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ABSTRACT 
A dynamic grid generation tool based on contour 
reconstruction and a Meshless Diffuse Approximation 
Method (DAM) is developed. The purpose is extracting 
the points cloud involved in the Meshless simulation 
from a digitalized picture or a video capture. Each 
frame taken from an ultra-speed camera video is 
transformed into a set of points. 
After several image treatment investigations, a 
threshold-Hough association method is adopted and 
tested with circular and more complex shaped object. 
The obtained grids are then used in numerical 
simulations with the Diffuse Approximation Meshless 
method. Transient heat diffusion and steady state 
convection are simulated. Results are presented as 
isotherms and streamlines. 
The presented method seems to create DAM compatible 
grids as the isotherms are in respect with the conduction 
phenomenon and the streamlines fits to the references 
corresponding to similar cases. 
 
Keywords: heat transfer, fluid flow, images and video 
processing, circular and complex shape object. 

 
1. INTRODUCTION 
Numerical simulation is widely used in advanced 
technology studies, especially in engineering field. 
Indeed, it is necessary to use adapted numerical method 
to produce convincing simulations of physical event 
such as fluid flow (smoke or water), thermal diffusion 
and natural or forced convection. 
The choice of numerical methods to solve and represent 
the describing equations depends ideally on application 
fields. 
In the past, to solve systems governed by Partial 
Differential Equations (PDEs), Finite Difference 
Method (FDM) Boutayeb (1991) and the Finite Element 
Method (FEM) Long (1995) which reduce the 
computational problem of complex geometries, were 
widely used. In spite of the great success of the so-
called method as effective numerical tools for the 
solution of boundary values problems on complex 
domains, there has been, over the past decades, a 
growing interest in numerical methods which not 
requires finite element meshes. This class of method is 
known as “meshfree” or “particle” method. Indeed, the 

main advantage of the meshless methods is the 
needlessness of any predefined mesh or elements 
between the nodes. It just requires a grid of points for 
the discretization. So far, a number of methods have 
been proposed, the first one beeing the Smooth Particle 
Hydrodynamics (SPH) Monagahn (1992). For example, 
Ahmadi et al. (2010) used a Moving Least Square 
approximation method (MLS) to simulate steady-state 
heat conduction in heterogeneous materials. 
Even if particle methods do not need meshing of the 
domain, the spatial discretization requires a set of 
points. This can be done by mathematical functions, 
grid extracting from mesh generation software or more 
recently by image processing. 
Furthermore, in image processing scientific field, many 
works have been done concerning object detection or 
reconstruction. Main applications concern medical field, 
automotive comfort or security, face detection (Viola 
2001, Li 2002 and Sochman 2004) or national defense 
department. 
So, the focus of this paper is the association of image 
processing advance for the automation of static or 
dynamic grid construction from an image or video 
capture and simulation by a meshless method.  
In this work, a Diffuse Approximation Method (DAM) 
based on a moving weighted least square approximation 
Sophy (2002) is developed to simulate heat diffusion 
around free falling ball and to simulate a thermal fluid 
flow around different objects. This method was first 
introduced by Nayroles et al. in the beginning of the 90s 
Nayroles (1991). 
In this contribution, we start by providing a general 
description of DAM. We then present several methods 
of image processing used to generate the points’ grid 
from the image or video capture. Then, heat conduction 
numerical results are presented in terms of isotherms or 
temperature field and some results of natural or forced 
convection around a circular or a more complex shaped 
object are respectively shown. 

 
2. METHOD DESCRIPTION 
 
2.1. Meshless Diffuse Approximation Method 
Letϕ : Rn → R be a scalar field whose values ϕ j are 

known at the points xj of a given set of n nodes in the 
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studied domain D ∈ Rn. The diffuse approximation 
gives estimates of ϕ and its derivates up to an order k at 
any point M(x,y) ∈ D. The order 2 Taylor expansion of 
ϕ at M gives: 
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For reason of simplification, let assume the following 
notation: 
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With the minimization of the quadratic error one can 
obtain expressions of ϕ  and its derivatives at any 

desirable nodal point: 
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where the matrix MA    is: 
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and ω  is a weight-function of compact support, equal 
to unity at this nodal point, decreasing when the 
distance to the node increases and equal to zero outside 
a surrounding zone (mentioned as Mv ) near the 
calculation node. In our study, we chose the following 
Gaussian window: 
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where σ is the radius of the weight function support. 
Thus, any Partial Derivative Equation can be written in 
terms of different ϕ j. This requires information on the 

position of each point of the grid which describes the 
domain. 

