected and aggregated to 

performance indicators. This requires the model to have 

provided information necessary to estimate these 

values. We are again using CMSD-IM to hold result 

information. This enables the packaging of model, 

scenario description, and results in a single data 

exchange format. 

The aggregated results are used by the controller to 

specifically generate new scenarios and can be 

presented to decision makers. 

Based on the above discussed requirements, model 

predictive control or model-based decision support 

systems can be implemented (shown in Figure 3). The 

established cycle of generation, execution and 

evaluation of alternative scenarios (WIA) is identical to 

common simulation-based optimization loop. The 

advantage of this approach is the ability to consider 

current state information of the real system and the 

complex search-space description  

 

4. DESCRIPTION OF ALTERNATIVES 

 

While investigating applications in manufacturing 

system, we identified typical fields for decision 

alternatives as shown in Table 1. 

 

Factors 
Job Schedule Shift Schedule Machine Utilization 

Job-priorities Human Resource 
Flexibility 

Alternative Capacities 

customer-

priorities 

Extra shifts Express Deliveries 

date-oriented 
priorities 

Overtimes Partial Deliveries 

  External Capacities/ 

Out-Sourcing 

Table 1: Common alternatives in manufacturing control 

 

The set of available alternatives, of course, highly 

depends on the specific application scenario. Therefore 

some of the discussed alternatives may not be available 

or reasonable in every case. 

After defining a set of common control options, we 

investigated ways for formally describing the possible 

alternatives. In relation to our previous work, we 

focused on how the Information Model provided by 

CMSD can be used for their representation. 

 

4.1. Job Scheduling  

The CMSD-IM provides a set of classes for the 

definition of schedules. A schedule in CMSD is 

reflected in the class Schedule, which consists of 

several ScheduleItems. In case of job scheduling, each 

ScheduleItem contains information when the assigned 

job has to be processed. Due the fact that more than one 

instance of the Schedule-Class could exist, CMSD is 

also capable of holding a set of different alternative 

schedules reflecting, for instance, different strategies of 

job-scheduling (e.g. job priorities vs. earliest due dates). 

A whole schedule contains a list of job references, 

tagged with time stamps for starting and finishing the 

associated job. The job reference can also link to an 

order reference, which is a list of jobs associated with a 

requesting party. With that it is also possible to 

prioritize customers. 

With these capabilities of CMSD we are capable of 

defining alternative schedules based on job priorities, 

customer priorities, date-oriented priorities or 

combinations of all three. 

Another common approach in job scheduling, also 

describable in CMSD, is to define the order of tasks by 

resource. In this case, a ScheduleItem in a schedule 

points to a defined ProcessStep instance and contains 

information about when it should be started. The 

ProcessStep-Class itself defines all required Resources 

like machines, workers or materials. For scheduling it is 

required to have previously defined all possible 

combinations of tasks and machines, which can perform 

these. 

With this approach we can even further define the 

exact order of tasks (ProcessStep) of jobs, giving us full 

flexibility in representation of alternative job schedules. 

Beyond the task based scheduling, CMSD-IM allows 

the combination of ProcessSteps from different 

ProcessPlans. In this case, there are no limitations for 

scheduling of parallel machines. However, additional 

processing is necessary and later discussed in 

section 4.3. 

 

4.2. Shift Scheduling 

Workers in CMSD can have defined times, in which 

they are available for performing their operations. In a 

wide-range of applications the management of human 

resources is a major issue. Besides the task of 

scheduling times or shifts, it is also crucial to take into 

account the personal skills when assigning workers to 

process steps. The CMSD-IM provides several 

modeling approaches to address this. Every resource, 

including workers, is tagged with a CalendarReference. 

A Calendar defines a static list of times associated to 

Shifts or a reference to a ShiftSchedule. ShiftSchedules 

are more flexible and similar to the Schedule-Class used 

for job scheduling. There can be a set of alternative 

ShiftSchedules, but a resource can only be associated to 

one specific ShiftSchedule (via a CalendarReference). 

A ShiftSchedule consists of a list of time-tagged 

ShiftReferences. The Shift-Class defines start and end 

times, breaks, and applicable days. In combination with 

a ShiftSchedule, it is possible to define the availability 

of resources on an arbitrarily level of detail. To perform 

a continuous scheduling of resources, it is necessary to 

define every time of activity (excluding breaks) as a 

Shift and merge them via a ShiftSchedule. 
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Figure 4: ProcessPlan Definition (XML) 

 

In some applications there are planned or potential 

deviations from the common Shift. In these cases we 

suggest to define a concurrent set of Shifts and group 

them into an alternative ShiftSchedule. In this approach 

it is only necessary to replace the schedule used for 

most cases with the special schedule. 

With these capabilities of CMSD we are capable of 

representing arbitrary alternative shift schedules which 

can subsequently be used for evolution in the 

simulation. 

 

4.3. Variation of Processes 

Modeling the variation of processes is quite different to 

job or shift scheduling in CMSD. Processes are 

described by the ProcessPlan class which typically 

consists of a list of ProcessStep instances (see figure 4). 

