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ABSTRACT 
The determination of dilute solution properties of 
macromolecules (hydrodynamic coefficients, radius of 
gyration and scattering-related properties, NMR and 
viscoelastic relaxation, etc) is of interest to characterize 
their conformation (size and shape) and dynamics in 
usual working environment (e.g. physiological 
conditions in case of biomacromolecules). Over the 
years, the Polymer Group at the University of Murcia 
has made computational developments intended for the 
prediction of dilute solution properties of synthetic 
polymers and biological macromolecules. Most of these 
developments are of public domain (see our web site 
http://leonardo.inf.um.es/macromol). 

 
In this work, we present some improvements in our 

methodology aimed to achieve high-performance 
computing. The strategy is based on using parallelized 
versions of the LAPACK and similar mathematical 
libraries, and implementing in-house written codes. We 
show some results obtained by applying that 
methodology to some macromolecular models. 
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1. INTRODUCTION 
The calculation of conformational and hydrodynamic 
properties (like radius of gyration, sedimentation and 
diffusion coefficients, or intrinsic viscosities) of rigid 
and flexible macromolecules (like globular and 
denatured proteins respectively) is frequently based on 
constructing bead models that represent the size and 
shape of the particle (see Fig. 1) and then apply some 
fundamental hydrodynamic equations for the sphere to 
get the global particle properties. Those calculations 
involve linear-algebra problems, essentially the 
solutions of sets of linear (hydrodynamic interaction) 
equations (Carrasco and García de la Torre 1999), in 
which the number of unknowns is proportional to the 
number of elements in the model. This number has to be 
sufficiently large as to describe the complex structural 
details typical of biological macromolecules, 
particularly when modelling is done at atomic level 
(García de la Torre, Huertas, and Carrasco 2000), which 
quite often entails a large computation time.  

 
 
 
 
 
 
 
 
 
 

 
Figure 1: Example of bead model for lysozyme 
 

 The increasing number of cores in a processor and 
the availability of computer clusters, open the 
possibility of parallelizing some stages of the calculus 
and speeding up the global simulation process by 
running several simulations simultaneously. That is 
achieved by dividing the global problem into 
independent pieces that can be processed at the same 
time and then collect the results. Thus, an update in the 
software developed by our group is in order to embody 
some of those features and improve its efficiency.  
 
 We present in this work some strategies leading to 
easily implement parallelization with minor changes in 
our codes, mainly focused to run our programs under 
multi-core processor computers. On the one hand, we 
have replaced some of our homemade functions and 
subroutines by some others included in public domain 
mathematical libraries like LAPACK that are optimized 
to carry out parallel calculation if required. On the other 
hand we have built a set of ancillary tools intended to 
run a number of generations (cases) of some model in 
several cores simultaneously.  

 
2. METHODOLOGY FOR RIGID PARTICLES  
Conformational and hydrodynamic properties of rigid 
structures like many globular proteins can be calculated 
using our HYDRO programs suite (Carrasco and García 
de la Torre 1999). Nowadays, there is a big amount of 
accessible experimental information about the atomic 
structure of proteins, nucleic acids and many other 
biopolymers, which can be used to model those 
molecules and subsequently calculate solution 
properties. Our program HYDROPRO (García de la 

Proceedings of the International Conference on Modeling and Applied Simulation, 2012
978-88-97999-10-2; Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds. 248



110.0

28.1

16.9
10.8 9.2 7.9

0

20

40

60

80

100

120

Old version 1 thread 2 threads 4 threads 6 threads 12 threads

C
P

U
 t

im
e 

(s
)

Torre, Huertas, and Carrasco 2000; Ortega, Amorós, 
and García de la Torre 2011) is able to construct bead 
models based upon the atomic-level information 
contained in the Protein Data Bank that is a public 
domain data base for proteins and other related complex 
structures (www.rcsb.org/pdb/home/home.do).  
 
 The program places a sphere per atom (except 
hydrogen) with a radius that includes the hydration 
layer. Then, and after some model simplifications, it 
calculates basic solution properties of the structure: 
radius of gyration, diffusion and sedimentation 
coefficients, intrinsic viscosity, and relaxation times. 
Those calculations involve time consuming matrix and 
vector operations that can be parallelized by using 
public domain mathematical libraries. In particular, the 
most time consuming mathematical operation is the 
inversion of the hydrodynamic interaction tensor, the 
dimensions of which, for a model made of N beads, is 
3Nx3N. Because the CPU time of such an operation 
scales as N3, the calculation becomes slow quite soon.  
 
