
BENCHMARKING REAL-WORLD JOB-SHOP SCHEDULING USING A GENETIC

ALGORITHM WITH A SIMULATION APPROACH

Dr.-Ing. Peter Steininger

Steinbuch Centre for Computing (SCC)

Karlsruhe Institute of Technology (KIT)

steininger@kit.edu

ABSTRACT

Although production scheduling has attracted the re-

search interest of production economics communities

for decades, a gap still remains between academic

examples and real-world problems. Genetic Algorithms

(GA) constitute techniques which have already been ap-

plied to a variety of combinatorial problems. I intend to

explain the application of a GA approach to bridge this

gap for job-shop scheduling problems, by minimizing

the makespan of a production program or increasing the

due-date reliability of jobs.

Simulation is a useful tool in problem solving.

Here repetitive runs of simulated models or computed

solutions through algorithms are applied. For job-shop

and resource-constrained project scheduling, problems

trying to bridge the gap between computed solutions

and the feasibility of the simulation occur. I would like

to explain the application of this special GA for job-

shop and resource-constrained project scheduling.

Possible goals for scheduling problems include

minimizing the time required of a production program,

or increasing the due-date reliability of jobs, or possibly

other objectives which can be described in a mathe-

matical expression. The approach focuses on integrating

a GA into a commercial software product, namely

Microsoft Project 2003, and verifying the results with

the simulation.

Keywords: Job-shop scheduling, Genetic algorithms,

Job-shop Benchmarks, Real-world scheduling prob-

lems, Simulation.

1. INTRODUCTION

1.1. Characteristics of job-shop scheduling problems

Many jobs in industry and elsewhere require a collec-

tion of tasks or activities to be completed whilst satis-

fying temporal, resource and precedence constraints.

Temporal constraints refer to the time requirement that

some tasks or set of tasks have, where they must be

finished before or after a certain point in time. Resource

constraints dictate that two tasks requiring the same

resource cannot be carried out simultaneously. Whereas

Precedence constraints refers to the technologically

imposed carrying out of the tasks within a job or

production order. The objective is to create a schedule

specifying when each task or activity is to commence

(or finish) and what resources it shall use in order to

satisfy all the constraints while pursuing an objective.

The overall goal is to complete all tasks to an acceptable

standard within the least time possible (makespan),

whilst taking into consideration such aspects as

minimizing the mean tardiness and number of jobs. This

is also referred to as the job-shop scheduling problem

(JSP).

The JSP is a very important and well defined

scheduling problem. It is a basic model, which may be

extended through use of additional characteristics like

buffers, transportation, setup time, time lags, etc.,

allowing practical scheduling problems to be modeled

more precisely. In its general form, it is NP-complete,

meaning that there is probably no efficient procedure

for exactly finding the shortest schedule for arbitrary

instances within this class of problem.

BAGCHI (p. 109) references the JSP as follows:

"Within the great variety of production scheduling

problems that exist, the job shop scheduling problem is

one that has generated the largest number of studies. It

has also earned a reputation for being notoriously diffi-

cult to solve. Nevertheless, the JSP illustrates at least

some of the demands imposed by a wide array of real

world scheduling problems… Attempts to tackle the

multi objective job shop are still relatively few."

A JSP is usually solved using a heuristic algorithm

which takes advantage of special properties of a specific

class of instances. This can be regarded as a loophole to

reduce the complexity of a given problem.

1.2. Formal problem description

An instance of the JSP consists of a set of NOAi activi-

ties within jobs i and NOM machines j . Each job

consists of a number of activities so that we may count

the total number of activities NOA as follows:

1

NOM

NOA NOJi

i





 (1)

Here each job has a fixed number and a sequence of

activities. Each activity requires a certain amount of

time implementing a single machine for its entire

duration. An activity must be finished before each ac-

tivity following it can commence, with each job

utilizing a different machine. Two activities cannot be

scheduled at the same time if they both require the same

machine. In all we need to find a feasible schedule

179

mailto:steininger@kit.edu

which minimizes some objective function, whilst

reducing makespan. Where makespan expresses the

overall completion time of all activities, see

STEININGER (2007, pp. 26). This produces a com-

plexity function for the JSP expressed as

 ! NOM

O NOJ 
 
  (2)

In order to find the best schedule for a problem in-

stance, we could enumerate and evaluate all possible

schedules. The number of feasible schedules to be enu-

merated would be the result of function (2).

