
A Process Mining Approach Based on Trace
Alignment Information for Very Large

Sequential Processes with Duplicated Activities

Pamela Viale
Laboratoire des Sciences de
l’Information et des Systèmes

Marseille, France
STMicroelectronics

Rousset, France

pamela.viale@lsis.org

Claudia Frydman
Laboratoire des Sciences de
l’Information et des Systèmes

Marseille, France
CIFASIS, Centro Internacional
Franco Argentino de Ciencias

de la información y de
Sistemas

Rosario, Argentina

claudia.frydman@lsis.org

Jacques Pinaton
STMicroelectronics

Rousset, France

jacques.pinaton@st.com

ABSTRACT
This paper presents an approach to construct models for
very large sequential processes with duplicated activities.
Very large meaning processes containing hundreds of activ-
ities. The algorithm uses traces of the process we are in-
terested in modeling and construct an alignment between
them. The alignment obtained is then used to guide the
model construction. We present also the application of our
approach to STMicroelectronics’ manufacturing processes.
The constant modifications of semiconductor specifications
forces engineers to continuously update processes. For this
reason, STMicroelectronics is interested in re-constructing
models of its manufacturing processes to being able to con-
trol their definitions and quickly react in case a problem is
detected.

Keywords
Sequential Processes, Sequence Alignment, Process Mining,
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1. INTRODUCTION
Mining process models from process traces is an alternative
to constructing process models from scratch. It also offers a
mean to analyze and optimize already existent models. This
paper presents an approach for constructing (or reconstruct-
ing) process models using process trace data. The idea of
this approach is to construct process models using an align-
ment between different traces of a same process.

The method we propose in this paper could be applied for
mining different kind of sequential processes. However, we

are specially interested in mining very large sequential pro-
cesses (i.e. processes containing hundreds of tasks), such as
STMicroelectronics’ manufacturing processes. This enter-
prise is interested in applying process mining methods over
its trace data for reconstructing its process models. Semi-
conductor specifications are modified very often (STMicro-
electronics has an average of 50 modifications to its manu-
facturing process per week). Therefore, process definitions
are continuously updated. Products cycle time (i.e. period
of production) is mostly longer than sixty days. This means
that there are objects being manufactured that can follow
different process definitions for a same final product. So,
reconstructing process models using process mining tech-
niques will help STMicroelectronics’ experts to easily detect
added/deleted/modified options to processes and will enable
to react quicker if an abnormal situation is detected. The fi-
nal objective is to reduce reaction time to problems detected
on process definitions.

The two main characteristics of the processes we are inter-
ested in mining are: 1) they contain hundreds of activities;
and 2) duplicated activities are allowed. For this reason, we
consider that is helpful to differentiate when a repetition of
an activity is part of normal execution of the process and
when it is due to problems encountered. In fact, a repetition
of a an activity can be due to a situation that arrives fre-
quently during the execution of a process. When executing
a process some controls are done. If the desired results are
not achieved some actions (special actions) has to be done to
correct problems. These actions usually consist on perform-
ing special activities and/or the repeating already executed
activities.

This is the reason why we propose to align the different pro-
cess traces to identify equivalent activities over the different
executions. It is straight forwards to think that when a
subsequence of activities is present in all process traces this
subsequence is part of normal execution. Subsequences of
tasks executions not aligned can be consider to be special
subsequences. If we consider STMicroelectronics produc-
tion traces, these special subsequences could be: 1) tasks
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executed to correct problems; or 2) tasks representing mod-
ifications suffered by the process in the period between the
dates of the process traces considered.

We have analyzed several multiple sequence alignment meth-
ods considering optimality and time and memory needs. Af-
ter this analysis, we have decided to work with the T-Coffee
(Tree-based Consistency Objective Function For alignmEnt
Evaluation) algorithm presented in [10]. The original im-
plementation of T-Coffee accepted only biological sequences
as input. We have re-implemented this method for process
traces sequences.

We present in this article all the necessary steps for creat-
ing process models from an alignment. The alignment is
used to identify subsequences of tasks that are contained in
all traces. As a consequence, all options of the process are
also identified. We could analyze if our method is complete
and minimal. Completeness describes that a model preserve
all the dependencies between activities that are present in
a process trace. Minimality assures that the model should
neither introduce paths of execution nor spurious dependen-
cies between activities which are not present in the traces
considered. In the article we will explain why our method
is complete but not minimal.