 Other aspect to take into account is the memory 
required to store such a big tensor. Because of the 
symmetry of the hydrodynamic tensor, it is possible to 
store just the elements in the upper or lower triangle of 
the matrix (what is called a packed matrix). Sometimes 
that strategy slows down the calculation and it is 
preferred to work with the whole square matrix. The 
program HYDROPRO has been rewritten to improve 
both memory management and calculation speed. For 
that purpose, subroutines to perform LU and Cholesky 
matrix factorization included in the LAPACK 
mathematical library (www.netlib.org) have been 
employed. On the other hand, bead models of complex 
structures like that in Fig. 1 for the protein lysozyme 
(so-called shell models) were generated starting from 
atomic-level structures taken from the Protein Data 
Bank. 
 
 Fig. 2 is a histogram showing the CPU time 
consuming by different versions of HYDROPRO in 
calculating a set of solution properties when running on 
a processor Intel Xeon x5660 6 cores (x2 CPU). 
 

 
 Figure 2: Gain in CPU time due to parallelization   
 

 The first bar on the left, corresponding to our old 
version of HYDROPRO, is exceedingly large in 
comparison with the other bars that measure the CPU 
time consumed by the parallel version of HYDROPRO 
that includes the possibility of using several calculation 
threads at a time. As appreciated, we can diminish the 
duration of the process more than ten times.   
 
 Experimental and calculated values for the radius 
of gyration, Rg, and the sedimentation coefficient, s, of 
several complex structures are compared in Table 1.  As 
observed, the agreement is quite good (as it already 
occurred with our old version).  
 
Table 1: Comparison of solution properties of complex 
structures calculated by HYDROPRO with their 
experimental values: aTomonao et al, Biophys J 2008, 
94, 1392-1402; bBehlke et al, Biochemistry 1997, 36, 
5149-5156; cArmstrong et al, Biophys J 2004, 87, 4259-
4270; dHill et al, J Mol Biol 1969, 44, 263-277. 
 

Structure 
 

Rg / Å 
 

sx1013/ s 

 Calc. Exp. Calc. Exp. 
Chaperone GroEL 66.1 67.0a 21.5 22.13b 
IgM antibody 127 121c 18.4 17.5c 
Ribosme 30S 68.3 69d 36.9 31.8d 
Ribosme 50S 74.6 77d 53.6 50.2d 
Ribosme 70S 86.0 91.5d 69.3 70.5d 

 
 

3. METHODOLOGY FOR FLEXIBLE CHAINS  
The skeleton of the long and (usually) linear chains that 
constitutes biological macromolecules consists of 
chemical bonds arranged in such a manner that bond 
lengths and bond angles are nearly constant, but there is 
an important degree of freedom in the internal rotation 
around all or some of the bonds in the chain. The 
consequence of such conformational variability about 
each of so many bonds along the chain skeleton is that it 
could adopt multiple conformations like it is the case of 
denatured proteins. With a dynamic point of view, a 
single macromolecule is continuously changing its own 
conformation. Thus macromolecular chains are, in 
principle, essentially flexible entities that can be 
represented by bead and connector models like that in 
Fig. 3.  
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Example of bead and connector model 
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The theoretical foundation for the description of flexible 
chain macromolecules has its origin in the pioneering 
works of Kirkwood and Zimm (Kirwood and Riseman 
1948; Zimm 1956). 

 
As in the bead models used for rigid-body 

modeling, in the mechanic model of flexible particles, 
the parts composing the particle are represented by 
spherical beads, which is a convenient representation 
for hydrodynamic calculations. Instead of having a 
unique shape, the beads in the array are linked by a 
series of internal interactions that determine the 
conformational variability of the ensemble.  

 
Firstly, there must be some connectors between 

(neighbor) beads, like the bonds in a chemical molecule. 
They behave as springs of some degree of flexibility, 
and are the primary interactions in the mechanic model, 
which -- regardless of the instantaneous conformation -- 
determine its topology (linear, branched, etc).  
Additionally, there can be other short-term interactions, 
mainly bending interactions between two neighbor 
connectors, and perhaps torsional or internal-rotation 
restrictions. Also, it may be present long-term 
interactions between non-connected beads (so-called 
excluded volume interactions) which are properly 
represented by several potential expressions depending 
on the features of the system (hard sphere potential, 
Lennard-Jones potential…)  

 
The conformational statistics of flexible 

macromolecules can be simulated by a standard Monte 
Carlo (MC) procedure. However, the full, rigorous 
simulation of the macromolecular dynamic behavior has 
to be done by means of Brownian dynamics (BD). 

 
3.1.  Monte Carlo 
Generically speaking, the MC simulation methods are 
intended to generate possible states of a system, which 
in our case are conformations of a flexible 
macromolecule, in order to obtain observable properties 
that correspond to averages over all the accessible 
conformations or properties. The various states have 
different probabilities, which are proportional to the 
Boltzmann factor, exp(-V/kT), associated to the 
potential energy of the system in such conformation, V 
(being k the Boltzmann constant and T the absolute 
temperature). If the possible conformations are 
generated in an absolutely random manner, this factor 
should be used as a statistical weight in the evaluation 
of the averages.  
 

