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ABSTRACT 
Statistical accuracy measures are generally used to 
assess the effectiveness of demand forecasting methods. 
In the final analysis, however, these methods should be 
judged according to whether they actually lead to better 
inventory control performance. We empirically evaluate 
four methods (simple moving average, single 
exponential smoothing, Croston’s method, and the 
Syntetos-Boylan approximation) in terms of statistical 
forecast accuracy and, more importantly, inventory 
system efficiency. We apply four forecasting methods 
to an industrial dataset involving more than 1000 stock-
keeping units of a firm in the professional electronics 
sector. Demand is often intermittent, erratic, or both 
(i.e., lumpy). We devise and use a two-stage 
distribution involving uniform and negative binomial 
distributions to model the actual demand distribution, 
where possible. We then simulate the stock control 
performance of a (T,S) inventory system with respect to 
target customer service levels. 
 
Keywords: intermittent/lumpy demand forecasting, 
forecast accuracy, inventory control, order-up-to 
periodic review system, simulation 

 
1. INTRODUCTION 
Demand for a stock-keeping unit (SKU) is said to be 
intermittent if there are periods in which demand is 
zero. When demand is intermittent and there are large 
variations in demand sizes, demand is said to be lumpy. 
Syntetos, Boylan, and Croston (2005) proposed a 
theoretically coherent scheme for categorizing demand 
into smooth, erratic, intermittent, or lumpy. In this 
categorization scheme, the average inter-demand 
interval (ADI) and the squared coefficient of variation 
(CV2) of demand are compared with cutoffs of 1.32 for 
ADI and 0.49 for CV2, as follows:  
 

• smooth demand: ADI < 1.32, CV2 < 0.49; 
• erratic demand: ADI < 1.32, CV2 > 0.49; 
• intermittent demand: ADI > 1.32, CV2 < 0.49; 
• lumpy demand: ADI > 1.32, CV2 > 0.49. 

 

This categorization scheme has been cited and applied 
by various researchers (e.g., Ferrari, Pareschi, 
Regattieri, and Persona 2006; Gutierrez, Solis, and 
Mukhopadhyay 2008; Altay, Rudisill, and Litteral 
2008; Mukhopadhyay, Solis, and Gutierrez 2011).  

In the intermittent demand forecasting literature, 
many papers have been published on the relative 
performance with respect to statistical measures of 
accuracy of various forecasting methods, most notably 
simple exponential smoothing (SES), Croston’s method 
(Croston 1972), and an estimator proposed by Syntetos 
and Boylan (2005). Schultz (1987) suggested that 
separate smoothing constants, αi  and αs, be used for 
updating the inter-demand intervals and the nonzero 
demand sizes, respectively, in place of Croston’s single 
smoothing constant α. We note, however, that 
Mukhopadhyay, Solis, and Gutierrez (2011) 
investigated separate smoothing constants, αi  and αs, in 
forecasting lumpy demand and did not observe any 
substantial improvement in forecast accuracy.   

Syntetos and Boylan (2001) pointed out a positive 
bias in Croston’s method arising from an error in his 
mathematical derivation of expected demand. They 
proposed (Syntetos and Boylan 2005) a correction 
factor of ⎟

⎠
⎞⎜

⎝
⎛ − 21 iα  – where αi is the smoothing constant 

used in updating the inter-demand interval estimate – to 
be applied to Croston’s estimator of mean demand. The 
revised estimator is now often referred to (e.g., 
Gutierrez, Solis, and Mukhopadhyay 2008; Boylan, 
Syntetos, and Karakostas 2008; Babai, Syntetos, and 
Teunter 2010; Mukhopadhyay, Solis, and Gutierrez 
2011) in the intermittent demand forecasting literature 
as the Syntetos-Boylan approximation (SBA).  

We also evaluate the 13-month simple moving 
average (SMA13) method, which is based upon 
dividing the 52 weeks in a year into 13 four-week 
“months”. SMA13 has been applied in a number of 
recent intermittent demand forecasting studies (e.g., 
Syntetos and Boylan 2005, 2006; Boylan, Syntetos, and 
Karakostas 2008) in view of its being built into some 
commercially available forecasting software. 
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This paper is organized as follows. In section 2, we 
discuss the forecasting methods under evaluation, the 
statistical measures of forecast accuracy that we use, 
and the nature of the industrial dataset and how data 
partitioning is performed. In the next section, we 
propose a two-stage approach to the modeling of 
demand distribution. We proceed to report on our 
empirical investigation of forecasting performance, 
based upon statistical accuracy measures, on the 
performance block of the actual data and on the 
simulated demand distribution. The performance of the 
forecasting methods in terms of inventory systems 
efficiency is reported in section 4. We present our 
conclusions in the final section.    