We have already tested our ideas using STMicroelectronics’
manufacturing process traces obtaining encouraging results.

In the following Section (Section 2), we will present the pro-
cess mining state of art and we will explain why we did not
use neither of the algorithms studied. Section 3, introduces
the vocabulary that will be used in the rest of the article.
In Section 4 we define trace alignment and briefly introduce
the alignment methods. In the same Section we present the
method chosen, T-Coffee algorithm, and we expose the rea-
sons for this choice. Afterward, in Section 5 we present our
process mining method and propose a small example for its
well understanding. In Section 6 we show the application of
the method for mining STMicroelectronics’ production pro-
cesses. Finally, in Section 7 we make a conclusion and we
talk about future work.

2. PROCESS MINING STATE OF ART
In this section we will present a small analysis of some pro-
cess mining methods that have been studied during our re-
search.

The first process mining technique was proposed in the con-
text of software engineering process in [3]. In that article,
three methods are described for process discovery: one us-
ing neural networks, one consisting in a purely algorithmic
approach and one Markovian approach. The neural network
approach is not well explained in that article. The purely
algorithmic approach constructs finite state machines where
states are fused if their futures (in terms of possible future
behavior in the next k steps) are identical. The markovian
approach uses a mixture of algorithmic and statistical meth-
ods and is able to deal with noise. The authors consider the
last two approaches to be the most promising. Notice that
all of them deal with sequential processes. This could be
useful for us because our work is limited for the moment
to sequential processes. The model representation used by

these approaches is finite state machines. This representa-
tion accepts duplicated activities. However, we decided to
avoid using this kind of representation due to the size of the
models we are interesting in modeling. There is a consensus
to consider that finite state machines are difficult to under-
stand and to validate. The same authors extended their
approach to deal with concurrent processes in [4] and [2].
This extension cannot deal with duplicated activities.

Another interesting process mining algorithm is presented
in [1]. Authors divide process mining problem into two dif-
ferent sub-problems: graph mining and condition mining.
The graph mining problem consist to discover the structure
of the process and the condition mining problem consists on
finding the conditions associated to the different execution
paths. They only treated the first problem in their article,
the graph mining. The model representation they used for
their processes are process graphs. One characteristic of this
kind of model is that an activity can appear only once in a
model. We find here again the same problem that we found
before, the method cannot be used for modeling processes
containing duplicated activities.

Other approach has been published in [16]. The method
presented in that article can deal with noise and concur-
rency. The model representation they use are a subset of
Petri nets, WF-nets. We know that Petri-nets provide a
graphical formal language designed for modeling concur-
rency, what it is appropriate for the kind of processes they
want to discover. Their method consists on a series of steps:
(i) construction of dependency/frequency table, (ii) induc-
tion of a graph from the previous table, (iii) reconstruc-
tion of a WF-net from the dependency/frequency table and
the graph obtained in the previous steps. Working from
the dependency/frequency table forbids the method to deal
with duplicated tasks. They transform traces into a depen-
dency/frequency table and they consider that repetitions of
an activity in a trace are due to loops. Once again, the
proposed approach is not useful for mining processes with
duplicated tasks.

[11] introduces a different approach from the others just de-
scribed. The main difference is that authors of this last
article have considered activities’ lifespans. All methods
presented before consider that activities are executed in an
atomic way. Here the approach is different, they consider
that execution of task may take some time, so the use two
events for identifying the starting and ending times of each
activity. In this way they are able to easily discover concur-
rency between activities. The disadvantage of this method
from our optic is the same as with the previous ones. Their
model representation is based on process graphs. So, we
cannot represent processes containing duplicated activities.

Two articles [13] and [14] present an algorithm for mining
exact models for concurrent process. This method consider,
as the last presented, that activities are non-atomic. So, two
events are considered for each activity, events stating the
starting and ending moments of execution of each activity.
This method constructs complete and minimal models, com-
plete in the sense that all the traces used for its construction
can be obtained from the model and minimal meaning that
no spurious trace can be generated from the final model. The
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model representation used is block-oriented. The building
blocks are terms and operators. This kind of model allows
to represent processes containing duplicated tasks, because
basic terms are pointers to tasks or sub-processes. However,
the approach proposed in both articles [13] and [14] does
not consider the mining of processes containing duplicated
tasks. We will go back to the block-oriented representation
in Section 5.1.