 A usual choice to carry out a MC simulation is 
the importance-sampling procedure which is quite 
simple. From a previous conformation of the chain, a 
new one is generated making small random 
displacements of the beads. The potential energy of the 
new conformation, V, is evaluated as a sum of the 
several contributions from the various kinds of 

intramolecular or external interactions that the mechanic 
model may include. The new potential is compared to 
that of the previous conformation, Vprev. The new 
conformation is accepted if V < Vprev. Otherwise, if 
exp[(Vprev-V)/kT] > u, where u is a random number 
with uniform distribution in (0,1) generated each time 
that this decision is to be made, then the new 
conformation is accepted. If exp[(Vprev-V)/kT] < u, the 
conformation is rejected and the resulting conformation 
after the MC step is a copy of the previous one. 
 
 For MC simulations of bead-and-connector models, 
we have developed the public domain MONTEHYDRO 
program (García de la Torre, Ortega, Pérez Sánchez, 
and Hernández Cifre 2005) that implements an 
importance-sampling Monte Carlo simulation coupled 
to rigid-body hydrodynamics which is based on the 
procedures of the above mentioned HYDRO programs 
suite. Thus, the hydrodynamic coefficients are 
calculated using the “Monte-Carlo rigid-body” 
approach (Zimm 1980): the macromolecular 
conformations generated by MC are considered as 
instantaneously rigid and the rigid body hydrodynamic 
equations are applied to each one. Then a 
conformational average is performed in order to obtain 
global equilibrium properties.   
 
 Fig. 4 shows the excellent agreement obtained 
between experimental and simulation data when 
comparing the radius of gyration of a set of flexible 
proteins with different number of residues, N, (Amorós 
2012). Simulations were carried out using the 
MONTEHYDRO program including parallelization. 
The model included excluded volume interactions 
represented by a hard sphere potential where the hard 
sphere radius was rHS=2.25 Å.  

  
Figure 4: Rg of proteins: experimental (dots) and 
calculated by MONTEHYDRO (line) 
 
3.2. Brownian dynamics  
To study dynamic aspects of flexible macromolecules in 
solution, such as relaxation processes and non-
equilibrium behavior, it is necessary to solve the 
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equation of motion that governs the macromolecular 
dynamics. This can be done by using molecular 
dynamics (MD) or Brownian dynamics (BD). MD is not 
adequate for long time and size scales. BD is a 
numerical technique to solve the stochastic equation of 
motion that arises from considering the solvent as a 
continuum, thus eliminating the solvent degrees of 
freedom. In other words, BD simulations describe the 
Brownian motion of a collective of frictional elements, 
beads in our model, which can interact with each other 
through different potentials. 

 

 An essential aspect in the BD simulation is the 
inclusion of the so-called hydrodynamic interaction (HI) 
effect, which determines the solvent-mediated influence 
of the motion of every element of the model on the 
others. A first order algorithm to solve the stochastic 
equation of motion and performed Brownian dynamics 
simulations including HI is that of Ermak and 
MacCammon (Ermak and McCammon 1977).  

 

 We have developed a BD simulation scheme that 
enables for the calculation of solution properties of 
flexible macromolecules with arbitrary complexity. Our 
procedures take into account fluctuating (non-
preaveraged) hydrodynamic interaction as well as the 
possibility of including different types of intra-
molecular potentials to represent excluded volume 
conditions and electrostatic interactions. That 
computational scheme is implemented in a suite of 
public domain programs, named SIMUFLEX. The suite 
consists mainly of two programs: BROWFLEX and 
ANAFLEX. The program BROWFLEX generates a 
Brownian trajectory of a flexible bead-and-connector 
model with arbitrary connectivity, and the program 
ANAFLEX analyses that trajectory to obtain several 
steady and time-dependent macromolecular quantities 
(García de la Torre, Hernández Cifre, Ortega, 
Rodríguez Schmidt, Fernandes, Pérez Sánchez, and 
Pamies 2009). 

 

 However, BD algorithms with fluctuating HI 
demands long simulation (CPU) time, which increases 
dramatically with the number of elements forming the 
chain model, N. The main reason is that the BD-HI 
methodology requires the calculation of the square root 
of the 3Nx3N HI tensor, a very time-consuming 
operation carried out every time that tensor is updated 
during the simulation. An exact mathematical procedure 
to get the square root of the symmetric matrix is the 
already mentioned Cholesky factorization. Some 
approximations have been proposed to speed up BD-HI 
simulations. Those mathematical approaches are able to 
increase enormously the efficiency of BD-HI 
simulations (Rodríguez Schmidt, Hernández Cifre, and 
García de la Torre 2011), moreover when they are used 

in combination with parallelization strategies for the 
matrix and vector operations.   