Figure 1. Selected complexity functions (STEININGER, p. 82).

Figure 1 illustrates the dimensions of selected com-

plexity functions, where n represents the number of

problem elements, which are determined here by the

number of activities and machines. These graphs

illustrate how the complexity of a JSP can be much

larger than some other well-known problems, such as

"Permutation problem" which is   !O n n , "Towers of

Hanoi" which is   2nO n  , and "Quicksort" which is

  logO n n n  .

1.3. Classification of scheduling problems

Classes of scheduling problems can be specified in

terms of the three-field classification approach initially

introduced by CONWAY, MAXWELL and MILLER

(2003) and extended by GRAHAM (1979) and

BRUCKER (2004). Of course this depicts a continuous

developmental process open to scrutiny and

reevaluation. This three-field classification is described

as α | β | γ, where α specifies the machine environment,

β specifies the job characteristics and γ represents either

the objective function or a combination of objective

functions. Using the three-field classification to specify

the problem instance of the JSP we are examining, the

following taxonomy is noted:

 , | ,intree, | maxJ NOM NOJ t Cij (3)

Formula (3) describes a class of scheduling problems as

JSP (J) with a fixed machine count of NOM and a

predefined and fixed number of NOAactivities. The

precedence routing of activities in each order is prede-

fined and fixed as a directed graph with operation times

(tij). These are expressed as integer values for each

activity.

The three-field classification denotes γ as the objective

function or a combination of objective functions. In

formula (3)  specifies the "traditional" objective func-

tion (
maxC). This depicts our primary objective which

is to limit the makespan using the least time possible

for the schedule of all NOA activities using NOM

machines.

2. MODELLING OF JSP SCHEDULING PROB-

LEMS

2.1. Formal problem representation

Even slightly different job-shop problems require com-

pletely different encodings in order to find a good solu-

tion. Thus, choosing an efficient representation is a very

important component when solving a JSP. However,

deciding upon a relevant representation for a scheduling

problem is as difficult as choosing a good search algo-

rithm for a decision problem. Not all algorithms work

equally efficient in a specific problem representation. In

order to describe the representation technique developed

for our solution, a simple job-shop scheduling problem

example has been used in Table 1.

Table 1. Example of a production schedule problem

with 3 jobs, routing information S j for the jobs i, 3 ma-

chines j and operation times tij for each task of a job in

time units (TU).

Job

Machine

S j i

[TU]tij

j 1 2 3

1 (3,2,1) 3 5 1

2 (1,2,3) 3 2 1

3 (2,1,3) 1 2 5

The scheduling problem can be represented by a graph

as shown in Figure 2. In addition to the activity nodes

(i,j), it contains a source node a , and a sink node e ,

both with no durations (operation times), and two dotted

nodes called 2r and 3r which describe a later start of

jobs 2 and 3 imposed relative to job 1.

Figure 2. Network representation of a JSP based on Table 1

(STEININGER, p. 64).

180

The directed arcs running from the source node a ,

through each activity node  ,i j to the sink node e

describes the technological sequence of activities based

on the routing S j in Table 1. Each node shows the job

number i , the machine needed j and the operation

time tij . There are also undirected arcs in the network,

which reference all possible sequences of an activity in

a given job on a specific machine. Such a representation

is termed a disjunctive network.

2.2. Data representation and problem reduction

Care must be taken when adopting such a graphical

representation into a data structure, especially for the

JSP in an area with hundreds of activities, thousands of

sequences and millions of possible actions carried out

with specific machines.

A data structure which is very efficient in the use

of storage (due to the size of a practical problem) as

well as in time, can also be considered as depicting a

network. GALLO and PALLOTTINO (1982)

introduced the so-called "Forward Star" data structure,

which is the most efficient portrayal of all existing net-

work data structures for representing a network. The

"Forward Star" data structure uses three arrays to

describe a (directed) network. First we have an array

termed from , whose index represents all nodes of the

network. The value of an index field references the

index of the second array named succ , which is the

index of a node to connect, referencing romf . The

third array is labeled cost and reports the cost of a

specific arc connecting two nodes.