We can see from this analysis, that neither of the approaches
studied provided a solution to our problem of mining se-
quential processes with duplicated activities. However, we
found an interesting work in [8]. This article proposes to
use trace alignment for process diagnostics. We agree with
the authors that “trace alignment uncovers common execu-
tion paths patterns and deviations in the log 1”. Based on
this, we propose to use trace alignment not just for process
diagnostics but also for mining processes.

3. NOTATIONS
We will introduce here the vocabulary that will be used in
subsequent sections. For the sake of simplicity, we will use
notations introduced in [8]:

• Let Σ denote the set of activities. |Σ| is the number of
activities.

• Σ+ is the set of all non-empty finite sequences of ac-
tivities from Σ. T ∈ Σ+ is a trace over Σ. |T | denotes
the length of a trace T .

• The set of all n-length sequences over the alphabet Σ
is denoted by Σn. A trace of length n is denoted as
Tn i.e., Tn ∈ Σn, and |Tn| = n.

• The ordered sequence of activities in Tn is denoted as
T (1)T (2) . . . T (n) where T (k) represents the kth activ-
ity in the trace.

• Tn−1 denotes the n − 1 length prefix of Tn. In other
words Tn = Tn−1T (n).

• An event log, L, corresponds to a multi-set (or bag) of
traces from Σ+.

4. TRACE ALIGNMENT
In this section we define formally what a trace alignment is.
This definition was first introduced in [8].

Definition 1. Trace alignment over a set of traces T =
{T1, T2, . . . , Tn} is defined as a mapping of the set of traces
in T to another set of traces T = {T1, T2, . . . , Tn} where each
Ti ∈ (Σ ∪ {−})+ for 1 ≤ i ≤ n and

• |T1| = |T2| = . . . = |Tn| = m,

• Ti by removing all “−” gap symbols is equal to Ti,

• 6 ∃k, 1 ≤ k ≤ m such that ∀1≤i≤n, Ti(k) = −

1A log is the set of traces considered

m in the definition above is the length of the alignment.
An alignment over a set of traces can be represented by a
rectangular matrix A = {aij}(1 ≤ i ≤ n, 1 ≤ j ≤ m) over
Σ′ = Σ ∪ {−} where − denotes a gap. The third condition
in the definition above implies that no column in A contains
only gaps (−). It is imperative to note that there can be
many possible alignments for a given set of traces and that
the length of the alignment, m, satisfies the relation lmax ≤
m ≤ lsum where lmax is the maximum length of the traces
in T and lsum is the sum of lengths of all traces in T.

4.1 Trace Alignment Algorithms
It is important to realize that there are many different possi-
ble alignments between a set of traces. The choice that make
us consider that one is better that another one is based on
a function Score that assigns a numerical value to an align-
ment. There are many propositions in the literature for this
function Score, but we will not speak about this here. Refer
to [9], [10] or [15] if interested. Function Score is calculated
based on a matrix that we will present here. The scores for
aligning the different activities in Σ are obtained from a ma-
trix S = {sx,y}(x ∈ Σ, y ∈ Σ), called similarity matrix. The
value sx,y represents the similarity between activity x ∈ Σ
and activity y ∈ Σ. There is also a particular value that is
considered, the gap penalization value, that is a value associ-
ated to the alignment of an activity from Σ with a gap (−).
So, the objective of alignment algorithms is to find align-
ments that maximize the Score function. However, finding
a similarity matrix is not an easy problem.

In biology, there exists some well-known similarity matri-
ces that are used for aligning, for example, DNA sequences.
However, this problem has also been encountered in many
other areas, i.e. social science field, where there are no well
known similarity matrices pre-calculated. The problem in
social science is that there is no equivalent to such a strong
theoretical and empirical framework like evolutionary the-
ory. Thus the relationship between the symbols constituting
sequences of social events remain at least partly uncertain.
Some ideas have been proposed to find a way to construct
the similarity matrix S in the social science context. We
consider that it could be interesting in the future to investi-
gate this for constructing special similarity matrices for any
kind of sequences, in particular, for process traces sequences,
following ideas published in [5].

