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ABSTRACT 

Although production scheduling has attracted the re-

search interest of production economics communities 

for decades, a gap still remains between academic 

examples and real-world problems. Genetic Algorithms 

(GA) constitute techniques which have already been ap-

plied to a variety of combinatorial problems. I intend to 

explain the application of a GA approach to bridge this 

gap for job-shop scheduling problems, by minimizing 

the makespan of a production program or increasing the 

due-date reliability of jobs.  

Simulation is a useful tool in problem solving. 

Here repetitive runs of simulated models or computed 

solutions through algorithms are applied. For job-shop 

and resource-constrained project scheduling, problems 

trying to bridge the gap between computed solutions 

and the feasibility of the simulation occur. I would like 

to explain the application of this special GA for job-

shop and resource-constrained project scheduling. 

Possible goals for scheduling problems include 

minimizing the time required of a production program, 

or increasing the due-date reliability of jobs, or possibly 

other objectives which can be described in a mathe-

matical expression. The approach focuses on integrating 

a GA into a commercial software product, namely 

Microsoft Project 2003, and verifying the results with 

the simulation. 

 

Keywords: Job-shop scheduling, Genetic algorithms, 

Job-shop Benchmarks, Real-world scheduling prob-
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1. INTRODUCTION 

 

1.1. Characteristics of job-shop scheduling problems 

Many jobs in industry and elsewhere require a collec-

tion of tasks or activities to be completed whilst satis-

fying temporal, resource and precedence constraints. 

Temporal constraints refer to the time requirement that 

some tasks or set of tasks have, where they must be 

finished before or after a certain point in time. Resource 

constraints dictate that two tasks requiring the same 

resource cannot be carried out simultaneously. Whereas 

Precedence constraints refers to the technologically 

imposed carrying out of the tasks within a job or 

production order. The objective is to create a schedule 

specifying when each task or activity is to commence 

(or finish) and what resources it shall use in order to 

satisfy all the constraints while pursuing an objective. 

The overall goal is to complete all tasks to an acceptable 

standard within the least time possible (makespan), 

whilst taking into consideration such aspects as 

minimizing the mean tardiness and number of jobs. This 

is also referred to as the job-shop scheduling problem 

(JSP). 

The JSP is a very important and well defined 

scheduling problem. It is a basic model, which may be 

extended through use of additional characteristics like 

buffers, transportation, setup time, time lags, etc., 

allowing practical scheduling problems to be modeled 

more precisely. In its general form, it is NP-complete, 

meaning that there is probably no efficient procedure 

for exactly finding the shortest schedule for arbitrary 

instances within this class of problem. 

BAGCHI (p. 109) references the JSP as follows: 

"Within the great variety of production scheduling 

problems that exist, the job shop scheduling problem is 

one that has generated the largest number of studies. It 

has also earned a reputation for being notoriously diffi-

cult to solve. Nevertheless, the JSP illustrates at least 

some of the demands imposed by a wide array of real 

world scheduling problems… Attempts to tackle the 

multi objective job shop are still relatively few."  

A JSP is usually solved using a heuristic algorithm 

which takes advantage of special properties of a specific 

class of instances. This can be regarded as a loophole to 

reduce the complexity of a given problem. 

 

1.2. Formal problem description 

An instance of the JSP consists of a set of NOAi activi-

ties within jobs i  and NOM  machines j . Each job 

consists of a number of activities so that we may count 

the total number of activities NOA  as follows: 

 

1

NOM

NOA NOJi

i





  (1) 

Here each job has a fixed number and a sequence of 

activities. Each activity requires a certain amount of 

time implementing a single machine for its entire 

duration. An activity must be finished before each ac-

tivity following it can commence, with each job 

utilizing a different machine. Two activities cannot be 

scheduled at the same time if they both require the same 

machine. In all we need to find a feasible schedule 
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which minimizes some objective function, whilst 

reducing makespan. Where makespan  expresses the 

overall completion time of all activities, see 

STEININGER (2007, pp. 26). This produces a com-

plexity function for the JSP expressed as 

 
 ! NOM

O NOJ 
 
   (2) 

In order to find the best schedule for a problem in-

stance, we could enumerate and evaluate all possible 

schedules. The number of feasible schedules to be enu-

merated would be the result of function  (2). 

