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ABSTRACT 

Fractal Manufacturing System (FrMS) basically 

structurally builds up from units called 'fractals' or 

fractal objects which are independent entities and 

contain essential features and congenital attributes of 

the entire manufacturing configuration. They can self-

adapt quickly to dynamic changes in an unpredictable 

manufacturing environment. They are also self 

regulating and fall under organizational work groups, 

each within its own area of competence. An optimal 

shop floor design and implementation is key and an 

integral part of achieving a successful FrMS. and is 

concerned with issues of shop floor planning, 

arrangement and function layout. The fractal shop floor 

layout develops from individual cells and is 

conceptually capable of producing a variety of products 

with minimal reconfiguration. Keen attention is paid to 

determination of capacity level, cell composition and 

flow distances of products. In this paper, Genetic 

Algorithm (GA) is adopted to efficiently and effectively 

design flexible FrMS shop floor layout, needed in agile 

manufacturing system to cope with new and dynamic 

manufacturing environments that need to adapt to 

changing products and technologies.  Its stochastic 

search algorithm is used in simulating natural 

evolutionary process techniques, which in turn solves 

the many FrMS combinatorial optimization problems. 

The design implementation is done using MATLAB. 

The end result interestingly is a fault tolerant structure 

that is better suited to survive and stand the pressure for 

lead time reduction and inventories, product 

customization and challenges of a dynamic and 

unpredictable operational environment. 

 

Keywords: Fractal manufacturing system, 

Manufacturing layout design, Genetic algorithm. 

 

1. INTRODUCTION 

The conceptual fractal shop floor builds up from 

individual cells called fractals and is capable of 

producing a variety of products with minimal 

reconfiguration (Venkatadri et al. 1997; Montreuil et 

al., 1999). This is due mainly to their ability to self-

adapt quickly to dynamic changes in an unpredictable 

manufacturing environment. The fractal layout is an 

extension of the cellular layout (Askin et al. (1999) and 

in fact, each fractal cell is a multifunctional mini shop 

(Venkatadri et al., 1997) since it could produce most of 

the product types routed to it and have layout 

specification that produce varied products. This 

decentralized production layout allows for flexible mass 

customization. However, there are many challenges 

posed by the design and implementation of this strategy. 

A design and simulation of the model of shop floor 

layout for FrMS is presented in this paper paying 

attention to determination of capacity level and cell 

composition using genetic algorithm approach. The 

procedure is based on an iterative algorithm, 

implemented using MATLAB and used to calculate 

material travelling distances for each fractal cell and 

this continuously optimizes the layout, flow assignment 

and improves the overall performance of these 

parameters to create maximum space utilization. The 

rest of the paper is organized as follows; section two 

briefly looked at the general fractal manufacturing 

layout, section three made an overview of the GA and 

MATLAB and sets the scene for the application of the 

GA to the layout design and experimentation. Section 

four discusses the essentials of the proposed fractal 

manufacturing layout. Section five implements the GA 

approach, while section six discusses output results and 

the paper is finally concluded in section seven. 

 

2. FRACTAL MANUFACTURING LAYOUT 

The fractal workstation layout is created to minimize 

the capacity requirements and material travelling 

distances (Saad and Lassila 2004). The layout design 

concerns the arrangement of physical production 

resources within the production facility (Chase and 

Aquilano 1992) and the planning of which involves the 

determination and allocation of the available space to a 

given number of resources (Azadivar and Wang 2000) 

and emphasizes minimization of flow distances in order 

to improve product flow and general layout 

performance (Montreuil et al., 1999). This involves 

various aggregate steps; capacity planning, fractal cell 

creation, flow assignment and cell/ global layout 

(Venkatadri et al.1997). These processes can 

significantly affect the efficiency of the planned 

manufacturing system in terms of shop floor control, 

equipment utilisation, materials handling, materials 

management, and worker productivity (Co and Araar 

1988). The manner and nature of the flow of materials 

through the facility is of crucial importance and this 

includes the flow rate, throughput time of products and 

the routes taken by the products (Wild 1993).  
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2.1. Capacity Planning 

The consideration of the resource requirements, 

demand, capacity, work methods, handling and 

movement, departmental area requirements, and shape 

and location restrictions are all issues of capacity 

planning (Wild 1993, Gau and Meller 1999). The 

general and perhaps most important objectives are how 

to minimize the physical movement and handling of 

materials, maximize the capacity utilisation (Wild 1993) 

and ensure a smooth work flow (Chase and Aquilano 

1992) in accordance with the system plan. Other very 

important issues include; systems design, machine 

reliability, parts scheduling, etc. These are all issues 

involved in the capacity planning process. It is worth 

mentioning that the capacity planning task requires 

optimal value of input data to satisfy product demand, 

minimize investment and operations cost and go into 

production within the pre-specified production time, 

though cost of material transfer could be traded-off 

against initial investment cost (Montreuil et al., 1999). 