Pairwise trace alignment methods can be used to find the
best alignment between two traces. Alignment methods can
be classified into global and local alignment algorithms. The
difference between global and local alignments is that global
alignments forces the alignment to span the entire length
of all query traces whereas local alignment algorithms only
identify regions of similarity within all query traces. There
is a dynamic programming algorithm proposed in [9] that
computes the optimal global alignment between two traces.
[15], by contrast, proposes a local alignment method. Some-
times, there are more than one alignment associated to the
optimal score. In these situations, an arbitrary choice is
made.

Multiple trace alignment is an extension of pairwise trace
alignment to align more than two traces at a time. Multiple
alignment methods try to align all of the traces in a given
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query set. Multiple traces alignments are computationally
difficult to produce and most formulations of the problem
lead to NP-complete combinatorial optimization problems.

The technique of dynamic programming is theoretically ap-
plicable to any number of sequences; however, because it
is computationally expensive in both time and memory, it
is rarely used for more than three or four sequences in its
most basic form. Although this technique is computation-
ally expensive, its guarantee of a global optimum solution is
useful in cases where only a few sequences need to be aligned
accurately.

Progressive, hierarchical, or tree methods generate a multi-
ple alignments by first aligning the most similar traces and
then adding successively less related traces or groups to the
alignment until the entire query set has been incorporated
into the solution. Progressive alignment results are depen-
dent on the choice of most related sequences and thus can be
sensitive to inaccuracies in the initial pairwise alignments.

4.2 T-Coffee alignment algorithm
T-Coffee is an algorithm that can be used for multiple trace
alignment. This method is broadly based on the popular
progressive approach to multiple alignment but avoids the
most serious pitfalls caused by the greedy nature of this
algorithm. T-Coffee pre-process a data set of all pairwise
alignments between the traces. This provides a library of
alignment information that can be used to guide the pro-
gressive alignment. Intermediate alignments are then based
not only on the sequences to be aligned next but also on
how all the sequences align with each other.

The T-Coffee algorithm is composed of several steps that we
enumerate below:

1. Generating a primary library of alignments;

2. Derivation of the primary library weights;

3. Combination of the libraries;

4. Extending the library;

5. Progressive alignment strategy.

We are not going to describe in detail each step of the ap-
proach. Refer to [10] if interested. The first four steps of
the approach are concerned in the construction of libraries.
T-Coffee makes use of the information in the library to carry
out the last step, the progressive alignment, in a manner that
allows to consider the alignments between all the pairs while
it carry out each step of the progressive multiple alignment.
This provides a progressive alignment, with all its advan-
tages of speed and simplicity, but with a far lesser tendency
to make errors. We decided to use this algorithm for align-
ing traces of very large sequential processes because of its
advantages over other progressive alignment methods and
its complexity.

4.2.1 Complexity Analysis

Original Implementation

Considering N is the number of sequences to align and L is
the average length of the considered sequences, the complex-
ity of the whole procedure in its original implementation is
given by:

O(N2L2) +O(N3L) +O(N3) +O(NL2) (1)

where O(N2L2) is associated with the computation of the
pairwise library, O(N3L) the extension, O(N3) + O(NL2)
the computation of the progressive alignment.

The CPU time consumption of T-Coffee original implemen-
tation was analyzed empirically by the authors. Measure-
ments indicate the apparent complexity of the program is
quadratic, both relative to the average sequence lengths and
to the number of sequences. This result can be explained by
the fact that in the cases analyzed by the authors, L >> N .
Therefore, the time required for the library and the align-
ment computation is much larger than the time required for
the library extension: O(N2L2) +O(NL2) >> O(N3L).

The efficiency of this algorithm was the reason why we de-
cided to use it. The original implementation of this algo-
rithm was oriented toward biological sequences and was ca-
pable of working with max|Σ| = 23. In our process traces
we sometimes find that |Σ| = 1000 so a re-implementation
has been necessary. We have analyzed the source code of
this original implementation and we re-implement it for our
traces.

Our Implementation

Now we will consider N as the number of traces to align, L
as the average length of the considered traces and |Σ| as the
number of different activities. We can analize the different
steps that compose the T-Coffee method (Steps 1, 2, 3, 4, 5)
and calculate the complexity of our implementation. Look-
ing into the implementation done, the complexity of the first
three steps (1, 2, 3) is the following:

O(N) +O(N2L) +O(N2|Σ|2) +O(N2L2) +O(L) (2)

Then, the complexity of the library extension (step 4) is the
following:

O(N3L2) (3)

in the worst case. However, this will only occur when all
the included pairwise alignments are totally inconsistent. In
practice, for the data sets used in our examples the com-
plexity is closer to O(N3L).