 
2. FORECASTING METHODS AND DEMAND 

DATA 
 

2.1. Forecasting Methods and Accuracy Measures 
We evaluate four methods that are well-referenced in 
the intermittent demand forecasting literature: SMA13, 
SES, Croston’s, and SBA. For the latter three methods 
which involve an exponential smoothing constant α, 
low values of α up to 0.20 have generally been 
suggested for lumpy demand (e.g., Croston 1972; 
Johnston and Boylan 1996). We evaluate four α values 
of 0.05, 0.10, 0.15, and 0.20 as used in a number of 
recent studies (e.g., Syntetos and Boylan 2005; 
Gutierrez, Solis, and Mukhopadhyay 2008; 
Mukhopadhyay, Solis, and Gutierrez 2011). 

In the following sections where our results are 
presented, we only report those pertaining to SBA and 
not those for Croston’s method, as we have found the 
former to consistently outperform the latter.       

Gutierrez, Solis, and Mukhopadhyay (2008) and 
Mukhopadhyay, Solis, and Gutierrez (2011) found a 
neural network (NN) model, when applied to an 
industrial dataset exhibiting lumpy demand, to perform 
better overall than the SES, Croston’s and SBA 
methods across different scale-free error measures. 
However, NN modeling requires a substantial number 
of time periods to ‘train’ or calibrate the model, which 
is not the case in the current study.  

In addition to applying the more commonly used 
root mean squared error (RMSE) and mean absolute 
deviation (MAD) as forecast accuracy measures, we 
have also used mean absolute percentage error (MAPE), 
which is the most widely used accuracy measure for 
ratio-scaled data. The traditional MAPE definition, 
which involves terms of the form tt AE ||  (where At 
and Et, respectively, represent actual demand and 
forecast error in period t), fails when demand is 
intermittent. We applied an alternative specification 
(e.g., Gilliland 2002) of MAPE as a ratio estimate, 
which guarantees a nonzero denominator: 
 

100MAPE
11

×⎟
⎠

⎞
⎜
⎝

⎛
= ∑∑

==

n

t
t

n

t
t AE .            (1)        

 

Eaves and Kingsman (2004) used the same three 
error statistics (MAPE, RMSE, and MAD) in 
comparing the performance of several methods (SES, 
Croston’s, SBA, 12-month simple moving average, and 
the previous year’s simple average) in forecasting 
demand for spare parts for in-service aircraft of the 
Royal Air Force (RAF) of the UK.  They found SBA to 
provide the best results overall using MAPE, but the 12-
month simple moving average yielded the best MADs 
overall. Willemain, Smart, Schockor, and DeSautels 
(1994) used median absolute percentage error 
(MdAPE), in addition to MAPE, RMSE, and MAD, as 
forecast accuracy measures to compare performance of 
SES and Croston’s methods in intermittent demand 
forecasting. Noting that relative results were the same 
for all four measures, they reported only MAPEs. 
 
2.2. Industrial Dataset and Partitioning 
In the current study, we apply the four methods to an 
industrial dataset involving about 1500 items generally 
held in stock at a distribution center and a number of 
manufacturing plants of a firm operating in the 
professional electronics sector. The raw data consist of 
individual transactions as reported within the 
company’s enterprise resource planning system, 
representing actual stock withdrawals. We initially 
aggregate the transactional data into weekly usage 
quantities, and further aggregate these usage quantities 
based on 13 four-week “months” in a calendar year. In 
this case, the monthly usage quantities do not constitute 
actual demand quantities, as the inventory on hand at 
the time of a transaction may not meet the required 
quantity. However, since demand is not traditionally 
tracked as well as actual usage in a transaction-based 
system, we treat monthly usage quantity as a surrogate 
measure of monthly demand.     