This study first determines the required capacity levels 

for each machine type and the number and composition 

of fractal cells. Then an iterative algorithm continuously 

optimizes the layout and flow assignment according to 

the performance of the system.  

 

2.2. Fractal Cell Creation 

The fractal layout system uses cells to group machines 

together and to control and limit product routings. The 

number of fractal cells and workstation composition of 

each cell is significant in the overall manufacturing 

system. Its layout can be seen as an extension of a 

cellular layout (Askin et al. 1999) due to the structure of 

the shop floor, and fractal cells are multifunctional and 

are able to process most of the product types routed into 

the system. Each cell needs to contain exactly one 

replicate of workstation type. They also share 

workstations, but each cell has equal compositions. 

These identical cells are flexible and standardized. They 

can respond well to short term changes, uncertainties 

and unpredictable incidents or events such as machine 

breakdown, product mix, and transfer devices going 

offline (Montreuil et al., 1999).  

 

2.3.  Flow Assignment 

The fractal cell, a set of neighboring workstations is the 

basic unit in the fractal layout system (Venkatadri et al. 

1997 & Montreuil et al. 1999). The system flexibility is 

believed to increase because all fractal cells have 

roughly the same composition of machines and are 

capable of processing most of the products routed to 

them. It helps to alleviate flow congestion of products 

and improve flow efficiency. The flow score is 

measured and analyzed in order to estimate the 

frequency and distance travelled. The satisfactory 

estimation of flow around the actual workstations is 

also of significance in the layout design. Flow 

assignment involves the decision of getting the products 

processed through particular machines on the job shop 

(Askin et al.1996 & 1999). The assignment of products 

to flow paths minimizes travel distance if there are 

several products with specified machine type routing to 

be processed (Venkatadri et al., 1997). The objective of 

the flow assignment is to create a workstation layout 

that minimizes the capacity requirements and material 

travelling distances for a particular product. The flow 

assignment experiment and capacity analysis can be 

used to improve the layout repeatedly until a 

satisfactory layout is generated (Montreuil et al., 1999).  

The results indicate that unrestricted product flows offer 

the best flow scores in a fractal layout.    

 

3. OVERVIEW OF GA AND MATLAB 

Many combinatorial optimization problems in 

manufacturing systems are very complex and can not be 

solved using conventional optimization techniques 

(Kamrani and Gonzalez 2003). Most fractal 

manufacturing layout problems are dynamic - they 

change with time, and the system is expected to self-

adapt to unpredictable changes and uncertainties. To 

deal with such problems efficiently and effectively, 

different fault tolerant structures and adaptable methods 

are required in solving problems in these dynamic 

operational environments.   

 

3.1. GA procedure 

GA is an evolutionary algorithm, a simulation of natural 

evolutionary process technique that has been adopted 

for this study (Azadivar and Wang 2000). The GA 

approach is a powerful and broadly applicable 

stochastic search technique used to find approximate 

solutions in optimization problems (Holland 1975).  

Just like evolutionary algorithms, it allows systems to 

self-adapt to make up for unpredictable changes in the 

operational environment. It would take into account a 

wider range of possible solutions and further increase 

the probability of finding optimal solution by 

continuously iterating and optimizing the design of the 

fractal layout and flow assignment according to the 

performance of these parameters. 

 

3.1.1. Genetic Operators 

Crossover and mutation are the two genetic operators 

that are applied probabilistically to create a new 

population of individual strings (Rajasekharan, 1998). 

Crossover is an important operation performed by GA 

for solving combinatorial optimization problem. Two of 

the individual strings in the initial population are 

selected randomly as two parents. A cut point is 

randomly chosen within the parent strings (Kamrani and 

Gonzalez 2003). 