 
Figure 1.  Selected complexity functions (STEININGER, p. 82). 

Figure 1 illustrates the dimensions of selected com-

plexity functions, where n  represents the number of 

problem elements, which are determined here by the 

number of activities and machines. These graphs 

illustrate how the complexity of a JSP can be much 

larger than some other well-known problems, such as 

"Permutation problem" which is   !O n n , "Towers of 

Hanoi" which is   2nO n  , and "Quicksort" which is 

  logO n n n  .  

 

1.3. Classification of scheduling problems 

Classes of scheduling problems can be specified in 

terms of the three-field classification approach initially 

introduced by CONWAY, MAXWELL and MILLER 

(2003) and extended by GRAHAM (1979) and 

BRUCKER (2004). Of course this depicts a continuous 

developmental process open to scrutiny and 

reevaluation. This three-field classification is described 

as α | β | γ, where α specifies the machine environment, 

β specifies the job characteristics and γ represents either 

the objective function or a combination of objective 

functions. Using the three-field classification to specify 

the problem instance of the JSP we are examining, the 

following taxonomy is noted: 

 , | ,intree, | maxJ NOM NOJ t Cij  (3) 

Formula (3) describes a class of scheduling problems as 

JSP ( J ) with a fixed machine count of NOM  and a 

predefined and fixed number of  NOAactivities. The 

precedence routing of activities in each order is prede-

fined and fixed as a directed graph with operation times 

( tij ). These are expressed as integer values for each 

activity. 

The three-field classification denotes γ as the objective 

function or a combination of objective functions. In 

formula (3)   specifies the "traditional" objective func-

tion (
maxC ). This depicts our primary objective which 

is to limit the makespan using the least time possible  

for the schedule of all  NOA activities using NOM

machines. 

 

2. MODELLING OF JSP SCHEDULING PROB-

LEMS 

2.1. Formal problem representation 

Even slightly different job-shop problems require com-

pletely different encodings in order to find a good solu-

tion. Thus, choosing an efficient representation is a very 

important component when solving a JSP. However, 

deciding upon a relevant representation for a scheduling 

problem is as difficult as choosing a good search algo-

rithm for a decision problem. Not all algorithms work 

equally efficient in a specific problem representation. In 

order to describe the representation technique developed 

for our solution, a simple job-shop scheduling problem 

example has been used  in Table 1. 

Table 1. Example of a production schedule problem 

with 3 jobs, routing information S j  for the jobs i, 3 ma-

chines j and operation times tij for each task of a job in 

time units (TU). 

 

Job 

Machine 

S j  i  

[TU]tij  

j  1 2 3 

1 (3,2,1)  3 5 1 

2 (1,2,3)  3 2 1 

3 (2,1,3)  1 2 5 

 

The scheduling problem can be represented by a graph 

as shown in Figure 2. In addition to the activity nodes 

(i,j), it contains a source node a , and a sink node e , 

both with no durations (operation times), and two dotted 

nodes called 2r  and 3r  which describe a later start of 

jobs 2 and 3 imposed relative to job 1. 

 

 
Figure 2.  Network representation of a JSP based on Table 1 

(STEININGER, p. 64). 
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The directed arcs running from the source node a , 

through each activity node  ,i j to the sink node e  

describes the technological sequence of activities based 

on the routing S j  in Table 1. Each node shows the job 

number i , the machine needed j   and the operation 

time tij . There are also undirected arcs in the network, 

which reference all possible sequences of an activity in 

a given job on a specific machine. Such a representation 

is termed a disjunctive network. 