A typical control option in the operation of a 

manufacturing system is the definition and selection of 

process alternatives for job or product types. 

In case of machine failures or scheduled 

maintenance operations, alternative resources can be 

used to reduce the impact of such temporal bottlenecks. 

Like parallel machines, in CMSD-IM every possible 

process has to be pre-defined. If one or more tasks have 

to be changed in a process, a new ProcessPlan derived 

from the original one has to be defined. In this case, 

alternative process descriptions can be linked to (sub)-

jobs or orders, changing the assigned EffortDescription. 

A similar line of action has to be performed if parallel 

machine setup is used. In principle, it is also possible to 

describe alternative resources in a ProcessStep instance, 

but they are not useful for scheduling of processes on 

parallel machines.  

If the manufacturing system is operated by task-

based scheduling, managing temporal variations of the 

material flow is also possible by using the Schedule-

Class. As discussed in 4.1, the ScheduleItem-Class is 

able to describe the effort of tasks via ProcessSteps. 

Unfortunately CMSD provides no reference to an 

assigned job or order, which would be necessary to 

determine the effort for this. 

To address this lack, we suggest using the CMSD 

provided property concept to attach a job or an order-

reference to every ScheduleItem. Using this approach it 

is possible to assign every ScheduleItem to its proper 

job or order and determine the planned effort. 

In summary, we can use CMSD to describe 

process alternatives in two different ways (direct 

modeling of alternatives in the ProcessPlan class vs. 

indirect modeling using the Schedule class). This gives 

the possibility to describe the usage of alternative 

capacities (compare table 1). 

 

4.4. Additional Modeling 

Partial or complete outsourcing of orders is modeled in 

the CMSD-IM using the Order or Job classes. Every 

instance is assigned to an executing party, which can be 

targeted to an external source. Further it is also possible 

to model costs of jobs, orders, resources, and tasks. By 

this, we can easily model express-deliveries of required 

materials or preconditioned orders and their financial 

impact on any cost functions. 

 

5. GENERATION OF ALTERNATIVES AND 

COMPLEX SCENARIOS 

 

While the previous section discussed the explicit 

description of alternatives to an existing model and how 

to reflect these alternatives in CMSD-IM, this section 

focuses on detecting further alternatives (possibly 

implicitly stored in the CMSD-IM) and composing 

more complex scenarios based on previously described 

alternatives and their variations. 

The finding of alternatives beyond the explicitly 

modeled process definitions is based on investigating 

the predefined ProcessPlan instances. This is done by 

processing of the contained ProcessSteps and finding 

matches of output and input behavior, like consumed or 

produced parts or part types. 
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Figure 5: Modification of process definitions by exchange of required resources to create alternatives. 

 

In our approach we assume that each ProcessStep 

reflects a task, which has to be performed by a defined 

set of resources. We also assume that tasks are 

exchangeable by another task exactly matching its 

input-output mapping. Based on these assumptions 

resources used to perform equivalent tasks are also 

exchangeable. Further information about required skills, 

setup-states and differing processing times can be 

determined by evaluating the associated resource 

references. 

 

5.1. Iterating Process Alternatives 

While generating schedules of jobs or human-

resources are widely covered by commercial scheduling 

libraries, we here focus on generating alternative 

processes based on the modeled manufacturing systems. 

There are two prerequisite for our approach. At first the 

system and its current state is reflected in a CMSD-IM 

description. Second the manufacturing allows adaption, 

i.e., the system has a certain redundancy or unused 

resource potential. 

Beyond the explicit modeling of varied processes, 

it is possible to determine alternative resources by 

processing the CMSD-IM model. Equivalent to the 

CMSD-IM approach, there are two stages for finding 

alternatives. The first stage is to process available 

ProcessPlan’s to find a matching of the produced parts 

or rather types of parts. In case of the ProcessPlan-level, 

they accord with a job. If there were explicitly modeled 

alternative processes for a job type, they would have 

matching input and output. 

The next step is to use the determined information 

of equivalent resources to generate alternative process 

description (see top of figure 5). This requires a second 

pass, recursively processing ProcessPlans. For every 

existing ProcessStep there are two possible actions. If 

there is no alternative resource availed, the ProcessStep 

is kept untouched. Else, in the first pass an alternative 

ProcessStep was found. In this case, the processing is 

branched (forked) and an alternative ProcessPlan will 

be created, using the previously scanned ProcessSteps 

(see of figure 5). For the current ProcessStep we are 

able to create a new ProcessStep based on the 

alternative ProcessStep. To keep the consistency of the 

model, it is required to copy the required setup-states 

and worker skills. This transformation requires the 

absence of referenced human resources and machine-

based skill. 

If human resources have to be considered, the non-

human resources are handled like described above, but 

the required human resources have to be compared by 

skills. If the skills of the worker performing the replaced 

operation are sufficient to perform the alternative task, 

we can reuse the references. If not, the human resources 

from the alternative ProcessStep have to be taken to the 

newly created alternative. 