Considering the implementation of the progressive align-
ment step (step 5), we obtain the following results:
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O(NL) +O(LN2) +O(L2N3) +O(N3) +O(N) (4)

As for the previous step, the term O(L2N3) is in the worst
case. For our traces, this term is closer to O(LN3) so the
complexity of this step results :

O(NL) +O(LN2) +O(LN3) +O(N3) +O(N) (5)

instead.

The CPU time consumption of our T-Coffee implementa-
tion was analyzed empirically (following the same idea of
the original paper [10]). Our empirical results indicate sim-
ilar behavior as the one observed by the authors of the
original paper [10]. The apparent complexity of the algo-
rithm is quadratic. This result can be explained by the
fact that in the cases considered, using STMicroelectron-
ics’ traces (see Section 6 for an explanation of these traces),
L >> N (L = 550 , N ∈ {1, . . . , 50}). This means that
O(N2L2) +O(NL2) >> O(N3L) +O(N3).

The complexity of our implementation is not as efficient as
the original one, concerning the number of comparisons re-
quired. However, the apparent quadratic time complexity is
also observed in our version of the algorithm.

5. OUR PROCESS MINING METHOD
5.1 Model Representation
The model representation chosen, i.e., the meta model of
the extracted models are based on, is a block-oriented model
originally proposed in [13] and [14].

This meta model defines that each model consists of an ar-
bitrary number of nested building blocks. These building
blocks are differentiated into operators and terms. Oper-
ators combine building blocks and define the control-flow
of a workflow. We use the following operators: Sequence,
Parallel, Alternative, and Loop.

The Sequence operator defines that all embedded blocks are
performed in a particular sequential order. Let S denote the
Sequence operator and let a and b denote two blocks. S (a, b)
is then a model defining that block a is always performed
before block b.

The Parallel operator defines that all embedded blocks can
be performed concurrently, i.e. in parallel or in any order.
Let P denote the Parallel operator and let a and b denote
two blocks. P(a, b) is then a model defining that block a
and b can be performed concurrently.

The Alternative operator defines a choice of exactly one
block out of all its embedded blocks. This operator is sup-
plemented by a set of rules determining the choice. Let A
denote the Alternative operator and let a and b denote two
blocks. A (a, b) is then a model defining that either block
a or block b is performed. Additionally, we define a Loop
operator L . A Loop operator contains only one block that
is executed repeatedly while its loop condition holds.

Basic terms are pointers to tasks and sub-workflows, which
are embedded in a control-flow. ε represents an ‘empty pro-
cess’, used for describing empty paths in alternatives.

We call the model that conforms to this meta-model a block-
structured model. We can construct a model top-down by
setting one operator as the starting point of the model and
nesting other operators until we get the desired control-flow
structure. At the bottom of this structure, we embed ba-
sic terms into operators which terminates the nesting pro-
cess. Beside the representation of block-structured models
as terms, we represent them in the form of diagrams. Such
a diagram depicts the model’s blocks in the form of nested
rectangles. The control-flow is explicated by arrows and op-
erator symbols.

Figure 1: A simple process model

For example, Figure 12 [12] shows the process model S (A (A (
S (b, c),S (g, h)), ε),P(u,w)) in the form of a diagram. The
root of this model is a Sequence operator block that contains
all other blocks in a hierarchical manner, so that the task
pointers b, c, g, h, ε (empty process), u and w are embedded
in a nested control-flow.

For this meta-model there is an algebra that consists of a set
of axioms covering distributivity, associativity, commutativ-
ity and idempotency. These axioms are the basis of term
rewriting systems that can be used in order to transforms
models. A set of basic axioms is shown in Table 1. More
details about this meta-model can be found in [13] and [14].