As the ultimate objective of this contribution is the 
association of DAM with an automatic procedure to 
obtain the set of points, a description of different stage 
of our image processing is given in next section. 

 
2.2. Image processing 
In this section we show different used methods for 
image treatment. A brief description will be given for 
these methods. Our code development is based on a 
C++ language using an Open source Computer Vision 
library (OpenCV). To achieve the grid generation, the 
captured image has to be smoothed by filtering 
operations. This is necessary for edge detection then 
pixel classification. 

 
2.2.1. Image preprocessing 
When an image is acquired by a camera or other 
imaging system, the vision system for which it is 
intended is often unable to use it directly. Good image 
smoothing should be able to deal with different types of 
noise. In this paper, two image smoothing filters are 
used. Figure 1 shows an example of original image and 
the results obtained with a Gaussian linear filter and a 
Median non-linear filter which is very effective in 
removing salt and pepper and impulse noise while 
retaining image details. 

 

     
 (a)  (b) (c) 

Figure 1: Smoothing filters, Original image (a), 
Gaussian filter (b) and Median filter (c). 
 
2.2.2. Edge detection 
As seen before DAM also needs the type of any point 
(if it is a point belonging to an edge, an object or a 
background point). It is then necessary to detect 
contours in the image. Edge detection is a fundamental 
tool used in most image processing applications to 
obtain information from the frames as a precursor step 
to feature extraction and object segmentation. This 
process not only detects boundaries between objects and 
the background in the image, but also the outlines 
within the object. To detect edges, many operators such 
as Sobel operator or Canny detector can be applied. The 
OpenCV library gives an important function that can 
detect contours. This function is called cvFindContours 
Bradski (2008). During our work many detection 
operators like Sobel or Canny, FindContour function 
and the Hough operator has been used ( Figure 2 and 3). 

• Sobel Operator: 
It is a discrete differentiation operator, computing an 
approximation of the opposite of the gradient of the 
image intensity function. 

• Canny Operator:  
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Canny’s aim is to discover the optimal edge detection 
algorithm to satisfy good detection, good localization 
and minimal response  

• cvFindContours: 
The function cvFindContours retrieves contours from 
the binary image and returns the number of retrieved 
contours. The pointer “firstContour” is filled by the 
function. It will contain pointer to the first most outer 
contour or NULL if no contours is detected (if the 
image is completely black). Other contours may be 
reached from firstContour. 
 

  
    (a)  (b) 

  
    (c)  (d) 
Figure 2: Edge detecting filters, Original image (a), 
Sobel detector (b), Canny detector (c), Find Contour (d) 

 
• Hough transform: 

The Hough transform is a feature extraction technique 
used in image analysis, computer vision and digital 
image processing Shapiro (2001). In our work, we used 
Hough to reconstruct the circles contours Kimme 
(1975). The Hough circle reconstruction technique 
highlights in the image the potential centers of r radius 
circles (figure 3-a). The center being detected, one can 
reconstruct the circle’s contour (figure 3-b) or the entire 
object (figure 3-c). 

 

 
   (a) 

   
   (b) (c) 
Figure 3 Hough circle transform, Center detection (a), 
(Ic) Contour image (b), (Io) Object image (c). 