 

2.2. Data representation and problem reduction 

Care must be taken when adopting such a graphical 

representation into a data structure, especially for the 

JSP in an area with hundreds of activities, thousands of 

sequences and millions of possible actions carried out 

with specific machines. 

A data structure which is very efficient in the use 

of storage (due to the size of a practical problem) as 

well as in time, can also be considered as depicting a 

network. GALLO and PALLOTTINO (1982) 

introduced the so-called "Forward Star" data structure, 

which is the most efficient portrayal of all existing net-

work data structures for representing a network. The 

"Forward Star" data structure uses three arrays to 

describe a (directed) network. First we have an array 

termed from , whose index represents all nodes of the 

network. The value of an index field references the 

index of the second array named succ , which is the 

index of a node to connect, referencing romf . The 

third array is labeled cost and reports the cost of a 

specific arc connecting two nodes.  

The "Forward Star" data structure allows for a per-

fect implementation of the activity order of any JSP. An 

efficient implementation in storage and time and a re-

duction of the initial problem described by the α | β | γ 

three-field classification is achieved/possible/occurs. 

Using the "Forward Star" data structure our problem is 

reduced to the following taxonomy (4): 

 , | , , | maxJ NOM NOJ chains t Cij  (4) 

Care must also be taken when adopting the 

representational scheme and the associated operators for 

an effective algorithm. Here with the application of  

traditional problem solving with GAs , the chromo-

somes are implemented as binary vectors. Such an 

algorithm is an excellent choice for problems in which a 

point naturally maps into a chromosome of zeros and 

ones. Unfortunately, this approach of zeros and ones 

cannot be implemented for real-world engineering prob-

lems such as JSP, because of the amount of information 

needed to represent coding of the JSP. Therefore, we 

have to find a way to integrate the "Forward Star" data 

structure into a GA. 

 

3. GENETIC ALGORITHMS 

3.1. General principle 

The term Genetic Algorithm describes a set of methods, 

which can be used to optimize complex problems. As 

the name suggests, the processes employed by GAs are 

inspired by natural selection and genetic variation. Thus 

GA uses a variety of possible solutions to a problem 

and applies repetition in order to modify them. These 

iterations mimic those in nature in such a way that sub-

sequent populations are fitter and more adapted to their 

environment compared to their predecessors. As genera-

tions progress over time, they become better suited to 

their environment and provide an advantageous solution 

in a given time.  

Since their development in the late 1980’s GAs 

have been used to find solutions to many types of 

problems. A unique characteristic of a GA is that the 

fundamental algorithm is unaware of the problem it is 

optimizing. All that is required is that the parameters 

entered into a model can be efficiently transformed to 

and from a suitable GA chromosome format. Therefore 

GA optimization can be applied to many types of 

complex problems.  

 

 
Figure 3.  Principal flow of a Genetic Algorithm (following 

GOLDBERG (1989, pp.59)). 

The flow-chart stages of the GA are as follows: First, an 

initial population of randomly generated sequences of 

the activities in the schedule is created. These individual 

schedules form chromosomes which are subject to 

evolution. Once an initial population has been formed, 

"selection", "crossover" and "mutation" operations are 

performed repeatedly until the fittest member of the 

evolving population converges to a near-optimal fitness 

value. Alternatively, the GA may run for a user-defined 

number of iterations.  

The size of the population is user-defined and the 

fitness of each individual, in this case a schedule, is cal-

culated according to a fitness function. In our case this 

is the makespan or an additive combination of different 
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goals. It is also possible to use a fitness function on 

other calculated values like mean tardiness, maximum 

tardiness, number of tardy jobs and so on. Combina-

tions of different functions in one fitness function are 

also possible. The schedules are then ranked according 

to the value of their fitness function and, after that, 

selected for reproduction.  

3.2. Schedule encoding and decoding 

GAs were derived from examining biological systems. 

