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ABSTRACT 
Direct steam injection (DSI) is a sterilization technique 
which is often used for high viscosity fluid food when 
the preservation of the quality characteristics and 
energy efficiency are the priority. 

In this work an apparatus for the sterilization of 
tomato concentrate has been analyzed by means of 
multidimensional CFD (Computational Fluid 
Dynamics) models, in order to optimize the quality and 
safety of the treated food. 

A multidimensional two-phase model of steam 
injection inside a non-newtonian pseudoplastic fluid 
was adopted to evaluate the thermal history of the 
product and the steam consumption during the target 
process. 

Subsequently CFD analysis has been extended to 
examine the effects of the different process parameters 
(sterilization temperature, steam flow rate, radial and 
axial temperature profiles, nozzle geometry) on the 
resulting product.  

Result obtained are in agreement with available 
data acquired in industrial plant. 

 
Keywords: Steam injection, non-Newtonian flow, CFD, 
Multiphase flow, Design optimization 
 
1. INTRODUCTION 
Fluid food products in the agri-food industry are 
commonly subjected to thermal treatments to ensure 
safety and improve quality. Process parameters need to 
be accurately selected and monitored in order to 
effectively sterilize the product while at the same time 
avoiding over-processing, which would negatively 
affect product quality (Abdul Ghani et al 2001). A 
compromise is therefore required between safety, taste 
preservation and energy efficiency. 

Among the different thermal treatments available, 
continuous direct steam injection is widely used to 
quickly raise the temperature of a process media, either 
for pure heating or for sterilization of the product. The 

basic idea is to heat the liquid flow by injection of 
superheated steam from several nozzles, in order to 
reach homogeneous heating. The main benefit of the 
direct contact condensation process is the high heat 
transfer rates and the low product fouling compared 
with other methods such as heat exchangers. For these 
reasons, steam injection is used in various applications 
across in the food industry, such as the sterilization of 
milk, fruit juices and puree.  

In this work, an apparatus for the sterilization of 
the tomato concentrate has been analyzed by means of 
multidimensional CFD (Computational Fluid 
Dynamics) models. CFD has been applied in recent 
years to model the sterilization problem in order to gain 
a better understanding of the process and optimize 
quality while at the same time guaranteeing the safety 
of the product (Debonis and Ruocco 2009; Marsh 
2006).  

While the overall energy balance for the process 
can be easily calculated from the process parameters 
(steam properties and product flow rate), a numerical 
model is required for the evaluation of temperature 
history and distribution Moreover, the available 
literature on direct steam injection is mostly limited to 
the case of steam injection in a stagnant liquid, typically 
water (Sagar 2006; Sachin 2010). 

Modeling and simulation of fluid process allow: 
(a) the optimization of heat transfer in terms of energy 
efficiency, equipment design, product safety and quality 
retention; (b) better understanding of the heat transfer 
process, which helps to control the process and manage 
deviations, thus reducing production costs and 
improving quality and safety of the product (Norton 
2006). 

The rheological behavior of tomato concentrate is 
non-Newtonian. Due to the high viscosity of the 
product, enhanced heat transfer surface such as 
embossed or corrugated pipes are usually employed to 
ensure a good overall heat transfer coefficient; in this 
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are assumed to be spherical. All phases are assumed 
incompressible, accordingly with low kinetic energy; 
physical properties of all phases are assumed to be 
temperature dependent. 

The flow of tomato concentrate, due to its high 
viscosity, is laminar; generalized Reynolds number Re’ 
is always lower than 20. 

The phases are not generally in thermal 
equilibrium, due to temperature differences across 
phase boundaries, therefore heat is transferred across 
phase interfaces via interphase transfer terms (Brennen, 
2005). Heat transfer across a phase boundary is 
described in terms of a heat transfer coefficient. Only 
heat transfer between phases is taken into account, walls 
are assumed adiabatic. Two resistance heat transfer 
model was used to describe combined heat and mass 
transfer due to steam condensation. Ranz-Marshall 
correlation was used to evaluate the heat transfer 
coefficient of the continuous phase (Pechenko 2010); 
Nusselt number is evaluated through the following 
equation: 
ݑܰ  = 2 + 0.6ܴ݁଴.ହ  ଴.ଷ (6)ݎܲ
 

Inter-phase mass transfer has been tracked by 
using the thermal-phase change model. Latent heat is 
not directly specified, but is obtained indirectly as the 
difference between the enthalpies of the two phases. 