Block-structured models have some advantages: they are
well formed and always sound. We have decided to construct

2Figure created using ProcessMiner tool, downloaded from
http://www.processmining.de/
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Table 1: Basic Algebra
A1: A1(x1, . . . , xn) = . . . = An!(xn, . . . , x1)
A2: A (. . . , x1, . . . , xn, . . .) = A (. . . ,A (x1, . . . , xn), . . .)
A3: A (x, x, . . .) = x
A4: S (A (x1, . . . , xn), y1, . . . , ym) =

A (S1(x1, y1, . . . , ym), . . . ,Sn(xn, y1, . . . , ym))
A5: S (. . . , x1, . . . , xn, . . .) = S (. . . , S(x1, . . . , xn), . . .)
A6: P1(x1, . . . , xn) = Pn!(xn, . . . , x1)
A7: P(A (x1, . . . , xn), y1, . . . , ym) =

A (P1(x1, y1, . . . , ym), . . . ,Pn(xn, y1, . . . , ym))
A7: P(. . . , x1, . . . , xn, . . .) = P(. . . , P (x1, . . . , xn), . . .)
A8: x = S (x, ε)
A9: x = S (ε, x)

models based on this meta-model because they can be easily
converted to many models applicable in different workflow
systems. We plan to automate, afterward, the comparison
between the workflows constructed from this process mining
method to workflow models defined by experts.

5.2 Mining Process Models
In this section we will introduce the process mining algo-
rithm we propose to construct models from process traces.

Algorithm 1. Given a set of traces T = {T1, T2, . . . , Tn}
of process P where ∀1 ≤ i ≤ n , Ti ∈ Σ+, a provided sim-
ilarity matrix S = {sx,y}(x ∈ Σ, y ∈ Σ) and a gap penalty
d. We propose to construct a process model from this set of
traces T in 3 steps:

• Step 1: Construct a trace alignment A = {aij}(1 ≤
i ≤ n, 1 ≤ j ≤ m) for T using T-Coffee alignmnet
algorithm considering S and d;

• Step 2: Considering the alignment A = {aij}(1 ≤ i ≤
n, 1 ≤ j ≤ m) constructed in the previous step, iden-
tify all j ∈ {1, . . . ,m} where aij = akj ∈ Σ,∀i,∀k ∈
{1, . . . , n}. We call this set SAA (Same Activity Alig-
ned).
Set SAA will contain the indexes of columns where
only identical activities are aligned (− gap symbol is
not permitted).

• Step 3: Considering the set SAA obtained in the pre-
vious step we can construct the process model based on
the meta model introduced in subsection 5.1 using the
following instructions:

– Starting from index j equal to 1 up to m (this
means we have to consider all columns in the align-
ment A ), identity all pairs of indexes (start, end)
marking the beginning and the ending of indexes
belonging to SAA and to SAA3, respectively.

– For all pairs (start, end) where start, end ∈ SAA
use function Construct Sequence to construct the
block model representing the only sequence admit-
ted by the traces.

3SAA means the complement of SAA

Function Construct Sequence(A, start, end) con-
struct a Sequence block model containing the ele-
ments of Σ found in A between indexes start and
end.

– For all pairs (start, end) where start, end ∈ SAA
use function Construct Alternative Sequences
to construct the block models representing each of
the different paths introduced by the traces.
Function Construct Alternative Sequences(A,
start, end) construct an Alternative block model,
containing a block for each alternative path pro-
posed in alignment A between indexes start and
end. If a path contain more than one activity,
the corresponding Sequence block model is con-
structed.

– Finally, respecting the order of all the pairs (start,
end) found, the final model is a Sequence block
model containing all the block models constructed
in the previous steps, respecting the order of in-
dexes.

Let us show how it is working by an example.

5.2.1 Example
Consider the set of traces T = {T1, T2, T3, T4} of process P .
Imagine that:

T1 = bcdffghijk

T2 = bcdghijk

T3 = bcdffghi

T4 = bcghik

Σ = {b, c, d, f, g, h, i} in this example.

We apply our process mining method over this log.

Step 1: We apply T-Coffee alignment algorithm over T.
Imagine we obtain the following alignment matrix:

A =


b c d f f g h i j k
b c d − − g h i j k
b c d f f g h i − −
b c − − − g h i − k


Step 2: Once we have constructed alignment A we proceed
to find the indexes of the columns where in each row appears
the same identifier of Σ (and no gaps). We construct set
SAA. Looking at A it is easy to see it is the case of the first
two columns and also columns 6, 7 and 8. The resulting set
is SAA = {1, 2, 6, 7, 8}.