In biological systems evolution takes place on chromo-

somes which are organic devices for programming the 

structure of living beings. In this sense, a living being is 

a decoded structure of all chromosomes. Natural selec-

tion is the link between chromosomes and the perfor-

mance of the decoded structure. When implementing 

the GA, the variables that characterize an individual are 

represented in arrays (by index ordered lists). Each 

variable corresponds to a gene and the array is 

equivalent to a chromosome in a biological system. 

We have decided to use the encoding schema in-

troduced by BEAN (1994) to build the chromosomes 

termed "Operation Based Representation". Encoding 

commences with the enumeration of jobs and corre-

sponding activities in a list. Each activity in a job is 

encoded with the numerical id of the job in which it 

resides. All jobs and activities are encoded following 

that description in one potential schedule for the 

problem. The result is a chromosome which represents a 

potential schedule. 

The GA requires a few additional operators to 

function. These operators are methods necessary when 

working with encoded information: 

 

3.3. Genetic Operators 

3.3.1. Crossover 

The GA uses crossover, where mating chromosomes are 

cut. Crossover is the most delicate operation of GA be-

cause it may produce unwanted irregular activity se-

quences within a job. A corrected 2-point crossover to 

avoid non-regular activity sequences of orders was 

used, which GOLDBERG (1989) refers to as a PMX-

crossover operator (e.g. STEININGER 2007, p. 146 f.). 

3.3.2. Mutation 

Mutation describes the process of randomly changing 

values of a gene resulting in a variant form. This occurs 

with small probability. It is therefore not a primary 

operator, but it ensures that the possibility of searching 

any section in the problem space is never zero and pre-

vents complete loss of genetic material through repro-

duction and crossover. We execute the mutation opera-

tor as a permutation by first picking (and deleting) a 

gene before reinserting it at a randomly chosen position 

of the permutation. 

3.3.3. Fitness 

The fitness function is used to evaluate the fitness of 

each individual in the population and depends on the 

specific application. Generally a GA proceeds towards 

creating healthier individuals. If the fitness value is the 

only information available to the GA, the performance 

of the algorithm will be highly sensitive to the fitness 

function.  Therefore when creating streamlined routines, 

fitness is the value of the objective function to be 

optimized.  

3.3.4. Selection 

To selectively reproduce the population and to deter-

mine the next generation we use a hit and miss selection 

procedure based on the fitness function. This could be 

implemented using a roulette wheel method. An imagi-

nary roulette wheel is constructed with a segment for 

each individual in the population. An individual’s sec-

tion size is based on their particular fitness value, with a 

fitter individual  occupying a larger slice of the roulette 

wheel than a weaker one. Selection is made by rotating 

the roulette wheel a number of times equal to the 

population size. When the roulette wheel stops, the 

individual it points to is selected. In all fitter individuals 

will have a propensity to be selected more frequently 

than weaker ones.  

3.4. Genetic Algorithm Working Set Parameters 

The GA needs a few additional parameters to work. 

These parameters specify the size of the population, the 

use of operators and so fourth. 

3.4.1. Population size 

The population size depends on the nature of the prob-

lem. Typically, it contains several hundreds or thou-

sands of possible solutions. The population is generated 

randomly, making it  possible to cover the entire range 

of possible solutions. Here a population size of 500 in-

dividuals will represent 500 feasible schedules. 

3.4.2. Probability of crossover 

The parameter probability of crossover affects the rate 

at which the crossover operator is applied. A higher 

crossover rate introduces new chromosomes more 

quickly into the population. If the crossover rate is too 

high, good individuals are eliminated faster than selec-

tion can produce improvements. A low crossover rate 

may cause stagnation due to the lower exploration rate. 

3.4.3. Probability of mutation 

Probability of mutation describes the likelihood that 

every gene of each individual in the new population will 

undergo a random change after a selection process. A 

low mutation rate helps to prevent any gene positions 

from getting stuck to single values, whereas a high mu-

tation rate results in essentially a random search. 