This process yielded 66 months of “demand” data, 
which we broke down into initialization, calibration, 
and performance measurement blocks (as in Boylan, 
Syntetos, and Karakostas 2008) with each block 
consisting of 22 months in our study. 

For each of the SES, Croston’s and SBA methods, 
we selected α based upon the minimum MAPE attained 
in the calibration block for use as the smoothing 
constant in the performance block. 

Given that the various SKUs represent end items, 
sub-assemblies, components, and spare parts that are 
used for building projects, retail sales, or servicing of 
professional electronic products, it is understandable 
that we found many of them to actually exhibit erratic 
or lumpy demand based on the earlier cited 
categorization scheme (Syntetos, Boylan, and Croston 
2005).  

In this paper, we report findings on a limited 
sample consisting of ten SKUs, with demand statistics 
presented in Table 1. These ten SKUs are not 
representative of our entire dataset. They were selected 
principally to demonstrate the approach we have taken, 
as well as to illustrate the results we have obtained thus 
far in both the empirical investigation of forecasting 

Proceedings of the International Conference on Modeling and Applied Simulation, 2012
978-88-97999-10-2; Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds. 368



performance and the empirical investigation of 
inventory control performance. The first nine SKUs are 
lumpy, while the last one is categorized as erratic 
(although its ADI of 1.27 is just below the cutoff of 1.32 
as specified for lumpy demand). 
 

Table 1: Sample of 10 SKUs 
SKU # 1 2 3 4 5
Mean 10.97 1.44 0.71 9.74 2.82
Std Dev 13.30 2.23 1.76 13.82 7.19

1.47 2.41 6.11 2.01 6.52
ADI 1.35 2.00 4.43 1.65 4.40
% of Zero Demand 27.3% 50.0% 80.3% 42.4% 80.3%
Demand Category Lumpy Lumpy Lumpy Lumpy Lumpy

SKU # 6 7 8 9 10
Mean 3.47 4.85 9.27 3.03 6.37
Std Dev 5.01 6.76 19.35 8.03 7.85

2.09 1.95 4.35 7.02 1.52
ADI 1.61 1.65 3.94 4.13 1.27
% of Zero Demand 37.9% 39.4% 77.3% 78.8% 24.2%
Demand Category Lumpy Lumpy Lumpy Lumpy Erratic

2CV

2CV

 
 
2.3. Modeling of Intermittent/Lumpy Demand 
A number of recent studies have referred to the use of a 
negative binomial distribution (NBD) to model the 
distribution of intermittent or lumpy demand items 
(e.g., Syntetos and Boylan 2006; Boylan, Syntetos, and 
Karakostas 2008; Syntetos, Babai, Dallery, and Teunter 
2009). Syntetos and Boylan (2006) have argued that the 
NBD satisfies both theoretical and empirical criteria.  

The NBD with parameters r and p, where 10 ≤< p  
and r > 0, is given by the discrete density function (e.g., 
Mood, Graybill, and Boes 1974): 
 

( ) { } ),(1
1

),;( ,...2,1,0 xIpp
x
xr

prxf xr −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
=               (2)

   
where the parameters p and r are a probability of 
“success” and a target number of successes, 
respectively. A realization x of the random variable X in 
this case represents a number of failures before the rth 
success is attained. The NBD has mean 
  

p
prXE )1(][ −

==μ                 (3) 

 
and variance 
 

2
2 )1(][

p
prXV −

==σ .                (4) 

 
Since V[X] = E[X]/p, it follows that the variance of the 
NBD is greater than its mean.  

When r = 1, the NBD reduces to a geometric (or 
Pascal) distribution with density  

 
( ) { } )(1);( ,...2,1,0 xIpppxf x−= .               (5) 

 
To generate an NBD to approximate the 

distribution of a random variable with mean μ and 

variance σ2, we simultaneously solve (3) and (4) and 
obtain: 
 

