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ABSTRACT 
Radio frequency identification (RFID) enabled 
temperature tracking technologies are used to monitor 
perishables such as fresh produce and pharmaceuticals 
during storage and transportation to validate the 
temperature integrity of the supply chain.  With the help 
of RFID readers, the data stored in the memory of an 
RFID tag can be up-linked to a computer for further 
information processing.  In this study, we develop a 
computationally-efficient, quality index based shelf life 
estimation model which operates on the stored 
temperature data in an RFID tag’s sensor memory to 
predict the remaining shelf life using a parametric 
matrix.  The advantages of the proposed model over 
conventional approaches like Arrhenius equation 
include: multi-component quality analysis, scalability to 
higher dimensions with additional environmental 
parameters such as humidity, greater control over the 
trade-off between accuracy and complexity and finally 
adaptability to application requirements and sensory 
device capabilities such as memory capacity and 
sampling speed. 
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1. INTRODUCTION 
The shelf life estimation model discussed in this paper 
is developed as part of a project which employs an 
RFID system with handheld readers and temperature 
tags to estimate the remaining shelf life of army rations 
to increase food quality and safety.  There are multiple 
approaches to shelf life modeling and estimation for 
perishable products such as the Arrhenius equation 
which formulates how the rate of a chemical reaction 
changes with temperature as shown below: 

 

                                
 

where the rate constant k of a reaction depends on the 
temperature T, whereas the pre-exponential factor A, the 
activation energy Ea and the gas constant R do not 
change with temperature (Petrou et. al. 2002).  The 
coefficients in this equation such as k and Ea depend on 
the type of product and are determined experimentally 
by observing  the  speed  of  degradation  at  different  

 
Figure 1: A typical shelf life curve for a product based 
on Arrhenius equation.   
 
temperatures.  Based on such experimental observations 
and the exponential form factor of Arrhenius equation, a 
typical shelf life curve which shows the time to expire 
vs. temperature is shown in figure 1 for the army rations 
used in this project.  At normal temperatures, the army 
rations have a minimum shelf life of two years as can be 
observed from the above figure and the time to expire 
falls with increasing temperature similar to other 
perishable products. Given the average temperature 
during a shipment and storage cycle, one can 
approximate the remaining shelf life on a pallet of army 
rations by looking at the plot in figure 1.  
 However, in a typical sensory monitoring 
application, the tracked environmental variables, such 
as temperature points, are stored as pairs of value & 
timestamp instead of a single average temperature 
value. For example, if the sensory device is sampling 
the temperature every n minutes, in N minutes of total 
sampling time there are N/n pairs of temperature & 
timestamp data points which provide better insight to 
the temperature distribution within the supply chain.  
However, in order to utilize such information with 
higher resolution, unlike Arrhenius model, one needs to 
utilize more data driven and scalable models which can 
accommodate the capabilities of the sensory device.  In 
addition, with advance of better sensory devices, other 
environmental variables, such as humidity can be 
tracked efficiently and should be used for more accurate 
shelf life estimation.  Finally, today’s customer 
experience oriented approach to perishable supply 
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chain, such as food qualities ranging from taste to color 
to odor, should be accounted for in a robust model. In 
this paper we propose a computationally efficient, 
quality index and parametric matrix based shelf life 
estimation model which is built open the multiple 
quality curve approach to perishables (Nunes 2008). 

 
2. SHELF LIFE ESTIMATION MODEL 
The quality models used in this project for different 
items in a package of army rations are the following 
five qualities: appearance, flavor, odor, texture and 
overall quality. Each of these quality factors has a 
quality index (QI) which ranges between 9.0 and 1.0 
where 9.0 indicates the highest (initial) quality and 4.0 
indicates the lowest acceptable quality.  In order to find 
the QI values, periodic taste panels are performed where 
different batches of products which are exposed to 
different temperatures equally distributed within 27°C 
and 60°C, are sampled and their qualities assessed by 
trained participants. Through these taste panels, 
multiple sets of time-temperature data are obtained for 
each of the five qualities.  An example data set is shown 
in table 1 for a storage temperature of 49°C. 