The "Forward Star" data structure allows for a per-

fect implementation of the activity order of any JSP. An

efficient implementation in storage and time and a re-

duction of the initial problem described by the α | β | γ

three-field classification is achieved/possible/occurs.

Using the "Forward Star" data structure our problem is

reduced to the following taxonomy (4):

 , | , , | maxJ NOM NOJ chains t Cij (4)

Care must also be taken when adopting the

representational scheme and the associated operators for

an effective algorithm. Here with the application of

traditional problem solving with GAs , the chromo-

somes are implemented as binary vectors. Such an

algorithm is an excellent choice for problems in which a

point naturally maps into a chromosome of zeros and

ones. Unfortunately, this approach of zeros and ones

cannot be implemented for real-world engineering prob-

lems such as JSP, because of the amount of information

needed to represent coding of the JSP. Therefore, we

have to find a way to integrate the "Forward Star" data

structure into a GA.

3. GENETIC ALGORITHMS

3.1. General principle

The term Genetic Algorithm describes a set of methods,

which can be used to optimize complex problems. As

the name suggests, the processes employed by GAs are

inspired by natural selection and genetic variation. Thus

GA uses a variety of possible solutions to a problem

and applies repetition in order to modify them. These

iterations mimic those in nature in such a way that sub-

sequent populations are fitter and more adapted to their

environment compared to their predecessors. As genera-

tions progress over time, they become better suited to

their environment and provide an advantageous solution

in a given time.

Since their development in the late 1980’s GAs

have been used to find solutions to many types of

problems. A unique characteristic of a GA is that the

fundamental algorithm is unaware of the problem it is

optimizing. All that is required is that the parameters

entered into a model can be efficiently transformed to

and from a suitable GA chromosome format. Therefore

GA optimization can be applied to many types of

complex problems.

Figure 3. Principal flow of a Genetic Algorithm (following

GOLDBERG (1989, pp.59)).

The flow-chart stages of the GA are as follows: First, an

initial population of randomly generated sequences of

the activities in the schedule is created. These individual

schedules form chromosomes which are subject to

evolution. Once an initial population has been formed,

"selection", "crossover" and "mutation" operations are

performed repeatedly until the fittest member of the

evolving population converges to a near-optimal fitness

value. Alternatively, the GA may run for a user-defined

number of iterations.

The size of the population is user-defined and the

fitness of each individual, in this case a schedule, is cal-

culated according to a fitness function. In our case this

is the makespan or an additive combination of different

181

goals. It is also possible to use a fitness function on

other calculated values like mean tardiness, maximum

tardiness, number of tardy jobs and so on. Combina-

tions of different functions in one fitness function are

also possible. The schedules are then ranked according

to the value of their fitness function and, after that,

selected for reproduction.

3.2. Schedule encoding and decoding

GAs were derived from examining biological systems.

In biological systems evolution takes place on chromo-

somes which are organic devices for programming the

structure of living beings. In this sense, a living being is

a decoded structure of all chromosomes. Natural selec-

tion is the link between chromosomes and the perfor-

mance of the decoded structure. When implementing

the GA, the variables that characterize an individual are

represented in arrays (by index ordered lists). Each

variable corresponds to a gene and the array is

equivalent to a chromosome in a biological system.

We have decided to use the encoding schema in-

troduced by BEAN (1994) to build the chromosomes

termed "Operation Based Representation". Encoding

commences with the enumeration of jobs and corre-

sponding activities in a list. Each activity in a job is

encoded with the numerical id of the job in which it

resides. All jobs and activities are encoded following

that description in one potential schedule for the

problem. The result is a chromosome which represents a

potential schedule.

The GA requires a few additional operators to

function. These operators are methods necessary when

working with encoded information:

3.3. Genetic Operators

3.3.1. Crossover

The GA uses crossover, where mating chromosomes are

cut. Crossover is the most delicate operation of GA be-

cause it may produce unwanted irregular activity se-

quences within a job. A corrected 2-point crossover to

avoid non-regular activity sequences of orders was

used, which GOLDBERG (1989) refers to as a PMX-

crossover operator (e.g. STEININGER 2007, p. 146 f.).