3.1.2. Crossover 

Crossover operation exchanges cross sections of the 

parents in order to form two offspring. As shown in 

(Figure 1), the two off-springs form new individual 

strings generated by combining the “head” of the first 

parent string with the “tail” of the second parent string 

and vice versa (Rajasekharan, 1998). The essential 

characteristic of crossover is the crossover rate (CR) 
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which is the ratio of number of off-springs produced in 

each generation to the population size. A higher CR 

allows deeper exploration of solution space and 

increases the chance of achieving accurate optimal 

results. If the CR is too high, it results in wastage of 

computational time (Kamrani and Gonzalez 2003).  

 
Figure 1: Crossover (Al-Sultan et al., 1997) 

 

Due to the unique hierarchical chromosome scheme 

used, a one-point crossover is used as in (Xiaodan Wu 

et al., 2007). A cut point is randomly selected over the 

whole chromosome as shown in (Figure 2). Parent1 and 

Parent2 are the chromosome pair selected for the 

crossover operation. The “head” of Parent1 is replaced 

by “tail” of Parent2. Then Child1 is generated. On the 

other hand, the “tail” of the Parent1 replaces the “head” 

of the Parent2, and Child2 is then created. 

 
Figure 2: Numerical illustration of Crossover (Xiaodan 

Wu et al., 2007) 
 

3.1.3. Mutation 

Mutation operation produces spontaneous random 

changes in certain chromosomes. Mutation play two 

roles that involve either replacing the genes lost from 

the population during the selection process, or 

providing the genes that were not present in the initial 

population (Kamrani and Gonzalez 2003). Mutation is 

designed to prevent premature convergence and to 

explore a new solution space (Xiaodan Wu et al. 2007). 

But the mutation operation alters and mutates one or 

more genes within the chromosomes of an individual 

rather than across a pair of chromosomes. There are two 

kinds of mutation proposed by (Xiaodan Wu et al. 

2007), which are group mutation (Figure 3) and 

inverting mutation (Figure 4). Group mutation is for 

exchanging genes of the same group for the same layer 

at same time while inverting mutation involves 

exchanging the genes from the randomly chosen loci of 

the parent. Both genes are chosen randomly for the 

operation of mutation. From a theoretical perspective, if 

the length of the chromosome for inverting mutation is 

long, the chances of finding the optimal solution in the 

near-optimal area is low. However, the group mutation 

can help to enhance the GA’s ability of exploiting and 

converging rapidly to a promising region (Xiaodan Wu 

et al., 2007). (Al-Sultan and Fedjki 1997) illustrated in 

(Figure 3) that group inverting mutation begins with a 

selection of a parent, and randomly dividing into two 

strings. The two strings are then exchanged to get a new 

offspring. Group inverting mutation involves two steps 

- a random cut of the selected parent is generated and 

the two chosen strings are then exchanged to obtain a 

new offspring. 

 
Figure 3: Group Mutation (Al-Sultan and Fedjki 1997) 

 

There is yet another kind of inverting mutation by 

(Hicks 2006), that involves the selection of the two 

points randomly and then the genes between those 

points are placed in reverse order. This inverting 

mutation is shown in (Figure 4). The other genes in 

other positions are also copied directly from the parent 

to the child. In an inserting mutation, a gene is selected 

at random. The gene is taken off from the chromosome 

and then inserted back in a random position (Parames, 

2001).  
 

 
Figure 4: Inverting Mutation (Azadivar and Wang 

2000) 
 

3.1.4. Stopping Criteria 

Two stopping conditions are employed to stop the GA 

from iterating continuously (Parames, 2001). First, if 

the number of iterations exceeds the predefined fitness 

value, GA would stop the operation immediately. The 

other stopping condition is that the value of the 

objective function does not change within the expected 

number of iterations. Once the algorithm has completed 

the given number of generations, the best value of the 

objective function is obtained. At that moment, GA 

would be terminated and display the layout 

configuration associated with the chromosome with the 

highest fitness value. 
 

3.2. MATLAB R2008a 

MATLAB is a high-level computer language for 

scientific computing and data visualization built around 

an interactive programming environment (Kiusalaas 

2005). It integrates computing, visualization and 

programming in one user-friendly environment. In the 

course of this study, MATLAB R2008a is used to 

develop, implement, customize and create a user-

friendly graphic interface (Kiusalaas 2005) for our 

fractal layout design. Its high-performance language 

essentially expresses the problems and solutions in 

mathematical notation. The model is then designed to 

fetch input of pair-wise comparison data of different 
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criterion and alternatives and process these data to an 

output of optimum score of the alternatives.  