Table 1: Taste panel results for a packaged item from 
army rations stored at 49°C and sampled at every 2 
weeks 

Weeks App. Aroma Flavor Texture Overall 
0 7.9 7.9 8.0 8.0 7.9
2 5.8 6.0 5.8 5.8 5.8
4 4.7 4.9 4.6 4.3 4.4
6 3.8 4.0 3.8 3.6 3.9
8 3.1 3.6 3.3 3.1 3.2
10 2.8 3.3 3.1 3.0 3.0

 

These results are averaged over all the people who 
participated in the taste panel and the colored entries 
show when the QI first drops below the threshold value 
of 4.0 and the product is declared inconsumable.  

2.1. Formulation of Quality Index Change 
The QI value of a specific product-quality pair depends 
on three important factors: the previous QI and the time 
and the temperature between the last sampling instant 
and the present. The following equation summarizes the 
relation between the past and present QI. 
 

          
 
where QIcurrent and QIprevious indicates the current and 
previous QI values after time t  and average temperature 
T. As shown in the equation, the drop in the QI is a 
function of the previous QI, time and temperature. 
Hence the problem of constructing a shelf life model 
with this approach can be reduced to finding where the 
current QI drops below the acceptable threshold of 4.0, 
or in other words, finding the function f. 
 Unlike Arrhenius equation, the function, f, needs to 
be defined and is different for each quality value which 
requires the use of multiple quality models, or in other  

 
Figure 2: The interpolation of quality index value for 
the appearance quality of the product in table 1. 

 
Figure 3: The plot that shows how much QI will drop 
depending on previous QI value, temperature and time 
(note 120°F = 49°C) 
 
words, a parametric matrix.  For   example,   for    the 
product in table 1, we only have 6 sampling instants in 
time which are 2 weeks apart. However, the RFID 
temperature sensor used in the project samples twice 
every day. In order to construct a shelf life model which 
can make full use of this information, the first 
interpolation will take place in time, as shown in figure 
2. The next step is to find how QI changes with time at 
a specific temperature and previous QI value. Since the 
time between sensor sampling instants will be fixed for 
an application (in this case 12 hours) one can use the 
values in figure 2 to find for each possible QI value 
between 4.0 and 8.0, how much the QI drop will be 
after 12 hours at 49°C as shown in figure 3. However, 
since there are only 4 experimental temperature points, 
a second 2-dimensional interpolation is performed 
between the QI drop vs. previous QI value curves for 
different temperatures. In order to make the algorithm 
run on a handheld RFID reader such as the one used in 
the project, this interpolation can be sampled at discrete 
temperature points (such as every 1°C) to create a set of 
parametric 2x2 matrices for each quality. Given a 
previous QI value and temperature, such a matrix 
provides the corresponding quality drop in the previous 
equation, thereby serving as the estimation function f as 
shown in figure 4. 
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Figure 4: The function, f, which outputs the drop in 
quality with temperature and previous QI value given 
initial QI value (as indicated by lines with different 
colors) 
 
Hence, the proposed model is not only computationally 
efficient, as it only uses look-up tables for shelf life 
estimation, but also has complete control over the trade-
off between accuracy and performance.  In addition it is 
scalable to other parameters such as humidity and its 
parametric approach can be modified based on sensory 
device capabilities and specific requirements of the 
application. 
 
3. TEMPERATURE ESTIMATION MODEL 
Temperature tracking and shelf life estimation of 
perishable products such as fresh produce or 
temperature sensitive pharmaceutical drugs during their 
transportation has been vital to ensure the quality 
degradation remains acceptable when the items reach 
their end destination.  RFID enabled temperature 
loggers take this to the next level by adding the 
capability of wireless data transfer to remotely monitor 
the temperature inside a shipping container 
(Opasjumruskit et. al. 2006).  Such information would 
pave the way for intelligent distribution practices such 
as first-expired-first-out (FEFO) instead of the more 
commonly used first-in-first-out (FIFO) based on the 
differences in the temperature profiles witnessed during 
transportation of individual shipments.  
 However, due to the dynamics of heating/cooling 
cycles, it is well known that the temperatures in close 
vicinity of the products may be different than the 
temperatures measured inside the shipping container 
itself (Faghri et. al. 2010).  For instance, the 
temperature inside the container can change more 
rapidly than the temperature inside a pallet of tightly 
packed food products.  In some cases this might be 
helpful; such as when the temperature inside the pallet 
is low and the temperature inside the container increases 
rapidly.  In such a scenario, it will take longer for the 
pallet temperature to rise to the level of container 
temperature, which might have a positive impact on the 
remaining shelf life.  However, in the opposite case, 
even when the temperature inside the container cools 
down, it will take longer for the pallet temperature to 
come down as well that will negatively affect the 
remaining shelf life.  In summary, it is crucial to 
measure the temperature inside the pallet rather than the 