The governing equations are the unsteady Navier-
Stokes equations in their conservation form. For a 
multicomponent fluid, scalar transport equations are 
solved with respect to velocity, pressure, temperature 
and other quantities of the fluid. An additional equation 
must be solved to determine how the components of the 
fluids are transported within the fluid. Each component 
has its own equation for mass conservation: 

 డఈ೔ఘ೔డ௧ + ∇ ∙ ൫ߙ௜ߩ௜࢐࢏ࢁ൯ = Γ௜, (7) 

 
which is solved for each phase i; Uij is the mass-
averaged velocity of fluid component i: 
 

௜ܷ௝ = ௜ߩ௠෍൫ߩ1 ௜ܷ௝൯ (8) 

 
and 
௠ߩ  = ∑ሺߙ௜ߩ௜ሻ, (9) 
 
where αi is the volume fraction of phase i. The term Γi 
in Equation (7) represent the mass source per unit 
volume into phase i due to interphase mass transfer.  

The following general form is used to model 
interphase drag force acting on phase i due to phase j: 

௜ܯ  = ܿ௜௝൫࢐ࢁ −  ௜൯, (10)ࢁ
 
where cij is the drag coefficient. For the particle model 
(spherical particle), the drag coefficient can be obtained 

in terms of dimensionless drag coefficient CD as 
follows: 
 ܿ௜௝ = ஼ವ଼ ࢐ࢁ௜หߩ௜௝ܣ −  ௜ห. (11)ࢁ

 
Energy equation is also modified adding the 

contribution SE due to steam condensation inside the 
continuous phase, depending on Γi in Eq. (7) 
 ܵா = ௜Δℎ߁ (12) 

  
2.4. Initial and boundary conditions 

Temperature and flow rate have been set for tomato 
concentrate at the exchanger inlet. A constant 
temperature of 75°C was set for tomato concentrate at 
the inlet of all simulations.  

During normal operation the exchanger is under a 
constant head of 5 bar. The absolute level of pressure at 
the exchanger outlet was assumed to be 5 bar. Steam 
pressure and temperature have been fixed at the 
injectors inlet accordingly to normal operation settings 
of the exchanger. All walls are assumed adiabatic, with 
imposed no slip condition.   
 

2.5. Simulation Details 
An unstructured tetrahedral grid of 1.3x106 nodes was 
employed; meshes were created with ICEM CFD 
Software. Grid density has been increased near walls 
and at injector-pipe junctions. To improve stability and 
reduce the overall number of elements the hexa-core 
option was activated. 

The commercial code Ansys CFX© was employed 
for all simulations. A coupled solver was used to solve 
governing equations. A high resolution discretization 
scheme was used for the continuity, energy and 
momentum equations, while the upwind discretization 
scheme was employed for the volume fraction 
equations. Tolerance was set for all variables at 1x10-3. 
 
3. RESULTS AND DISCUSSION 
 

3.1. Injector detail simulations 
A first set of simulations were carried out to estimate 
the flow characteristic of the injectors using a simplified 
computational domain. As shown in Figure 3, the 
computational domain consist of a 200 mm pipe section 
with a single radial injector. The junction between the 
main pipe and the injector is obtained with six radial 
slots, through which steam enters in the exchanger. 

Different simulations were carried out with 
imposed tomato flow rates ranging from 1500 l/h to 
20000 l/h; all simulations were performed with vapor 
mass flow from 0.002 kg/s to 0.04 kg/s.  
Vapor penetration inside tomato concentrate is heavily 
dependent on both tomato and vapor flow rate (Figures 
4 and 5). 
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