 

 It is worth to see how we can gain in CPU time due 
to the mathematical approaches themselves without 
using parallel computing. Fig. 5 shows the CPU time 
needed for the BD-HI simulations of linear Gaussian 
chains with excluded volume with increasing number of 
beads. For that purpose, we have measured the duration 
of 106 Brownian steps on a 3.0 GHz Intel Xeon Quad-
Core L5450. As appreciated, the use of Geyer (Geyer 
and Winter 2009) and Kröger (Kröger, Alba Pérez, 
Laso, and Öttinger 2000) algorithms, when applicable, 
entails a fabulous gaining in CPU time respect to those 
of Jendrejack (Jendrejack, Graham, and de Pablo 2000) 
and Cholesky (Ermak and McCammon 1977). (Note: 
algorithms are named here after the first author of the 
paper where they were presented, except that of 
Cholesky that refers to algorithms that use the rigorous 
Cholesky factorization). 

   

 

 

 

 

 

Figure 5: Runtime behavior of different BD-HI 
algorithms 

 

4. DISTRIBUTION OF A GLOBAL TASK  
Nowadays, even processors of modest PCs are multi-
core (e.g. Dual, or Quad) and it is common to work with 
multiprocessor units, or even clusters of many units. 
Then, if the kind of problem under simulation study 
meets some requirements, one can make use of these 
resources in order to split a large task, like the 
generation of a macromolecular trajectory, into many 
shorter independent trajectories that will run in parallel 
using all of the available processors. The final results 
will be produced after a proper combination of the 
partial results obtained from those short independent 
trajectories. Obviously, that simulation strategy reduces 
the time needed to solve the global task approximately 
so many times as the number of available processors. 
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With the aim of dividing a global task into smaller 
independent ones, we are designing the programs suite 
MULTISIMUFLEX, a set of ancillary tools to be used 
along with MONTEHYDRO and SIMUFLEX. Thus, 
one can take advantage of multi-core computers and 
distribute through the available computing cores the 
task of generating conformations of bead-and-connector 
models either via Monte Carlo or via Brownian 
dynamics. In order to generate independent trajectories 
we resort to two procedures: a) the use of different 
initial conformations for each sub-simulation, b) the use 
of different sequence of random numbers for each sub-
simulation. The MULTISIMUFLEX suite is not 
available in our web site yet. 
 

 We have carried out several tests to verify the right 
work of MULTISIMUFLEX. Fig. 6 is a sketch of a 
‘homemade’ tetra-block A-B-C-B copolymer that 
represents a chimerical protein. It consists of a globular 
domain plus a hanging chain having an internal helix. 
We ran a large Brownian dynamics simulation by 
dividing it into independent simulations. Thus, the CPU 
time needed for the whole dynamics and then getting 
accurate values of the steady-state properties is reduced 
by an order of magnitude. Table 2 shows the values of 
the analyzed properties.      
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Bead-connector model of chimerical protein 
 
Table 2: properties obtained for the chimerical protein 
after running a simulation using MULTISIMUFLEX. 
 

Radius 
gyration 
(cm) 

Diffusion 
coefficient 
(cm2/s) 

Intrinsic 
viscosity 
(cm3/g) 

2.73x10-7 9.622x10-7 4.726 
 

 
5. CONCLUSIONS 
It is clear that the use of multiprocessor units speed up 
the calculation of solution macromolecular properties 
without loss of precision. We have presented here some 
simple parallelization strategies used to improve the 
efficiency of our public-domain programs available at 
our web site http://leonardo.inf.um.es/macromol.  
  
 One strategy is the substitution of parts of our code 
by equivalent parallelized functions obtained from 

public-domain mathematical libraries like LAPACK. 
Thus, a faster version of our program HYDROPRO to 
calculate solution properties of rigid structures is now 
available. Other possibility is distributing efficiently the 
calculation among every available processor. In order to 
help in the task of splitting a large simulation into 
shorter ones that will run in parallel, we have designed 
the suite MULTISIMUFLEX. That program must be 
used in combination with our MONTEHYDRO and 
SIMUFLEX programs which are used to run Monte 
Carlo and Brownian dynamics simulations of flexible 
structures and then get their solution properties. 
 
 The above commented parallelization strategies 
along with the improvement of mathematical aspects of 
the simulation algorithms were tested by applying them 
to several bead models of proteins. It was verified that 
those strategies are able to yield excellent results for the 
solution properties and diminish the computational time 
more than one order of magnitude, thus increasing 
enormously the performance of our algorithms. 
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