2ˆ
σ
μ

=p                     (6) 

 
and  
 

μσ
μ
−

= 2

2

r̂ ,                      (7) 

 
as initial estimates of the NBD parameters (using the 
mean x  and the variance s2 of the 66-month actual 
demand time series as values of μ and σ2, respectively). 
These expressions for p̂  and r̂ , however, represent 
values in the set ℜ of real numbers, while the NBD 
parameter r is supposed to be integer-valued. In 
applying (6) and (7), we generally obtain a non-integer 
value of r̂ . Thus, in seeking to simulate the actual 
demand distributions, we have investigated the rounded 
up and rounded down values of r̂  while adjusting the 
value of p̂ . However, we have found that, for many of 
the SKUs under study, it is not possible to obtain 
adjusted values of r̂  and p̂  that would lead to an NBD 
with mean, variance, CV2, and ADI that are reasonably 
close to those of the actual demand distribution. 
For a SKU with a proportion z of periods with zero 
demand is relatively high, we simulate the demand 
distribution by way of a two-stage process: a uniform 
distribution in stage 1 and an NBD in stage 2. Stage 1 
involves an appropriately determined probability z1 of 
zero demand, taking into consideration both z as well as 
the NBD in stage 2. We determine the mean and 
variance of the nonzero demands in the actual 
distribution and use these to calculate first 
approximations of the NBD parameters in stage 2. We 
test rounded up and down values of the parameter 
estimate r̂  and refine the parameter estimate p̂  as the 
values of mean, variance, CV2, and ADI of the actual 
and simulated demand distributions are compared. 

We attempted to simulate demand distributions of 
the SKUs under study applying our two-stage approach, 
performing 100 runs each consisting of 100 four-week 
“months”, for a total of 10,000 months in each 
experiment. We used AnyLogic as our simulation 
platform, but with some code written in Java to handle 
mathematical modeling which could not be readily 
undertaken within the standard AnyLogic library. We 
accordingly selected z1 for stage 1 and the parameters r 
and p of the NBD in stage 2 based on what appeared to 
yield the best combination of values of mean, variance, 
CV2, and ADI of the simulated distribution in 
comparison with those of the actual distribution.  

Generally, we found the percentages of zero 
demand and ADIs generated by our simulation approach 
to be reasonably close to those of the actual demand 
data. However, because the mean and standard 
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deviation of the simulated distribution using a 
combination of values of z1, r and p are usually not fully 
consistent with those of the actual distribution, we 
tended to favor standard deviation and CV2, which 
measure variability of demand sizes, in selecting the 
final parameter values.  

Table 2 summarizes the parameters as determined 
and used for simulating the demand distributions of our 
sample of ten SKUs, applying our two-stage approach. 
In the currently reported sample of ten SKUs, the CV2 
values for the simulated distributions are greater than, 
but less than 120% of, CV2 values for the actual data –
except for SKUs 2 and 6 (with simulated values being 
98% and 96% of actual CV2). The percentages of zero 
demand and ADIs are generally close to the actual 
demand distribution values.  
 
Table 2: Simulated Demand Distributions for Sample of 
10 SKUs Using Two-Stage Approach  
SKU # 1 2 3 4 5
Actual Demand Distribution
Mean 10.97 1.44 0.71 9.74 2.82
Std Dev 13.30 2.23 1.76 13.82 7.19

1.47 2.41 6.11 2.01 6.52
ADI 1.35 2.00 4.43 1.65 4.40
% of Zero Demand (z ) 27.3% 50.0% 80.3% 42.4% 80.3%
Simulated Demand Distribution
Stage 1: Uniform

21.9% 25.4% 79.1% 38.5% 80.0%
Stage 2: NBD
r 1 1 7 1 2
p 0.0691 0.3300 0.6667 0.0640 0.1230
Two-Stage Results
Mean 10.26 1.47 0.72 9.07 2.82
Std Dev 13.30 2.23 1.77 13.79 7.24

1.71 2.36 6.27 2.34 6.77
ADI 1.38 1.98 4.89 1.72 4.96
% of Zero Demand 27.3% 49.5% 79.9% 42.2% 80.3%

SKU # 6 7 8 9 10
Actual Demand Distribution
Mean 3.47 4.85 9.27 3.03 6.37
Std Dev 5.01 6.76 19.35 8.03 7.85

2.09 1.95 4.35 7.02 1.52
ADI 1.61 1.65 3.94 4.13 1.27
% of Zero Demand (z ) 37.9% 39.4% 77.3% 78.8% 24.2%
Simulated Demand Distribution
Stage 1: Uniform

25.1% 30.6% 77.3% 77.1% 14.2%
Stage 2: NBD
r 1 1 5 1 1
p 0.1711 0.1263 0.1085 0.0740 0.1171
Two-Stage Results
Mean 3.55 4.70 9.09 2.87 6.45
Std Dev 4.98 6.80 19.35 8.08 7.96