Step 3: We must identity all pairs of indexes (start, end)
marking the beginning and the ending of indexes belonging
to SAA and to SAA. We obtain: (1, 2) where 1, 2 ∈ SAA,
(3, 5) where 3, 5 ∈ SAA, (6, 8) where 6, 8 ∈ SAA, (9, 10)
where 9, 10 ∈ SAA.

We use the appropriate function in each case:
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Figure 2: Resulting process model of our example

• Construct Sequence(A, 1, 2). This function will con-
struct the following model: S (b, c).

• Construct Alternative Sequences(A, 3, 5). This func-
tion construct a model that its root is an Alternative
operator and each of the alternative blocks are the
different paths proposed in the alignment between in-
dexes 3 and 5. There are 3 paths proposed: S (d, f, f),
d and ε. So, the result proposed by function Construct
Alternative Sequences(A, 3, 5) would be: A (S (d, f,
f), d, ε).

• Construct Sequence(A, 6, 8). The resulting model is

S (g, h, i).

• Construct Alternative Sequences(A, 9, 10) constructs
the model: A (S (j, k), ε, k).

The final model is a Sequence block model containing the
concatenation of the previous blocks just obtained:

S (S (b, c),A (S (d, f, f), d, ε), S (g, h, i),A (S (j, k), ε, k)).

A graphical representation of this model is shown in Figure
2.

5.2.2 Results
Analyzing the procedure for constructing models proposed
we can state that the models we obtain are always complete.
The reason is that there is no step that omits a task. All
tasks are represented in the resulting model and order be-
tween different tasks is also respected. However, the models
we obtain are not minimal. We can prove this just looking
at the previous example. The resulting model accepts the
following sequence of activities: b → c → d → f → f →
g → h → i → k that is not present in the log used for the
model construction.

We must also remark that models we construct could some-
times be transformed into simpler ones. Look again at the
result obtained in the example. Consider the constructed
block:

A (S (j, k), ε, k).

There we can see that in two paths, activity k is referenced.
We could simplify this model using the basic algebra pro-
posed in Table 1. We could transform that block in the
following way:

A (S (j, k), ε, k) ≡(A9)

A (S (j, k), ε,S (ε, k)) ≡(A1)

A (S (j, k),S (ε, k), ε) ≡(A2)

A (A (S (j, k),S (ε, k)), ε) ≡(A4)

A (S (A (j, ε), k), ε)

We are thinking already a way to automatize the construc-
tion of simpler models. However, the first interest that was
finding a model for easily differentiate normal executions
paths from optional executions paths for very large sequen-
tial processes has been achieved using our process mining
method.

6. APPLICATION
We are going to show now the results obtained using our pro-
cess mining method in a particular case: STMicroelectron-
ics’ sequential manufacturing processes. But, before that, we
are going to introduce the vocabulary associated to STMi-
croelectronics’ production processes (vocabulary used by its
experts).
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Figure 3: Colored representation of alignment for 20 process traces from STMicroelectronics

6.1 STMicroelectronics Experts’ Vocabulary
A manufacturing process is called ’Production Route’ in
STMicroelectronics’ vocabulary. Each of these production
routes is composed of a sequence of ’Operations’. Each op-
eration has a numerical identifier and inside a route, opera-
tions’ identifiers are ordered respecting an increasing order.
Each operation is, as well, a sequence of ’Steps’ and ’Events’.
In fact, a step is always associated to an event. A step is
just a numerical identifier used to order the events in an
operation; increasing order is also respected here. An event
is a desired treatment over the manufactured object. As-
sociated to each event there are ’Entities’. An entity is a
machine that is qualified, i.e. that has been tested and vali-
dated for the desired treatment. Depending on the event to
perform and the entity chosen, there is a ’Recipe’ associated.
A recipe is a list of machine instructions that are given to the
entity chosen to perform the desired treatment. There may
be different recipes associated to a same event. The reason
is that there exists different machines in STMicroelectronics
that are used for performing same treatments. So, the list
of machine instructions are not the same if the machines are
not equal.

A manufactured object is called a lot in STMicroelectronics’
vocabulary. In fact, a lot is a box containing, at most, 25
silicon plates (wafers). During production, the lot goes from
one machine to another to be transformed according to the
process definition.