 
2.2.3. Acquisition 
Two types of acquisition are made. Stand images are 
captured with a 640x480 resolution digital camera. No 
filters are used during the acquisition as the image is 
treated after. The video captures are made with a 
Photron FASTCAM Ultima APX-RS (Figure 4) high-

speed video camera that can reach 250 000 frames per 
second. During our work we capture 500 frames per 
second. This implies a dynamic system. Using Hough 
Transform (section 2.2.2) we treat this video frame per 
frame. Sometimes happen that the Hough detection is 
not suitable. This leads to the temporary disappearance 
of the object. A particular treatment is then applied. Our 
capture concerns a free falling ping pong ball. A black 
background is used to avoid additional treatment of the 
vicinity. High power spotlights are set at both sides of 
the scene to avoid a privileged light exposition side that 
can drive to spurious shadow (which can be interpreted 
as a contour). All this wariness is applied to reduce the 
future image processing time. Indeed, stand images are 
captured without black background and spotlights so the 
spurious contours are treated by the process. 
 

Figure 4: Photron FASTACAM Ultima APX-RS and 
material used. 

 
An example of frame and the corresponding grid are 
shown in Figure 5. For the stand image, the picture is 
treated as one frame of the video. 
 

  
Figure 5: Grid point generated from frame 

 
3. RESULTS 
In this section some results of simulations obtained with 
DAM associated with the presented grid generation 
technique are shown. The first case concerns transient 
heat diffusion of a free falling circular object. The 
isotherms are presented for two different times and two 
different thermal conductivities. The second and the 
third cases, involve convective exchanges of a circular 
and a more complex shaped object. Streamlines and 
isotherms are calculated. 
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3.1. Heat diffusion 
The dynamic grid is obtained with a video capture of a 
free falling rebounding ping-pong ball (Figure 5). The 
diffusion term of the transient heat equation (Eq 4) is 
discretized with the DAM and the transient term is 
approximated with a forward first order Finite 
Difference scheme: 

 

0
C T

T
t

ρ
λ

∂− + ∆ =
∂

  (4) 

 
where, ρ  is the density, λ  is the thermal conductivity, 

C is the specific heat capacity, T is the temperature and 
t is the time. 
The boundary conditions are fixed temperatures on the 
limits of the domain (Tc=0) and the object (Th=1000). 
All temperatures are initially set to Tinit=Tc. The thermal 
conductivity values are λ = 1 W/mK and λ = 8.10-3 
W/mK while other physic properties are fixed to the 
value 1 SI. The time step ∆t is fixed to 10-3s. 
The presented isotherms for times corresponding to 184 
∆t (after the first rebound) and 404 ∆t (during the 
second descent) (Figure 7) are in total accordance with 
the physical phenomenon. The increment of the thermal 
conductivity (Figure 8) intensifies the diffusive 
character of the problem and reduces the thermal 
inertia. 
 

  
  (a)     (b) 
Figure 7: Isotherms form for λ =8 10-3, Ts=184∆t (a) 
and Ts=404∆t (b) 
 

  
 (a) (b) 
Figure 8: Isotherms form for λ =1, Ts=184∆t (a) and 
Ts=404∆t (b) 
 
3.2. Flow over a circular shape object 
In this case the steady state buoyancy flow around a 
circular shape object is simulated. 
The governing equations are the Navier-Stokes 
equations in their dimensionless secondary variable 
form and the energy equation (Eq 5-7). As a pseudo-
instationnary algorithm is used, the equations are in 
their transient form: 
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where Ψ represents the dimensionless stream function, 
Ω the vorticity, T the temperature, Ra the Rayleigh 
number and Pr the Prandtl number which are defined as: 
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refg TL
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 Pr
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whith g, β, ∆T, Lref, ν and α being respectively the 
gravity, the thermal expansion coefficient, a 
characteristic temperature difference (Th-Tc), a 
characteristic length (diameter of the circular object), 
cinematic viscosity and the thermal diffusivity. 
The velocity component (u , v) are obtained with the 
stream function according to the equations: 

 
x

v
y

u
∂
Ψ∂−=

∂
Ψ∂= . (10) 

The fluid is assumed to be air (P=0.7). All the physical 
properties are constant except the density where the 
Boussinesq approximation is applied. The boundary 
conditions are fixed temperatures and stream functions 
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on the object (Th, Ψobject) and the walls (Tc, Ψwall). Non 
slip boundary conditions are applied (null velocities on 
the walls and the object). 
Calculations are made for several Rayleigh number 
ranking from 1000 to 105. Figure 9 shows examples of 
streamlines obtained for Ra=1000 and Ra=105. Figure 
10 shows temperature field for the same Ra numbers. 