container to have a more accurate representation of the 
remaining shelf life. 
 The limitations of RFID technology, such as 
reduced performance near metals and liquids might 
prevent placing RFID temperature tags inside pallets 
with significant metal and liquid content.  One example 
to this would be First Strike Rations (FSR) as they are 
shipped and stored in tightly packed pallets where the 
shipping or storing temperatures can exceed 150-160°F, 
which results in reduced shelf life.  Since the algorithm 
developed in this paper deals with the estimation of 
remaining shelf life based on the temperatures measured 
by RFID temperature loggers during shipment and 
storage, in order to best monitor the temperature inside 
the pallet, the trivial solution is to place the temperature 
tags inside for more accurate measurement.  However, 
this causes serious problems during the interrogation of 
these tags due to all the metal and liquid content of the 
rations inside the pallet.  Hence, the tags are placed 
outside the pallet, measuring only the temperature 
inside the container.  One can use this information as an 
approximation to the actual temperature inside the pallet 
and calculate remaining shelf life based on this data, 
however there is a more accurate way of estimating the 
temperature in close vicinity of the products inside the 
pallet. 
 The following study was performed to find the 
correlation between the temperatures inside and outside 
a pallet of army rations during heating/cooling of the 
environment.  Five different experiments were carried 
out where a pallet of army rations was exposed to 
different heating/cooling cycles. One temperature 
sensor was placed outside the FSR pallet and two 
sensors inside the pallet, labeled as Alpha and Prime.  
Based on the heating/cooling intervals, the tests can be 
divided as follows: 6 hours/6 hours, 18 hours/18 hours, 
24 hours/24 hours, 2 days/2 days and 4 days/4 days. 
  

 
Figure 5: The temperature change inside the pallet at 
point labeled Alpha and how it fluctuates with the 
change in environmental temperature 
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Figure 6: The temperature change inside the pallet at 
point labeled Prime and how it fluctuates with the 
change in environmental temperature 
 
Figure 5 shows a concatenated plot for the measured 
temperature levels inside and outside the rations pallet 
during the entire study for the point labeled Alpha 
inside the pallet.   Similarly, figure 6 shows the same 
plot for the point labeled Prime.  As expected, the 
temperatures inside the pallet show a capacitor effect to 
rapidly changing temperature by slow heating/cooling 
cycles.  In other words, the temperatures rise and decay 
with a time constant (though slightly different for the 
two points) that can be determined from these five 
experiments and can subsequently be modeled to 
estimate the temperature inside the pallet given the 
environmental temperature. 
 In order to better explain this phenomenon, let’s 
take a look at a strikingly similar analogy where the 
environmental temperature is modeled by the potential 
difference between the terminals of a voltage source and 
the pallet temperature is modeled by the potential 
difference between the terminals of a capacitor as 
shown in the electronic circuit of figure 7 (Paul 2001). 

 

 
 
Figure 7: A typical resistor-capacitor circuit to simulate 
the behavior of the pallet temperature in the presence of 
changing environmental temperature 
 
In this figure, V represents the environmental 
temperature and Vc represents the pallet temperature.  
The relation between the two temperatures can be 
explained by the following equation: 

 

 

 
where Vc

initial is the initial pallet temperature, R is the 
resistance of the resistor and C is the capacitance of the 
capacitor.  In other words, the pallet temperature will 
rise or fall with a speed determined by the time constant 
(RC) and the difference between the temperature of the 
pallet and the environmental temperature.  The bigger 
the difference the faster temperature will change inside 
the pallet.  
 In order to find the time constant empirically, one 
has to change the potential V and observe how the 
potential Vc changes with time.  Both figures 5 and 6 
provide enough information on how to find the time 
constant for both rising and falling temperatures. If we 
rearrange the terms in the above equation to find τ (RC), 
we arrive at the following equation: 

 

 
 