A set of general procedures are employed in the 

design of the fractal shop floor layout. There are several 

phases to the procedure; 
 

1. Design and simulate the model of FrMS shop 

floor layout using MATLAB R2008a, 

determining the machine types and machine 

routing sequence.  

2. Write MATLAB programming codes to reflect 

minimization of material travelling distances 

or flow distance score. 

3. Apply Genetic Algorithm to continuously 

iterate and optimize the design of fractal layout 

and flow assignment according to the 

performance of the parameters. 

4. Quality of the resulting layout is assessed and 

compared against Fractal cell layout according 

to (Venkatadri et al.1997) 
 

4. THE PROPOSED FRACTAL 

MANUFACTURING LAYOUT DESIGN  

As a guide, the initial fractal manufacturing layout 

adopted for this study is the cellular manufacturing 

systems configuration proposed by (Co and Araar 1988) 

(Figure 5). This layout is re-designed and reconfigured 

from its initial cellular manufacturing layout using the 

GA optimization technique. Limitations of the cellular 

manufacturing layout include inflexibility due to a fixed 

set of part families, limited allowance for inter-cell 

flows, and long product life cycles which makes it 

incapable of performing in unstable environments. It 

also contains different types of machines which 

increases the product inter-cell and intra-cell travelling 

distances. 

The design by (Co and Araar 1988) is modified 

and illustrates the process of constructing a fractal job 

shop. The example presented is a job shop with 15 

distinct product types and 10 types of machine in the 

initial cellular layout. A total of 64 workstations are 

proposed by (Co and Araar 1988) in the 6 cells 

modified group layout design within a factory. But, 

each group cell contains uncertain numbers of 

machines. Montreuil et al. (1999) propounds that the 

grouping procedure implements a multi objective 

mathematical programming formulation with few 

surrogates; 
 

 Minimize the difference between the assigned 

workload and capacity available. 

 Maximize the number of products that are 

completed in each cell. 

 Maximize the number of cells. 
 

But, it is found that the objectives above are conflicting. 

The design for the group layout makes the job shop 

appear very much like a flow shop. But the group layout 

design suffers from the major disadvantage that requires 

too many workstation replicates (Montreuil et al., 

1999). 

In this study, the GA approach lets us represent the 

entire group layout proposed by (Co and Araar 1988) as 

chromosomes. The modified group layout by (Co and 

Araar 1988) is shown in (Figure 5). MATLAB 

programming has made the representation of the 

machines in each cell easier. For instance, Cell1 can be 

represented as (1 5 2 6; 7 4 3 8; 9 10 3 5; 2 10 8 6; 1 5 9 

10) in MATLAB codes. Cell4 is coded as (3 9 2 8; NaN 

NaN NaN 5) (where NaN means Not-a-Number in 

computing). Cell1 and Cell4 are combined using 

crossover operations. After the crossover, Cell1 is re-

generated and it becomes one of the output cells for 

fractal manufacturing layout. 
 

 
Figure 5: Modified group layout from (Co and Araar 

1988) 
 

The fractal manufacturing cell layout proposed by (Co 

and Araar 1988) has a number of characteristics and is 

shown in (Figure 6). All fractal cells are similar and 

contain roughly the same composition of machines. 

Similarity of fractal cells in terms of machine types and 

quantities enable high efficiency in controlling shop 

floor, high operational flexibility and high flexibility for 

factory expansion. Moreover, all fractal cells are 

independent and are also capable of processing all 

products routed to them. Furthermore, products are 

distributed evenly among fractal cells. 

The design of fractal layout (Figure 6) contains 

three cells. This choice leads to a cell population of 10 

workstations, which is within tractable standards of 5 to 

15 machines in each fractal cell. It is not necessarily to 

limit the number of workstations to 30 machines in this 

case (Venkatadri et al., 1997). But, by adding few more 

workstations congestion could be alleviated and flow 

efficiency could further be improved. Therefore, it is 

logical and reasonable to increase number of Machine 7 

in the following approach in the fractal manufacturing 

layout that is proposed by Venkatadri et al. (1997) and 

Montreuil et al. (1999). 