6.2 STMicroelectronics Data Volume
STMicroelectronics plant situated in the south of France, in
Rousset, counts actually with more than 1000 active produc-

tion routes. Each of these production processes is composed
of, in average, more than 500 different operations. Each op-
eration is composed of steps, steps number vary from 1 to 4,
5 steps in the longest operations. This means that a lot must
go through (in average) 600 different transformations steps
before obtaining the final product. Some other interesting
numbers can be cited to show the volume of data related
to this enterprise processes definitions. There exist approxi-
mately 10000 different recipes (list of machines instructions)
and there are more than 300 equipments in this plant.

These are the reasons why the alignment method chosen for
performing the alignment has been studied in detail, there
is a huge data volume to treat. Optimality has been consid-
ered. However, time and memory needs were the priority.

6.3 STMicroelectronics Traces
STMicroelectronics counts with a Supervision System of Pro-
duction that is called ’WorkStream’. Each time a lot is
treated, the corresponding information is saved in Work-
Stream’s databases. Information saved in these databases
are lot identifier, production route identifier to which the
lot is associated, operation, step, event, recipe being exe-
cuted, starting and ending times of the treatments, machine
used, etc. All this information is saved for all lots in pro-
duction. We use a subset of all this information for testing
our approach.

Each trace in this example will be associated to a lot. For
each lot, the trace contain an ordered sequence of the ac-
tivities that the lot went through from the beginning to the
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end of its production. Considering the description of STMi-
croelectronics’ processes given in Subsection 6.1, the names
of the activities will be consider to be the concatenation be-
tween the name of the event and the name of the recipe
chosen for execution. We do not consider information such
as operations and steps numbers in our traces because they
are used by STMicroelectronics’ engineers to order the activ-
ities. Introducing this information will implicitly introduce
information about the process model and we do specially
want to avoid that.

6.4 Results
We have tested our approach over STMicroelectronics’ real
production traces. We extracted a set of 20 traces T =
{T1, . . . , T20} of a same process. Traces length varied from
520 to 620 recorded activities. A total of 551 different ac-
tivities have been found in T, this means |Σ| = 551. We
performed an alignment between these traces using our im-
plementation of T-Coffee algorithm, obtaining the alignment
matrix A = (T1, . . . , T20)T as result. We have used a simi-
larity matrix S such that sx,y = 1 when x = y and sx,y = −1
when x 6= y, where x and y ∈ Σ. Aligning any activity iden-
tifier with a gap symbol (−) has been penalized using a d
value set to −1.

In Figure 3 we can see a colored representation of the align-
ment matrix A obtained as result. The dimensions of this
matrix are 20 rows × 884 columns. The construction of A
corresponds to the Step 1 of the algorithm proposed in Sub-
section 5.2. Each trace is represented in one row in the ma-
trix. Due to the huge dimensions of this alignment, we have
colored columns for a better understanding of the results.
In fact, we do not show exactly the content of this matrix in
Figure 3, we just show a colored version of it for the readers’
better understanding. Green columns show columns where
all tasks identifiers (for all 20 lots) match (set SAA). Iden-
tifying these green columns corresponds to the Step 2 of the
same algorithm. We colored in red the rest. Analyzing the
alignment contents we can appreciate that even though dif-
ferences have been found between traces, a common process
is identified from the 462 columns colored in green (for the
sake of brevity this content is not shown in the article). This
means that 462 similar tasks have been identified between
the 520− 620 that compose the traces.

Doing an analysis of alignmentA, we can confirm that differ-
ences are due to (in most of the cases) to repetitions of tasks
for correcting errors in production, repetition of measures
and modifications done to the process definitions between
the different dates of the traces that compose the log.

The construction of the model from this colored matrix is
straight forwards, Step 3 in our mining algorithm. However,
we are not going to show the model obtained here. In fact,
the construction procedure has been already explained for
the example of Subsection 5.2.1.

7. CONCLUSION AND FUTURE WORK
We are satisfied by the results obtained in the application
of our approach over STMicroelectronics traces. The results
obtained encourage us to continue to investigate the use of
alignments to differentiate normal process executions and
special activities executions inside process traces. Our fu-

ture work will surely consist in the transformation of the
models obtained by our method into simpler models.

This work is part a project that searches to construct generic
process models. These generic process models will be ob-
tained merging models obtained from two different sources:
activity (process traces) and experts process specification.
For being able to merge models from these two different
sources, all models will need to be translated to a common
formalism. The formalism that we will use are Timed Se-
quential Machines (TSM) [7] and [6]. This will enable us to
simulate if required in the future.
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