3.3.2. Mutation

Mutation describes the process of randomly changing

values of a gene resulting in a variant form. This occurs

with small probability. It is therefore not a primary

operator, but it ensures that the possibility of searching

any section in the problem space is never zero and pre-

vents complete loss of genetic material through repro-

duction and crossover. We execute the mutation opera-

tor as a permutation by first picking (and deleting) a

gene before reinserting it at a randomly chosen position

of the permutation.

3.3.3. Fitness

The fitness function is used to evaluate the fitness of

each individual in the population and depends on the

specific application. Generally a GA proceeds towards

creating healthier individuals. If the fitness value is the

only information available to the GA, the performance

of the algorithm will be highly sensitive to the fitness

function. Therefore when creating streamlined routines,

fitness is the value of the objective function to be

optimized.

3.3.4. Selection

To selectively reproduce the population and to deter-

mine the next generation we use a hit and miss selection

procedure based on the fitness function. This could be

implemented using a roulette wheel method. An imagi-

nary roulette wheel is constructed with a segment for

each individual in the population. An individual’s sec-

tion size is based on their particular fitness value, with a

fitter individual occupying a larger slice of the roulette

wheel than a weaker one. Selection is made by rotating

the roulette wheel a number of times equal to the

population size. When the roulette wheel stops, the

individual it points to is selected. In all fitter individuals

will have a propensity to be selected more frequently

than weaker ones.

3.4. Genetic Algorithm Working Set Parameters

The GA needs a few additional parameters to work.

These parameters specify the size of the population, the

use of operators and so fourth.

3.4.1. Population size

The population size depends on the nature of the prob-

lem. Typically, it contains several hundreds or thou-

sands of possible solutions. The population is generated

randomly, making it possible to cover the entire range

of possible solutions. Here a population size of 500 in-

dividuals will represent 500 feasible schedules.

3.4.2. Probability of crossover

The parameter probability of crossover affects the rate

at which the crossover operator is applied. A higher

crossover rate introduces new chromosomes more

quickly into the population. If the crossover rate is too

high, good individuals are eliminated faster than selec-

tion can produce improvements. A low crossover rate

may cause stagnation due to the lower exploration rate.

3.4.3. Probability of mutation

Probability of mutation describes the likelihood that

every gene of each individual in the new population will

undergo a random change after a selection process. A

low mutation rate helps to prevent any gene positions

from getting stuck to single values, whereas a high mu-

tation rate results in essentially a random search.

3.5. Final result

It is a characteristic of the GA that once fairly good so-

lutions have been found their features will be carried

forward into even better results, which will ultimately

lead to a near-optimal solution. Therefore, GAs are par-

ticularly attractive for scheduling.

Compared with other optimization methods, GAs

are suitable for traversing large search spaces since they

can do this relatively rapidly and because the mutation

operator diverts the method away from low scale

optima. Being suitable for large search spaces is a

useful advantage when dealing with schedules of

increasing size since the solution space will grow very

rapidly. It is important that this large search space is

scanned as fast as possible to enable the practical and

useful implementation of schedule optimization.

182

4. SIMULATION STUDY AND COMPARISON

OF RESULTS

The simulation study was implemented according to the

organization-oriented simulation method FEMOS

(German acronym for production and assembly simu-

lator) developed at the Institute of Human and Industrial

Engineering of the University of Karlsruhe (Germany).

FEMOS was used to analyze the entire production-

logistical process chain (cf. ZÜLCH, GREINKE 2004;

ZÜLCH, WARRISCH 2004, ZÜLCH 2008).

4.1. Test structure

The objective was to detect and define the relationships

arising between the logistical sequence strategies and

chosen logistical target parameters. In this analysis the

results were compared to those of REIMOS. The test

structure was based on empirical values which have

proved viable during previous practical projects. The

influencing factors, which were to change in the course

of the simulation study, included the planned starting

date (point of entry into the system), the planned finish

date, the sequence of initialization of production orders

or orders of a product group, respectively, plus different

priority rules. The priority rules comprised a further

selection of rules such as: first come first served,

shortest operation time, longest operation time, slack

time, and the earliest due date.