 
Figure 6: Fractal Manufacturing Layout 
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4.1. Design Parameters  

It is estimated that 10 types of machines are required in 

the fractal job shop. Machine requirement planning 

represents the beginning of the fractal layout process. 

This is carried out by computing the total number of 

hours required for processing the product demand 

(Montreuil et al., 1999). There are 15 types of products 

that are required to be processed in the 3 fractal cells. 

Based on bottleneck analysis, the total demand for the 

fractal layout is estimated to produce 400 products that 

can be processed in the fractal system without violating 

aggregate capacity constraints and respecting product 

demands. The other design parameters that are used for 

the fractal layout modeling have to be defined and 

calculated as below: 

 

Machine types in fractal job shop = 10 

Product types in fractal job shop = 15 

Total number of products demand = 400 products 

Demand for fractal job shop = 400/15 = 26.67 

Total machine processing times = 1108 minutes = 

18.47hours 

Machine processing times for processing the demand 

  = 18.47hours x 26.67 

  = 492hours 

Total machine capacity (available hours) is 1297hours 

Minimum number of machine required for fractal cell  

= Machine capacity ÷ Machine processing times 

  = 1297 hours ÷ 492 hours 

  = 2.6 machines = 3 machines 

Fractal decomposition is carried out using the 

procedures outlined in the section on cell creation 

design. The results of the calculation are shown on 

(Table 1). It can be shown that 3 machines are required 

for the 3 fractal cells. Therefore, it is feasible for each 

type of machine to be replicated or regenerated 3 times. 

The expected fractal layout contains 30 machines where 

each fractal cell has 10 machines. 

 

 

Table 1: Number of replicates for fractal cell layout 
Machine  
Type 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
10 

 
Total 

Number of 

Replicates 

 

3 

 

3 

 

3 

 

3 

 

3 

 

3 

 

3 

 

3 

 

3 

 

3 

 

30 

 

 

4.2. Input Data 

Tables (2, 3 & 4) contain the input data for the machine 

processing sequence, process times of products in 

minutes and machine capacity in hours respectively for 

each of the replicates (Co and Araar 1988). These data 

are written in Microsoft excel file and imported into 

MATLAB programming for the optimization process. 

 

 

 

 

 

Table 2: Machine routing sequence for 15 types of 

product 

 
 

Table 3: Machine processing times for 15 types of 

product 

 
 

Table 4: Machine capacity for each replicate 

 
 

4.3. MATLAB dialog box 

A dialog box is created as an interaction tool on 

MATLAB. The dialog box pops up to request for input 

data as shown on (figures 7, 8 & 9). These data are used 

to verify; the location of Microsoft Excel input file, 

sheet name of product sequence that is required for the 

modeling operation, and the sheet name of machines in 

fractal cell layout; the desired number of fractal cells 

that are needed; number of rows and columns for each 

pair of initial cells that are required to generate each 

fractal cell; he cells required for crossover operation and 

the desired number of iterations needed for generating 

the final fractal manufacturing layout. 

The input dialog box (Figure 7) for file location 

and sheet name in Microsoft Excel has been used to 

Product Type Machine Processing Sequence

1 1 4 7 3 10 8

2 3 9 2 8 5 6

3 2 3 4 5 9 10

4 1 7 8 10 2 3

5 5 6 8 1 4 7 9

6 5 2 6 4 1 7

7 6 4 5 7 10 9

8 1 3 5 6 8 10

9 3 4 2 1 5 9 10

10 8 10 2 4 6

11 3 1 9 5 7

12 1 9 10 2 7 8 3

13 4 3 10 2 8 6

14 4 2 8 5 1 6

15 1 5 2 6 8 3 4 7 9 10

Product Type Machine Processing Times (Minutes)