2.01 2.14 4.80 8.16 1.53
ADI 1.61 1.66 4.38 4.62 1.32
% of Zero Demand 37.7% 39.7% 77.1% 78.8% 24.4%

2CV

2CV

nzp ˆ

1z

2CV

2CV

nzp ˆ

1z

 
 
3. FORECASTING PERFORMANCE 
 
3.1. Forecast Accuracy: Performance Block 
The exponential smoothing constant α selected from 
among the candidate values (0.05, 0.10, 0.15, or 0.20) 
for each of the SES and SBA methods, based upon the 
minimum MAPE in the calibration block, are shown in 
Table 3. When accordingly applying SMA13, SES, and 
SBA to actual demand data in the performance block, 
the resulting error statistics are likewise reported in the 
same table. There does not appear to be a method that 
exhibits superior performance across the ten SKUs.    

 
Table 3: Error Statistics when Applying Various 
Methods to the Performance Block 
SKU # 1 2 3 4 5
Smoothing Constants Selected in Calibration Block
SES 0.20 0.20 0.20 0.10 0.20
SBA 0.05 0.05 0.05 0.10 0.05

MAPE
SMA13 90.36% 160.84% 150.43% 153.09% 162.60%
SES 85.89% 157.94% 163.77% 144.16% 151.70%
SBA 82.83% 196.25% 122.93% 140.08% 169.21%
Best MAPE SBA SES SBA SBA SES

MAD
SMA13 9.570 0.804 1.846 10.647 4.287
SES 9.097 0.790 2.010 10.025 3.999
SBA 8.772 0.981 1.509 9.742 4.461
Best MAD SBA SES SBA SBA SES

RMSE
SMA13 11.486 0.946 2.665 12.026 5.792
SES 10.925 0.876 2.752 11.423 5.702
SBA 10.723 1.076 2.681 10.914 5.683
Best RMSE SBA SES SMA13 SBA SBA

SKU # 6 7 8 9 10
Smoothing Constants Selected in Calibration Block
SES 0.20 0.05 0.05 0.15 0.20
SBA 0.05 0.05 0.05 0.05 0.20

MAPE
SMA13 102.62% 85.84% 177.91% 284.23% 98.83%
SES 110.62% 89.14% 191.34% 261.61% 98.25%
SBA 122.19% 90.04% 201.22% 255.94% 100.45%
Best MAPE SMA13 SMA13 SMA13 SBA SES

MAD
SMA13 2.332 6.594 9.490 5.168 5.301
SES 2.514 6.848 10.176 4.756 5.270
SBA 2.777 6.795 9.906 4.653 5.388
Best MAD SMA13 SMA13 SMA13 SBA SES

RMSE
SMA13 3.312 9.064 15.419 6.718 5.977
SES 3.409 9.488 14.924 6.293 6.063
SBA 3.245 9.797 14.956 6.234 6.156
Best RMSE SBA SMA13 SES SBA SMA13  
 
3.2. Forecast Accuracy: Simulated Demand 
When applying the methods to the simulated demand 
distributions, however, we see in Table 4 that the SBA 
method outperforms SMA13 and SES overall across the 
three error statistics in nine out of the ten SKUs. This 
suggests the overall superiority of SBA over a 
sufficiently longer time frame. 
 
4. INVENTORY CONTROL PERFORMANCE 
Traditionally, demand forecasting and inventory control 
have been treated independently of each other (Tiacci 
and Saetta 2009; Syntetos, Babai, Dallery, and Teunter 
2009).  However, demand forecasting performance, as 
assessed using standard statistical measures of accuracy 
may not necessarily translate into inventory systems 
efficiency (Syntetos, Nikolopoulos, and Boylan 2010).   
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Table 4: Error Statistics when Applying Various 
Methods to Simulated Demand Distributions 
SKU # 1 2 3 4 5
Smoothing Constants Selected in Calibration Block
SES 0.20 0.20 0.20 0.10 0.20
SBA 0.05 0.05 0.05 0.10 0.05

MAPE
SMA13 97.67% 114.02% 165.42% 116.67% 163.50%
SES 99.39% 115.98% 163.89% 115.58% 163.96%
SBA 93.82% 111.92% 154.96% 113.61% 163.54%
Best MAPE SBA SBA SBA SBA SMA13