Furthermore, eight policies based on varying order

initialization were examined. Policy S1 described the

sequence of order initialization as specified by the

industrial partner. S2 choose initialization according to

product groups with increasing work content (the later

the point of inclusion, led to the higher the work

content). Here individual goods from the product group

were combined equidistantly. S3 utilized the

incorporation of individual products in equidistant

intervals and the product groups were mixed. For S4

distinct incorporations in equidistant intervals occurred.

These were arranged according to decreasing product

groups with declining work content (the later the point

of incorporation, led to the lower the work content).

Individual products from the group were incorporated

equidistantly. S5 described product groups with

increasing work content (the later the point of

incorporation led to the higher the work content). They

were added one after the other whilst the individual

products of the group are were combined at the same

point in time. In S6 the order initialization of product

groups occurred in equal intervals and the product

groups were mixed. S7 looked at product groups with

decreasing work content (the later the point of

incorporation, led to the lower the work content). They

were combined one after the other, with the individual

products of a group incorporated at the same point in

time. Finally S8 described block initialization, where all

products were incorporated at point zero.

According to this test plan, individual order ini-

tialization policies were simulated first, followed by the

simulation of order initialization policies in combina-

tion with priority rules. The second test plan used the

mean value analysis to identify those resources consti-

tuting bottleneck resources due to their high capacity

utilization. They were then examined by means of

several specific order initialization policies by choosing

processing- and arrival time-based priority rules for

them, as opposed to the date-based priority rules used

for all other resources. In the third test plan, the most

important operations of the conclusive assembly pro-

cesses were given higher priorities than the preceding

assembly operations. This meant that the operations

rated with high priority were those at the end of the

production process which would – according to the hy-

pothesis – prove most effective with regards to the re-

duction of makespan and an increase in reliability of

delivery.

Figure 4. Comparison of makespans identified by means of FEMOS

using order initialization policies and priority rules and those

generated with the REIMOS planning method.

4.2. Results and comparison of results with REIMOS

The simulation runs were evaluated with REIMOS

based on the target parameters makespan, delivery reli-

ability and resource utilization. The results were then

compared to those of the REIMOS planning method.

The benchmark parameters employed were the lowest

makespan of REIMOS and the simulation study

achieved with order initialization policies 1 and 8. The

reasons for choosing these policies for further analyses

were that policy 1 was the best policy identified by the

industrial partner up to that point and that policy 8 al-

lowed for the highest possible degree of flexibility as all

orders are initialized at point t=0. This ensured a solid

basis for the comparison of results from both methods.

Out of the two policies, those with the best result in

combination with the priority rules were selected. In

addition, the simulation methods were compared with

regards to the respective makespan of the product

groups (block makespan). Figure 4 sets the makespan of

the sequences identified by means of the REIMOS plan-

ning method alongside those generated by the FEMOS

method. The strategies used were the priority rule short-

est operation time in combination with order initializa-

tion policy 1 and longest operating time in combination

with order initialization policy 8 respectively.

The comparison shows that REIMOS provided

better results for both order initialization policies. The

makespan achieved with REIMOS is approx. 11% lower

for order initialization policy 1 and almost 7% lower for

policy 8 compared with sequence planning on the basis

0

50

100

150

200

250

300

350

Policy: S1; Priority rule:
shortest operation time

(SOT); Simulation

Policy: S1; REIMOS Policy: S8; Priority rule:
longest operation time

(LOT); Simulation

Policy: S8; REIMOS

makespan

priority rule /
order initializaton policy

183

of priority rules. This proves that the more complex

Genetic Algorithm is superior to the priority rules

which are less challenging in terms of application.

Figure 5. Comparison of makespans identified by means of FEMOS

using order initialization policies and priority rules and those

generated with the REIMOS planning method.

The diagram illustrated in Figure 5 is the product of a

comparison of makespan for production orders of the 5

product groups generated with REIMOS and the simu-

lated application of priority rules respectively. Within

the simulation study, the comparison of makespan gave

the best result for order initialization policy 1 in combi-

nation with the shortest operation rule. However order

initialization policy 8 proved to be most effective when

combined with the longest operation rule. Figure 4

shows a comparison of these simulation results with the

results of REIMOS.