1 10 7 20 15 8 17

2 10 15 15 15 10 5

3 11 13 20 15 12 10

4 9 17 9 8 10 20

5 9 7 7 15 15 12 9

6 7 6 13 10 8 8

7 7 13 12 19 14 13

8 12 11 18 11 13 10

9 6 9 8 17 20 12 13

10 12 18 7 5 6

11 13 12 9 8 11

12 7 13 17 6 11 12 5

13 13 20 5 15 12 17

14 7 12 20 9 18 8

15 20 12 13 13 13 5 7 20 7 5

Machine Type Machine Capacity (Hours) for each replicate

1 25 15 10 30

2 16 29 15 25 30 20 28

3 17 15 40 30 10

4 18 19 17 28

5 15 20 30 20 20 20 30

6 18 20 15 15 10 15

7 10 20 20 10 15 20 15 15 15 10

8 20 20 15 15 10 10 10

9 18 17 20 30 40 30 20 17

10 20 10 10 10 30 30 30 15 15
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ensure the location of the input data is identified and 

verified. The input dialog box (Figure 8) for desired 

number of cells is used to insert the number of cells that 

are required for the initial cell layout. The input dialog 

box (Figure 9) is for the number of iteration needed to 

determine number of replicates and analyze the output 

of the flow distance score. 
 

 
 

Figure 7: Input dialog box for file location and sheet 

name in Microsoft Excel 

 
Figure 8: Input dialog box for desired number of cells 

 

 
Figure 9: Input dialog box for number of iteration 

 

4.4. Facility layout problem (FLP) 

The FLP is defined as “the determination of the relative 

locations for, and the allocation of the available space 

among a number of workstations” (Azadivar and Wang, 

2000). The resources could be different sizes and the 

interactions between resources may vary. This is a 

major concern in developing a block layout that 

represents an optimal shape and arrangement of 

departments within a facility (Hicks 2006). The FLP is 

a combinational problem for which the optimal solution 

can be found for small problems. GA based search is 

one of the good method for dealing with problems of 

facility layout. In the GA approach to optimization, 

feasible solution to the problem is encoded in data 

structures in the form of a string of decision choices that 

resemble chromosomes. GA maintains population of 

chromosomes or individuals that are created. The layout 

design is characterized by chromosomes’ fitness which 

is measured by its value of objective function. Off-

springs are created through reproduction, crossover, and 

mutation (Balamurugan et al., 2006). FLP is formulated 

as a quadratic set which covers linear integer 

programming problem, mixed-integer programming 

problem and graph-theoretical problem. Therefore, 

quadratic assignment problem (QAP) formulation has 

been popular in this kind of problems. But 

manufacturing practice normally requires particular 

layout configurations such as single row, multi-row or 

loop formations. These practical constraints place a 

huge restriction on the optimization process (Hicks 

2006), but the GA based search is one good method of 

dealing with problems of facility layout.  

The pick-up and delivery points position of each 

cell in our study are located on either one of the cell 

axes (Rajasekharan et al. 1998). In this model, the 

fractal cells are considered to be rectangular blocks with 

known dimension of (w, h) where w is width and h is 

height of each cell. After the crossover and mutation, 

the facility layout for FrMS for this model has a height, 

h of 3 rows and width, w of 4 columns. If the fractal 

cells are written as three rows and four columns in 

matrix form in MATLAB, then the Pick-up Point is (1, 

1) and Delivery Point is (3, 4)(Figure 10). 

 

 
Figure 10: Facility layout problem for FrMS 

 

Some logical assumptions are made for the facility 

layout problem. These include that the dimensions of 

the floor area on which the fractal cells are placed is 

given. The floor space for the flow path on the floor 

area is not considered. It is also assumed that the flow 

paths consist of segments that are horizontal and 

vertical to the walls of the floor (Hu et al., 2007). 

The fractal layout dimension, (3 x 4) is chosen 

because we are considering 10 machines in this study. 

Thus, we require at least 10 locations for the rectangular 

fractal cell layout. So, it is feasible to generate a facility 

layout with 10 machines and 2 spaces. This layout 

could reduce the material travelling distance by having 

multi-purpose machines in each fractal cell.   

 

5. IMPLEMENTING THE PROPOSED 

GENETIC ALGORITHM APPROACH 

An iterative algorithm is implemented to optimize the 

layout and flow assignment according to the design 

parameters. The layout of each cell is refined using the 

implied flows between stations. The replicates are re-

applied until the heuristic procedures could not find a 

better solution. The cells are continually iterated to 

obtain the optimal flow assignment and hence achieve 
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the optimum fractal layout (Montreuil et al., 1999). The 

GA procedures - selection, crossover, row inverting 

mutation, column inverting mutation, and deleting 

mutation are embedded in the iterative procedure in 

order to generate the optimal material travelling 

distances. Hence the desired workstation layout that 

minimizes the material travelling distances and capacity 

requirements for product demand and mix is created. 