MAD
SMA13 10.118 1.681 1.203 10.551 4.576
SES 10.299 1.710 1.192 10.451 4.604
SBA 9.716 1.646 1.124 10.268 4.578
Best MAD SBA SBA SBA SBA SMA13

RMSE
SMA13 13.899 2.319 1.844 14.499 7.602
SES 14.136 2.363 1.825 14.293 7.643
SBA 13.544 2.259 1.800 14.087 7.264
Best RMSE SBA SBA SBA SBA SBA

SKU # 6 7 8 9 10
Smoothing Constants Selected in Calibration Block
SES 0.20 0.05 0.05 0.15 0.20
SBA 0.05 0.05 0.05 0.05 0.20

MAPE
SMA13 104.36% 108.09% 156.34% 169.37% 93.82%
SES 106.08% 104.73% 156.68% 168.40% 94.92%
SBA 101.60% 102.67% 156.54% 163.98% 91.49%
Best MAPE SBA SBA SMA13 SBA SBA

MAD
SMA13 3.728 5.106 14.209 4.8362 6.046
SES 3.791 4.944 14.199 4.8097 6.118
SBA 3.624 4.847 14.121 4.6655 5.897
Best MAD SBA SBA SBA SBA SBA

RMSE
SMA13 5.212 7.113 20.108 8.4369 8.262
SES 5.285 6.940 19.665 8.4355 8.383
SBA 5.046 6.935 19.529 8.1122 8.248
Best RMSE SBA SBA SBA SBA SBA  

 
A periodic review inventory control system has 

been recommended in dealing with intermittent demand 
(e.g., Sani and Kingsman 1997; Syntetos, Babai, 
Dallery, and Teunter 2009). Some recent intermittent 
demand forecasting studies (e.g., Eaves and Kingsman 
2004; Syntetos and Boylan 2006; Syntetos, Babai, 
Dallery, and Teunter 2009; Syntetos, Nikolopoulos, 
Boylan, Fildes, and Goodwin, 2009; Syntetos, 
Nikolopoulos, and Boylan 2010; Teunter, Syntetos, and 
Babai 2010) that evaluate both forecasting and 
inventory control performance have used the order-up-
to (T,S) periodic review system, where T and S denote 
the review period and the base stock (or ‘order-up-to’ 
level), respectively. 

We assume in the current study a (T,S) inventory 
control system with full backordering. Inventory is 
reviewed on a monthly basis (T = 1). For most SKUs, 
the reorder lead time is more or less one month; we thus 

set L = 1. Let tI  and tB , respectively,  denote the on-
hand inventory and backlog at the time of review t. The 
literature on inventory control suggests a safety stock 
component in order-up-to levels to compensate for 
uncertainty in demand during the “protection interval” 
T+L. For each demand series, we calculated the 
standard deviation, cals , of monthly usage quantities 
during the calibration block. We apply a “safety factor” 
k as a multiplier of cals  to obtain a safety stock level of 

calsk ⋅ . This safety stock determination is more or less 

similar to the dLTz σ⋅+⋅  suggested when daily 
demand during the protection interval is assumed to be 
identically and independently normally distributed with 
standard deviation dσ  (e.g., Silver, Pyke, and Peterson 
1998). With the safety stock component, the 
replenishment quantity to order is  

 

ttcal
LTt

t jt BIskFQ +−⋅+=∑ ++

+1
.                (8) 

 
We simulate performance of the (T,S) inventory 

control system based on the two most commonly 
specified service level criteria (Silver, Pyke, and 
Peterson 1998). One service criterion is a target average 
probability of no stockout per review period.  The other 
service measure is a target average fraction of demand 
to be satisfied from stock on hand, also called a fill rate 
(FR) which has considerably more appeal for 
practitioners. 

With a 95% target FR, averages of inventory on 
hand arising in the simulation experiments from the use 
of SMA13, SES, and SBA are reported in Table 5. We 
find that, for all of the ten SKUs, the average inventory 
on hand is consistently lowest when SBA is the 
forecasting method applied.        
 