3.5. Final result 

It is a characteristic of the GA that once fairly good so-

lutions have been found their features will be carried 

forward into even better results, which will ultimately 

lead to a near-optimal solution. Therefore, GAs are par-

ticularly attractive for scheduling.  

Compared with other optimization methods, GAs 

are suitable for traversing large search spaces since they 

can do this relatively rapidly and because the mutation 

operator diverts the method away from low scale 

optima. Being suitable for large search spaces is a 

useful advantage when dealing with schedules of 

increasing size since the solution space will grow very 

rapidly. It is important that this large search space is 

scanned as fast as possible to enable the practical and 

useful implementation of schedule optimization.  
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4. SIMULATION STUDY AND COMPARISON 

OF RESULTS  

The simulation study was implemented according to the 

organization-oriented simulation method FEMOS 

(German acronym for production and assembly simu-

lator) developed at the Institute of Human and Industrial 

Engineering of the University of Karlsruhe (Germany). 

FEMOS was used to analyze the entire production-

logistical process chain (cf. ZÜLCH, GREINKE 2004; 

ZÜLCH, WARRISCH 2004, ZÜLCH 2008). 

4.1. Test structure 

The objective was to detect and define the relationships 

arising between the logistical sequence strategies and 

chosen logistical target parameters. In this analysis the 

results were compared to those of REIMOS. The test 

structure was based on empirical values which have 

proved viable during previous practical projects. The 

influencing factors, which were to change in the course 

of the simulation study, included the planned starting 

date (point of entry into the system), the planned finish 

date, the sequence of initialization of production orders 

or orders of a product group, respectively, plus different 

priority rules. The priority rules comprised a further 

selection of rules such as: first come first served, 

shortest operation time, longest operation time, slack 

time, and the earliest due date.  

Furthermore, eight policies based on varying order 

initialization were examined. Policy S1 described the 

sequence of order initialization as specified by the 

industrial partner. S2 choose initialization according to 

product groups with increasing work content (the later 

the point of inclusion, led to the higher the work 

content). Here individual goods from the product group 

were combined equidistantly. S3 utilized the 

incorporation of individual products in equidistant 

intervals   and the product groups were mixed. For S4  

distinct incorporations in equidistant intervals occurred. 

These were  arranged according to decreasing product 

groups with declining work content (the later the point 

of incorporation, led to the lower the work content). 

Individual products from the group were incorporated 

equidistantly. S5 described product groups with 

increasing work content (the later the point of 

incorporation led to the higher the work content). They 

were added one after the other whilst the individual 

products of the group are were combined at the same 

point in time. In S6 the order initialization of product 

groups occurred in equal intervals and the product 

groups were mixed. S7 looked at product groups with 

decreasing work content (the later the point of 

incorporation, led to the lower the work content). They 

were combined   one after the other, with the individual 

products of a group incorporated at the same point in 

time. Finally S8 described block initialization, where all 

products were incorporated at point zero. 

According to this test plan, individual order ini-

tialization policies were simulated first, followed by the 

simulation of order initialization policies in combina-

tion with priority rules. The second test plan used the 

mean value analysis to identify those resources consti-

tuting bottleneck resources due to their high capacity 

utilization. They were then examined by means of 

several specific order initialization policies by choosing 

processing- and arrival time-based priority rules for 

them, as opposed to the date-based priority rules used 

for all other resources. In the third test plan, the most 

important operations of the conclusive assembly pro-

cesses were given higher priorities than the preceding 

assembly operations. This meant that the operations 

rated with high priority were those at the end of the 

production process which would – according to the hy-

pothesis – prove most effective with regards to the re-

duction of makespan and an increase in reliability of 

delivery.  

 
Figure 4.  Comparison of makespans identified by means of FEMOS 

using order initialization policies and priority rules and those 

generated with the REIMOS planning method. 

4.2. Results and comparison of results with REIMOS  

The simulation runs were evaluated with REIMOS 

based on the target parameters makespan, delivery reli-

ability and resource utilization. The results were then 

compared to those of the REIMOS planning method. 