Each optimal fractal cell is selected based on the flow 

distance score. Thus, optimum fractal manufacturing 

layout is created by combining the three optimal fractal 

cells. The illustrations of the GA steps are presented by 

showing the first iteration of the fractal cell 1. Initial 

cellular layout is assumed to contain 6 cells. Fractal 

cell1 is generated by combining cell 1 and cell 4 by 

crossover operation. Cell 1 is shown as parent1 and cell 

4 is illustrated as parent2 in MATLAB program codes. 

Chromosomes for each Parent are represented by the 

various kinds of genes. The genes are represented by the 

number 1 to 10 that signify that Machine1 to 

Machine10 are used. Parent1 is represented as (1 5 2 6; 

7 4 3 8; 9 10 3 5; 2 10 8 6; 1 5 9 10), illustrated in 5 

rows and 4 columns. Parent2, contains 2 rows and 4 

columns as (3 9 2 8; NaN NaN NaN 5). The 

chromosome for each parent is represented in rows. 

This means that the chromosomes for Parent1 are (1 5 2 

6), (7 4 3 8), (9 10 3 5) and so on. One of the 

chromosomes from Parent1 is chosen randomly. For 

instance, the first row chromosome for Parent1 has been 

selected for the crossover function. On the other hand, 

the 1
st
 row chromosome for Parent2 also is selected to 

be combined with the chromosome of Parent1 as shown 

in (Figure 11). The continuous selection of the 

chromosomes for Parent1 and Parent2 generated 10 

different Offspring after the crossover operation (Figure 

11). Two Off-springs are generated from each iteration 

of the crossover. The Offspring1 that is created from 

selection and crossover with 5 chromosomes are 

selected for the upcoming mutation. Offspring2 is not 

been used because there are only 3 chromosome lesser 

than Offspring1. 

 

 
Figure 11: Selection and Crossover 
 

Inverting mutation takes place after the crossover. The 

Offspring that is generated in the previous crossover is 

used as the Parent again in this inverting mutation 

operation. Initially, a cutting point is randomly 

introduced anywhere along the last row of the Parent. 

The cutting point indicates the row of the chromosomes 

for the inverting mutation. The last row of the 

chromosome is being mutated to the initial row based 

on the programming code “circshift” - (mathscript 

function). The iterations of the row inverting mutation 

are replicated four times as shown in (Figure 12). For 

each offspring that is generated, three column inverting 

mutations take place. For column inverting mutation, 

chromosome is represented column by column. The 

cutting point is set in the last column of the 

chromosome. The column based chromosome is 

mutated and shifted from the last column to the first 

column. After this, the Parent is replicated by shifting 

its chromosomes in columns as shown in (Figure 13). 

For each Parent that is obtained from the previous 

mutation step, the entire inverting mutation is expected 

to replicate 12 times. 

 
Figure 12: Row Inverting Mutation 
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Figure 13: Column Inverting Mutation 

 

After inverting mutation, the Child is generated and 

transformed to be the Parent again for deleting mutation 

as shown in (Figure 14). On completion of the previous 

mutation, the process of deleting mutation is simplified 

by just deleting the last two rows of the five 

chromosomes in the Child. 

 

 
Figure 14: Deleting Mutation 

 

Replacement is the last step in the process of generating 

fractal cell layout as shown in (Figure 15). In fact, each 

fractal cell requires 10 machines where no duplicated 

machines or missing machines are allowed. This is 

because duplicated machines will increase the material 

travelling distance. Minimum flow distance score is the 

requirement for fractal cells.  

As a result, machine3, machine8 and machine9 are 

grouped as duplicated machines that required to be 

replaced by missing machines. The MATLAB codes are 

programmed to search the missing machines. The 

missing machine in this scenario is machine6. Thus, 

machine6 replaces one of the duplicated machines.  

 

 
Figure 15: Replacement 

 

The fractal cell layout that is generated after 

Replacement can be represented as (10 1 5 9; 8 3 6 2; 

NaN 7 4 NaN). From the Facility Layout Problem 

(FLP) that was discussed in the previous section, 

materials are moved into the cell through Pick-up Points 

and moved out from the cell through Delivery Points as 

shown in (Figure 16). The Pick-up Point is at (1, 1) 

while the delivery Point is at (3, 4). 