Table 5: Average Inventory on Hand for a 95% Fill 
Rate 
SKU # 1 2 3 4 5
SMA13 34.77 6.24 6.33 39.50 29.03
SES 35.47 6.40 6.16 38.73 28.14
SBA 33.61 6.07 6.15 37.56 27.54

SKU # 6 7 8 9 10
SMA13 13.51 18.32 59.00 37.85 20.02
SES 13.87 17.72 57.01 37.74 20.34
SBA 13.07 17.69 56.48 37.39 19.86  
 

For the same 95% target FR, the means of total 
backlogs over 100 months (as averaged over 100 
replications) are reported in Table 6. We find these 100-
month means to be roughly equal across the forecasting 
methods.    

Under a 95% target probability of no stockout, 
SBA likewise generally outperforms SMA13 and SES 
with respect to average inventory on hand. This is 
exhibited in Figure 1 where all indices (with SBA as 
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base) are above 100, with an index of 98.3 when using 
SES for SKU 8 being the only exception. 
 
Table 6: Mean 100-Month Backlogs for a 95% Fill Rate 
SKU # 1 2 3 4 5
SMA13 52.01 7.45 3.71 45.60 14.45
SES 52.10 7.58 3.80 45.78 14.36
SBA 52.12 7.58 3.85 45.79 14.43

SKU # 6 7 8 9 10
SMA13 17.82 24.09 45.43 15.22 31.84
SES 17.90 24.51 45.57 15.21 32.12
SBA 18.07 24.29 46.18 15.30 32.13  

 
Indices of Average Inventory On Hand 

with SBA as Base

98.00

100.00

102.00

104.00

106.00

108.00

1 2 3 4 5 6 7 8 9 10

SKU #

In
de

x

SMA13 v SBA SES v SBA

 
Figure 1: Average On-Hand Inventory Indices, with 
SBA as Base, for a 95% Probability of No Stockout 
 

Likewise, with a 95% target probability of no 
stockout, the means of total backlogs over 100 months 
are reported in Table 7. None of the means arising from 
the use of SBA appears to be substantially higher than 
the mean corresponding to the use of either SMA13 or 
SES. 
 
Table 7: Mean 100-Month Backlogs for a 95% 
Probability of No Stockout 
SKU # 1 2 3 4 5
SMA13 75.49 14.72 12.21 80.99 47.66
SES 74.96 15.03 12.12 78.53 49.63
SBA 75.48 14.96 12.45 78.46 48.21

SKU # 6 7 8 9 10
SMA13 30.35 38.97 85.51 68.71 44.94
SES 30.40 39.25 84.69 68.76 45.62
SBA 30.76 39.51 79.06 70.06 45.49  

 
5. CONCLUSION AND FURTHER WORK 
We have devised a two-stage approach, involving 
uniform and negative binomial distributions, which 
allows modeling of the actual demand distribution, even 
when it is lumpy. Our work departs from earlier studies 
which have merely argued that the NBD satisfies both 
theoretical and empirical criteria, and accordingly 
assumed that an NBD adequately captures the behavior 
of intermittent demand. We believe that the simulated 
demand distributions arising from our two-stage 
modeling approach would more closely approximate the 

actual demand distributions of the SKUs under 
consideration. 

In empirically investigating the forecasting 
methods on the performance block (the final 22 months 
of the 66-month actual distribution) using three 
traditional statistical measures of forecast accuracy, we 
found none of the methods under consideration to be 
consistently superior to the others. However, when the 
methods are tested over considerably more time periods 
(100 replications of 100 months using our two-stage 
approach), SBA is found to be the best performing 
method overall in terms of statistical accuracy. 

We then proceeded to apply the demand estimates 
arising from the different forecasting methods, on the 
basis of the simulated demand distribution generated for 
a given SKU. We assumed a (T,S) periodic review 
inventory control system with full backordering, with a 
one-month review period and a one-month 
replenishment leadtime. Using either a target FR or a 
target probability of no stockout as customer service 
level criterion, we have found SBA to yield the lowest 
average levels of inventory on hand in almost all cases. 
At the same time, the frequency of backorders under 
SBA is comparable to those using the other forecasting 
methods. 

The observations reported here are based on a very 
limited sample of ten SKUs from the industrial dataset. 
At the time of the conference, we expect to report more 
robust findings – based upon our analysis of forecast 
accuracy and stock control performance over a larger 
number of SKUs as well as other customer service 
levels.       
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