When the makespan of individual product groups

for order initialization policy 1 was compared, it turned

out that the values were 6% higher with REIMOS than

when the priority rules were applied. The utilization of

resources and the prioritization of orders were simu-

lated. The best results of the simulation method were

compared to REIMOS. In addition, the values were

more evenly distributed with the exception of product

group 1.

Comparing the makespan of individual production

orders for order initialization policy 8 delivered the

same results. The values of REIMOS were approx. 21%

higher than those generated with the simulated use of

priority rules. The individual makespan within one

product group did not vary strongly from the group

mean. This gives rise to the assumption that a

correlation between an equidistant or almost equidistant

spacing of interim arrival times within a product group

and an improvement of makespan exists.

All of the above proves that the makespan results

delivered by the use of priority rules fall short of those

delivered by REIMOS.

5. CONCLUSION AND OUTLOOK

A computer algorithm based on the evolution of living

beings may be surprising, but the extent to which this

approach is applied is even more astonishing. Genetic

algorithms have already proven their efficiency in many

fields of application such as commercial, educational

and scientific. Their usefulness in solving various kinds

of problems have made them a preferable choice

compared to other, more traditional approaches for a

multi-criterion approach to target selection for modeling

and evaluations.

The adaptation of a GA to schedule jobs in manu-

facturing workshops with time, resource and precedence

constraints has been demonstrated here (STEININGER

2007). When using such GAs, it is often crucial to

implement goal criteria. A new idea is to combine

simulation and optimization processes. One concrete

scenario would be the use of the simulation tool as a

fitness function of the GA in order to allow for more

complex weighting functions to be taken into account.

The simplicity of the methods used supports the

assumption that GA can provide a highly flexible and

user-friendly solution to the JSP. The use of standard

software and an implemented "add-in" for Microsoft

Project 2003 to realize the GA has shown that this ap-

proach can be profitable for solving real world schedu-

ling problems (STEININGER 2007).

REFERENCES

Bagchi, T. P., 1999. Multiobjective Scheduling by

Genetic Algorithms. Boston, Dordrecht, London:

Kluwer Academic Publishers.

Bean, J. C., 1994. Genetic Algorithms and Random

Keys for Sequencing and Optimizations. ORSA

Journal of Computing. Hanover. 6 (2), 154-160.

Brucker, P., 2004. Scheduling Algorithms. Berlin,

Heidelberg, New York et al.: Springer Verlag.

Conway, R. W., Maxwell, W. L., Miller, L. W., 2003.

Theory of Scheduling. Mineola (NY): Dover

Publications.

Davis, L., 1996. Handbook of Genetic Algorithms.

Florence (KY): International Thomson Computer

Press.

Gallo, G., Pallottino, S., 1982. A new Algorithm to find

the Shortest Paths between all Pairs of Nodes.

Discrete Applied Mathematics. Amsterdam, 3 (4),

23-25.

Goldberg, D. E., 1989. Genetic Algorithms in Search,

Optimization and Machine Learning. Boston

(MA), München: Addison Wesley.

Graham, R. L., Lawler, E. L., Lenstra, J. K. et al., 1979.

Optimization and approximation in deterministic

sequencing and scheduling. Annals of Discrete

Mathematics. Amsterdam, 16 (5), 287-326.

Steininger, P., 2007. Eine Methode zur

Reihenfolgeplanung bei Mehrprodukt-Fertigungs-

systemen. Dissertation, Universität Karlsruhe.

Aachen (D): Shaker Verlag.

Taillard, É. D., 2006. Scheduling instances.

http://mistic.heig-vd.ch/taillard/problemes.dir/

ordonnancement.dir/ordonnancement.html. Status:

11.04.2011

Zülch, G.; Greinke, J. 2004. Simulation-aided Recon-

figuration of an Industrial Service System for the

Repair of Electrical Tools. Espoo: Sim-Serv.

Zülch, G.; Warrisch, W. 2004. Simulation-aided

Segmentation of a Mechanical Parts Manufac-

turing. Espoo: Sim-Serv.

184