The benchmark parameters employed were the lowest 

makespan of REIMOS and the simulation study 

achieved with order initialization policies 1 and 8. The 

reasons for choosing these policies for further analyses 

were that policy 1 was the best policy identified by the 

industrial partner up to that point and that policy 8 al-

lowed for the highest possible degree of flexibility as all 

orders are initialized at point t=0. This ensured a solid 

basis for the comparison of results from both methods. 

Out of the two policies, those with the best result in 

combination with the priority rules were selected. In 

addition, the simulation methods were compared with 

regards to the respective makespan of the product 

groups (block makespan). Figure 4 sets the makespan of 

the sequences identified by means of the REIMOS plan-

ning method alongside those generated by the FEMOS 

method. The strategies used were the priority rule short-

est operation time in combination with order initializa-

tion policy 1 and longest operating time in combination 

with order initialization policy 8 respectively. 

The comparison shows that REIMOS provided 

better results for both order initialization policies. The 

makespan achieved with REIMOS is approx. 11% lower 

for order initialization policy 1 and almost 7% lower for 

policy 8 compared with sequence planning on the basis 
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of priority rules. This proves that the more complex 

Genetic Algorithm is superior to the priority rules 

which are less challenging in terms of application.  

 
Figure 5.  Comparison of makespans identified by means of FEMOS 

using order initialization policies and priority rules and those 

generated with the REIMOS planning method. 

The diagram illustrated in Figure 5 is the product of a 

comparison of makespan for production orders of the 5 

product groups generated with REIMOS and the simu-

lated application of priority rules respectively. Within 

the simulation study, the comparison of makespan gave 

the best result for order initialization policy 1 in combi-

nation with the shortest operation rule. However order 

initialization policy 8 proved to be most effective when 

combined with the longest operation rule. Figure 4 

shows a comparison of these simulation results with the 

results of REIMOS.  

When the makespan of individual product groups 

for order initialization policy 1 was compared, it turned 

out that the values were 6% higher with REIMOS than 

when the priority rules were applied. The utilization of 

resources and the prioritization of orders were simu-

lated. The best results of the simulation method were 

compared to REIMOS. In addition, the values were 

more evenly distributed with the exception of product 

group 1.  

Comparing  the makespan of individual production 

orders for order initialization policy 8 delivered the 

same results. The values of REIMOS were approx. 21% 

higher than those generated with the simulated use of 

priority rules. The individual makespan within one 

product group did not vary strongly from the group 

mean. This gives rise to the assumption that a 

correlation between an equidistant or almost equidistant 

spacing of interim arrival times within a product group 

and an improvement of makespan exists. 

All of the above proves that the makespan results 

delivered by the use of priority rules fall short of those 

delivered by REIMOS. 

 

5. CONCLUSION AND OUTLOOK 

A computer algorithm based on the evolution of living 

beings may be surprising, but the extent to  which this 

approach is applied is even more astonishing. Genetic 

algorithms have already proven their efficiency in many  

fields of application such as commercial, educational 

and scientific. Their usefulness in solving various kinds 

of problems have made them a preferable choice 

compared to other, more traditional approaches for a 

multi-criterion approach to target selection for modeling 

and evaluations.  

The adaptation of a GA to schedule jobs in manu-

facturing workshops with time, resource and precedence 

constraints has been demonstrated here (STEININGER 

2007). When using such GAs, it is often crucial to 

implement goal criteria. A new idea is to combine 

simulation and optimization processes. One concrete 

scenario would be the use of the simulation tool as a 

fitness function of the GA in order to allow for more 

complex weighting functions to be taken into account.  

The simplicity of the methods used supports the 

assumption that GA can provide a highly flexible and 

user-friendly solution to the JSP. The use of standard 

software and an implemented "add-in" for Microsoft 

Project 2003 to realize the GA has shown that this ap-

proach can be profitable for solving real world schedu-

ling problems (STEININGER 2007). 
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