 

5.2. Dynamical building of Process Definitions 

Another second practicable approach to determine 

alternative process definitions for exceptional situations 

or for analyzing possibilities is to use the current system 

load (for example: job situation) and to schedule these 

using all available operations. This requires the 

existence of an external scheduling library or software. 

The result of the scheduling process is transformed into 

a Schedule-Class instance of CMSD-IM. In this case it 

is necessary to use ScheduleItems based on 

ProcessSteps and tag them with the assigned job/order.  
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By processing a selected Schedule along the job 

reference it is possible to build an individual 

ProcessPlan and attach it to the job object by the 

JobEffortDescription. 

 

5.3. Design and Generating of Complex Scenarios 

 

For truly enabling MPC based on using discrete event 

simulation to evaluate different control options, a 

approach for generating complex scenarios is needed. 

Complex scenarios can contain combinations of the 

previously discussed alternatives. 

In previous work we already discussed the 

automated model generation and initialization. Further 

we discussed several strategies to distributed execution 

of simulation experiments as a prerequisite for an 

efficient “what-if-analysis” process (WIA). 

The missing link, like discussed in section 1, is the 

generation of complex alternative scenarios based on 

described decisions or control options. To enable a 

systematical experimentation, it was necessary to 

investigate the possibilities how to consistently model 

control or decision options (section 4). 

In most scenarios it is required to apply a subset of 

alternatives to influence the system behavior. A 

controller and also decision support systems have to 

build complex scenarios, based on combination of 

available alternatives. In case of MPC, the controller 

has to do this automatically. 

In our approach this is done by building complex 

scenarios by selecting subsets of the described decision 

and control alternatives. To define the subset, we are 

using a binary genetic encoding. To solve the problem 

that some alternatives, like scheduling or parameters are 

themselves iterable, we also use a genetic encoded 

description. By concatenation of the different encoding 

string, complex scenario descriptions are created. This 

string is used to generate a derivation of the base model 

of the manufacturing system, represented as a CMSD-

IM description. 

Using a binary genetic encoding also enables us to 

clip several dimensions of the search-space. To reduce 

the required iterations to find (semi)-optimal solutions 

we use a subset-selection algorithm, which starts with a 

minimal set of alternatives used for building complex 

scenarios. This subset is extended by unused 

alternatives, triggered by defined performance indices 

(figure 6). The used information model also enables us 

to determine the validity of the generated model. 

 

5.4. Comparison and Discussion 

To evaluate our approach to describe and automatically 

generate alternative control options or decisions and 

build complex scenarios, we implemented a CMSD-IM 

based symbiotic simulation environment. 

The core of the test environment is an automated 

model generator, which is also able to initialize the 

generated models with the current system state. The 

model generator transforms a CMSD-IM description of 

a manufacturing system into an executable simulation 

model. This was recently discussed in previous work 

(Bergmann 2010; Bergmann, Stelzer and Strassburger 

2011). The information flow is defined as shown in 

Figure 7.  

We also implemented both ways of generating 

alternative process definitions to compare the impact on 

complexity and usability. Iterating the available process 

definitions and generating new ones based on 

compatible single-operations can generate a large 

amount of alternative process-definitions. This is 

amplified by the amount of alternative single-

operations, especially induced by parallel machine-

configurations or a high degree of redundancy. In this 

case we suggest focusing on explicit modeling and not 

using implicit information. 

The second way of generating alternative processes 

(section 5.2) needs the presence of an external 

scheduling library which has to be provided with a set 

of process definitions. As previously discussed, 

alternative ProcessSteps can be regarded as parallel 

machine problems. This can lead to well-known 

problems regarding the solution complexity.  

Our focus is to use a combinatorial iteration 

comparable to genetic encoding to build schedules. This 

only requires a mechanism to filter invalid schedules, 

which can be easily implemented. 
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Figure 7: Information flow of the test environment for model generation and distributed execution. 

 

6. CONCLUSION AND FUTURE WORKS 

To enable model-based control, like MPC, for 

manufacturing systems, a way had to be found to 

resolve the problem of how to automatically iterate the 

search-space spanned by common control alternatives. 

In this paper we introduced an approach how to 

formally describe and model typical decision and 

control alternatives in the operation of manufacturing 

systems. We also presented a methodology for using 

implicitly stored information for detecting further 

control alternatives, which can be combined with 

explicitly modeled alternatives to complex scenarios. 

Using a Symbiotic Simulation System as a base, we 

enabled situation-based model-predictive control. The 

Symbiotic Simulation was implemented based on 

previously discussed work on automated model 

generation and initialization. 

As shown in the discussion, our approach can also 

be useful to enhance model-driven decision support 

systems. The results of the work described in this paper 

enable us to investigate the MPC approach in real and 

larger scale manufacturing applications, which is a 

subject of future work. 

Future work will also focus on intelligently 

handling the large amount of computation time needed 

to evaluate simulation experiments.  

We also focus on applications for Exception based 

Manufacturing Execution Systems and the preventive 

evaluation of future scenarios in Early Warning 

Systems.  
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