Hence, if one knows the temperature inside the pallet at 
a given time, t, the initial temperature inside the pallet 
and the environmental temperature, it becomes trivial to 
calculate the time constant.  Unlike the electronic circuit 
described above, it is possible to have a different time 
constant for heating and cooling cycles and the way 
experiments are designed will allow for separate 
calculation of the two. 
 Let’s take a look at the last experiment to calculate 
τrising for Alpha point. In this experiment, the average 
environmental temperature sits at 60.5°C.  If we define t 
= 0 as the time the pallet temperature started to increase 
from 24.6°C, we can then choose a 2nd temperature 
point-time pair to calculate the time constant.  For this 
example, let’s look at the last study (4 days/4 days) 
where it takes t = 76 hours for the pallet temperature to 
reach 60°C, and this point will be used in the 
calculations below where T represents temperature and t 
represents time. 

 

 
 

Thus;  
 

 
 

Similarly, to find τfalling, one only need define two time-
temperature points where the pallet temperature slowly 
approaches the environmental temperature.  We choose 
the same study using a 4 day cooling period to 
determine the falling time constant. 
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Based on these time constants, estimating the 
temperature inside the pallet can be modeled by the 
following two equations. 

 

 
 
where Tpallet is the current estimated pallet temperature 
and (T-1)pallet denotes the previously estimated 
temperature sample. 
 Remember that this model is only an approximation 
of the actual temperature inside the pallet as measuring 
this temperature directly is difficult with RFID 
technology.  In order to gauge the performance of this 
model, let us compare the model output with the actual 
measured temperature inside the pallet. Figure 8 shows 
the estimated pallet temperature against the actual pallet 
temperature measured by the sensor.  As clearly 
observed from this figure, the estimated temperature is 
much closer to the pallet temperature than the 
environmental temperature and thus would be a much 
better candidate to be the temperature profile used in 
shelf life calculations. 
 

 
Figure 8. Comparison of environmental temperature, 
measured pallet temperature and the estimated pallet 
temperature for Alpha 

 
Figure 9. Comparison of environmental temperature, 
measured pallet temperature and the estimated pallet 
temperature for Prime 
 

In terms of numerical evaluation, the root-mean-square-
error and standard deviation between the environmental 
temperature and the pallet temperature are as follows: 

RMS(e)environmental-pallet = 26.2°C 

σenvironmental-pallet = 25.1°C 

 In contrast, the mean error and standard deviation 
between the estimated temperature and the pallet 
temperature are much lower. 

RMS(e)estimated-pallet = 2.6°C 

σestimated-pallet = 2.5°C 

 Even though these calculations were performed for 
the point Alpha, it’s similar for the other point Prime as 
well.  Figure 9 shows the estimation results for Prime. 

RMS(e)estimated-pallet = 2.9°C 

σestimated-pallet = 2.8°C 

 The slight discrepancy in performance for points 
Alpha and Prime can be attributed to the fact that Prime 
shows a different temperature roll-off behavior at 
subzero temperatures than Alpha.  This non-uniform 
behavior cannot be approximated accurately by the 
single order model.  Future work will include piecewise 
modeling to account for such discrepancies in 
temperature time constants at different temperature 
intervals. 
 To summarize, where one needs to estimate the 
shelf life of a product based on an RFID tag attached 
outside the pallet, it is significantly better to estimate 
the pallet temperature using this model and then use the 
estimated temperature to calculate the remaining shelf 
life for much accurate results. 

A simple capacitive model, though was shown to 
be quite effective, can be outperformed by more 
complex estimation models such neural network or time 
series estimations.  As future work, we will explore 
these possibilities and more importantly integrate this 
type of temperature estimation inside the shelf-life 
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model described in this paper for a comprehensive 
software approach. 
 
4. CONCLUSIONS 
In this paper a computationally efficient and scalable 
shelf life estimation algorithm is described, specifically 
designed for wireless temperature sensors in the supply 
chain which lack the computational and storage 
capabilities of computers.  Furthermore, the complexity 
of the model can be adjusted for a minimal trade-off in 
accuracy. Considering the physics of how wireless 
sensors communicate with their base unit, a temperature 
estimation algorithm is developed to model the changes 
in pallet temperature with environmental temperature.  
Our results show a 90% improvement in root-mean-
square-error performance between the pallet 
temperature and estimated pallet temperature when 
compared to environmental temperatures. 
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