 

  
 
 (a) (b) 
 Figure 9: Streamlines for natural convection of 
Circular shaped object, Ra = 1000 (a) and Ra= 105 (b). 
 

   
 (a) (b) 
 Figure 10: Isotherms for natural convection of 
Circular shaped object, Ra = 1000 (a) and Ra= 105 (b). 
 
The results are in accordance with the references for 
similar problems as the structures of the flows respect 
the natural convection flows. 
 
3.3. Flow over a car shape object 
As a main advantage of meshless methods is the 
flexibility of the grid to deal with complex shapes, a car 
image is taken as original picture to built the grid. 
Nevertheless, the hardiness of the point cloud 
generation increases with the complexity of the 
involved shapes. The proposed method allows to 
generate complex grid from a picture (Figure 11). Then 
the DAM can be used to simulate convection exchanges 
on the obtained discretized domain. 
For the natural convection the equations still the same 
as those used in section 3.2, with Lref being the length 
(along the direction x) of the calculation domain. 
For the forced convection the (Eq 6) and (Eq 7) 
respectively become: 
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and Lref is fixed as the length L2 shown in Figure 11b. 
 

 
    (a) 

 
    (b) 
 Figure 11: Complex shaped object (a), Automatic 
generated grid and Boundary Conditions (b) 
 

 
    (a) 

 
    (b) 
Figure 12: Streamlines for natural convection of car 
shape object, Ra = 1000 (a) and Ra= 2.104 (b). 
 

 
   (a) 
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   (b) 

Figure 13: Isotherms for natural convection of car shape 
object, Ra = 1000 (a) and Ra= 2.104 (b). 

 

 
    (a) 

 
    (b) 
 

 
    (c) 
Figure 14: Streamlines for forced convection of car 
shape object, Re = 30 (a) Re=180 (b) and Re=210. 
 

 
    (a) 

 
    (b) 

 

 
   (c) 

Figure 15: Isotherms for forced convection of car shape 
object, Re = 30 (a), Re= 180 (b) and Re=210 (c). 
 
Streamlines and temperature fields are presented for 
natural and forced convection respectively on (Figure 
(12,13)) and (Figure (14,15)). Concerning natural 
convection, one can see that for low Rayleigh numbers 
(Figure (12a,13a) isotherms correspond to a diffusion 
regime and when Ra increases a plume flow appears. 
When simulating forced convection, a similar 
observation is made in respect of the Reynolds number. 
Simulations are made with Re=30, 180 and 270. 
Boundary conditions are in accordance with Figure 11b. 
The flow inlet is on the rear side of the car. This 
corresponds to a reverse car travelling simulation. 
The ground is not taken into account so the flow can get 
around the tires. Indeed a 2D simulation can not 
simulate the flow within the car track. The simulation of 
the ground would lead to fluid accumulation near the 
tires. 
For low Re numbers, streamlines are horizontal and 
incurve near the object. The increment of Re involves 
appearance of localized vortexes. These recirculations 
are representative of a flow detachment. They take 
place at the junction between the windshield and the 
hood, and between the hood and the headlights. The 
presence of these recirculations is probably relevant to 
the care brought to these locations in car conception. 
Figure 14c shows that another increment of Re leads to 
a merge of the eddies. 

 
4. CONCLUSION 
 
A meshless method grid generation procedure has been 
developed. It is the first image or video automatic grid 
generator associated to the Diffuse Approximation 
meshless Method. It seems to construct suitable grids 
either it concerns circular or more complex shaped 
object. The obtained point clouds have been tested with 
a Diffuse Approximation Method on transient heat 
diffusion or natural convection problems. Results are in 
agreement with the physical phenomena. 
The obtained tool brings some facilities to the engineer 
or the searcher in terms of domain spatial discretization. 
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