The fractal cells are capable of processing all 15 types 

of product. Therefore, the materials to be produced need 

to be processed in specified machine routing sequence. 

For instance, materials that are used to produce 

Product1 need to be processed by machine1, machine4, 

machine7, machine3, machine10, and machine8 in 

continuous sequence.  Each location of machines is 

represented on (x, y) coordinates. Before the materials 

are processed in machine1, they have to be carried into 

the fractal cell through the Pick-up Point. After 

processing in all the machines within the fractal cells, 

the final product1 gets delivered to the shipping 

department through Delivery Point as shown in (Figure 

16). 
 

 
Figure 16: Material Routing sequence for Product1 

 

Then the flow distance score is calculated based on the 

mathematical solution in MATLAB which is 

represented as: 

 

Distance = abs (buffer1 (1)-buffer2 (1)) + abs (buffer1 

(2)-buffer2 (2))                                                         (1) 

 

The abs is representation of absolute. The absolute 

value allows the distance to the left (negative value) and 

distance to the right (positive value) to be counted into 

the total distance. Buffer1 and buffer2 is the matrices of 

data that are being stored in temporary memory. 
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The shortest routing distance is always considered from 

the various iterations that are being generated for each 

of the fractal cell.  
 

6. OUTPUT RESULTS AND DISCUSSIONS 

The computational result of product travelling distances 

within the fractal cells indicates the flow scores of 

fractal layout. Flow score is computed and represented 

as the product travelling distances. 

The optimal fractal layout with the minimum flow 

distance scores is selected by MATLAB and displayed. 

These output data are used to draw the graphs of flow 

scores with different generations and flow scores with 

different product ranges. The GA search for an optimal 

solution yielded results from 100 iterations and the 

output is converted into the final fractal cell layout 

representing the fractal manufacturing layout. The 

material travelling distances for each of the three fractal 

cells work out as follows in terms of flow distance 

scores; 
 

Flow distance score for Cell 1 = 205  

Flow distance score for Cell 2 = 217 

Flow distance score for Cell 3 = 197 
 

Overall flow distance score for the final fractal 

manufacturing layout through the proposed GA = 619 

and this is shown on (Figure 17).  

 
Figure 17: Final Fractal Manufacturing Layout A 

 

Comparatively, the fractal layout according to 

(Venkatadri et al.1997) has machine requirements 

similar to our final layout requirements with the 

following flow distances; 

 

Flow distance score for Cell 1 = 251 

Flow distance score for Cell 2 = 252 

Flow distance score for Cell 3 = 257 

 

Overall flow distance score for Final Fractal Layout 

according to (Venkatadri et al.1997) is = 760 and that is 

shown on (Figure 18). 

This shows that the flow distance score obtained 

from the proposed GA approach is lesser at 619 than 

that of (Venkatadri et al.1997). 
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 Figure 18: Fractal cell layout according to (Venkatadri 

et al.1997) 

 

Ascertaining or working out the optimal number of 

iterations in each cell for our proposed GA approach 

aided in producing the right flow distances and involved 

plotting flow distance score against iterations as shown 

on figures (19), (20) and (21) for cells 1, 2 & 3. These 

plots signify the optimal flow distances at 205, 217, and 

197 for cells 1, 2, & 3 respectively.   

 

 
Figure 19: Flow distance score for fractal cell 1 

 

 

 
Figure 20: Flow distance score for fractal cell2 
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Figure 21: Flow distance score for fractal cell3 

 

7. CONCLUSION 

The GA approach has been applied in the design of the 

fractal manufacturing shop floor layout. This algorithm 

was used to search for the optimal fractal cell layout for 

efficient and effective material/ product movements 

within the shop floor. Fundamentally, the decision of 

how to distribute/assign products to cells as evenly as 

possible to aid responsiveness to uncertainties in 

manufacturing and easy control of resources was seen to 

be very important to the design, implementation and 

final outcome of the experimentation. The model 

implemented using MATLAB managed the scenario 

quite well and handled the mathematical formulations, 

swapping and deleting matrices etc. quite efficiently. 

Overall, the computational results indicated that 

unrestricted product flows offer the best flow scores in a 

fractal layout. 
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