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ABSTRACT. To construct a new machine, to improve 

the existing one or to reconstruct the worn up, damaged 

machine/tool, we need its theoretical model, in both 

functional and material issues, and the means to 

produce its final form. Contemporarily, there are used 

computers in all the stages of the production process, as 

well as in so-called inverse tasks, when we want to 

reconstruct (the parts of) machines. It demands still 

more and more precise mathematical description. In this 

paper we discuss such description via spline curves 

(composed of third degree polynomial arcs represented 

parametrically) and we apply it to gears/pulleys of non-

typical irregular profiles.  

 

Keywords: spline, noncircular wheel, reverse 

engineering, computer aided design 

 

1. MOTIVATION AND INTRODUCTION  

The usage of noncircular gears and pulleys makes 

possible to have better characteristics of the 

transmission, e.g., the changeable kinematical features 

in the gear ratio and the velocity. The required degree of 

speed variability is obtained by the use of pulleys 

constructed with wheel rims having shapes of ellipses, 

ovals or other non-circular disks. There is already well 

recognized the usage of chains in such drives. On the 

other hand, the usage of toothed belts in such 

transmission systems is not described in details. That is 

due to the different kinematics and coupling 

characteristics of toothed belts and pulleys as compared 

with chain drives. In a chain drive the driven strand can 

be slack, whereas in case of a toothed belt drive it must 

be tight. It makes that there must be met two conditions. 

The first condition concerns the length of the belt: it 

must be equal to the length of the envelope. In order to 

ensure the correct operation of a variable-speed 

transmission system, the active and passive sections of 

the belt must be tightened by an appropriate constant 

force. The second condition of the correct work of 

a variable-speed transmission system is to ensure the 

cyclycity of its movement. This cyclicity is absolutely 

required during the circular motion of machine 

elements. The circumference of every wheel has to be 

an integer multiple of the pitch (as always, a metric 

pitch is the distance between neighboring belt teeth 

based on millimeters). Thus, one is able to determine 

the average transmission ratio of the system as the 

relation of circumferences of wheels or the number of 

their teeth. The cyclicity of drives can be guaranteed 

only by toothed belts having following property: during 

the operation the plastic strain varies slightly. At the 

same time the belts must be initially pre-tightened in 

order to avoid the slip of the belt as well as the skip on 

the teeth of the wheels.  

If both conditions, a constant tension of the belt and 

the cyclicity condition, are met simultaneously, one is 

able to search for a design of a variable-speed 

transmission system as that shown in Fig.1. 

 

Fig. 1. Belt and pulley transmission systems installed  

in LEDM (Laboratory for Experimental Design  

and Manufacturing at Faculty of Machines  

and Transport, Pozna  University of Technology);  

the system has two circular wheels, one noncircular 

wheel and one eccentrically mounted wheel 

 

The problem at hand is widely studied in the case of 

regular noncircularity, e.g., when there are applied 

elliptical or trochoidal wheels, both types being well-

described mathematically. In this study we deal with 

irregular gears in case when their profiles are not 

covered by well-known mathematical equations. The 

design of such gears involves more advanced 
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techniques in both technological and mathematical 

aspects, in the last case it is often needed a numerical 

treatment.  

The design of noncircular gears and pulleys working 

in tooth transmissions is widely described in literature, 

see, e.g., Laczik (2003), Danieli et al. (2005), Ming-

Feng Tsay and Zhang-Hua Fong (2005), Bair et al. 

(2007), JianGang Li et al. (2007), Bair (2009). In most 

cases there are considered regular noncircular wheels, 

i.e., the gears of the elliptical and cycloidal profile; only 

such plane curves are discussed in the book by Litvin 

and Fuentes (2004), a bible for gear designers. In last 

years there are undertaken practical experiments and 

theoretical considerations concerning non-typical 

irregularly shaped elements of belt/chain drivers. As far 

as we know, the literature dedicated to such non-typical 

toothing is rather modest, it is treated in, e.g., Li Xin 

Cao et al. (2002),  Krawiec (2005). It is also discussed 

by Gajda, Krawiec and Marlewski (2008), where Bézier 

curves are applied to describe such profiles.  

A mathematical description of the profile is 

necessary when there are used modern machines 

applying CNC (computer numerical control). These 

machines manufacture, for instance by laser devices or 

compressed water streams, elements of machines and 

they cut a desired profile via moving their cutting tools 

along the trajectory which has to be defined 

mathematically.  

 

2. SPLINE CURVE INTERPOLATING 
A PROFILE TO BE RECOVERED 

In more details, we present the way at which we 

obtained the spline description of the closed curve 

passing through given m points Pj = (xj, yj), (j = 1, 2, ..., 

 m), sitting on the profile of a non-typical gear, as that 

seen in Fig.2 below.  

 

Fig.2.  Belt pulley manufactured in LEDM 

The coordinates of thousands of such points are 

provided, as pairs of two numbers, xj  and yj, by a CMM 

(coordinate measuring machine, see Fig.3) and 

a designer/constructor decides which ones of them are 

taken in aim to get a model; in the case reported here 

there were taken 24 extreme points of the outside 

                             

 

Fig.3. Measuring geometrical parameters  

of a non-circular pulley on the CMM  

Contura G2 from Carl Zeiss 
        

 

Fig.4. A sample profile and points Pj 

( j = 1, 2, ..., m; m = 24), sitting on its extreme envelope 
    

envelope of the profile; you can see these points in 

Fig.4 (and we refer to them as measured points). These 

coordinates form two one-column vectors, namely 

X = [ x1, x2, ..., xm]
T
,  Y = [ y1, y2, ..., ym]

T
; 

X and Y store the abscissas and the ordinates, 

respectively. 

Since the profile is closed, it is natural to augment 

both vectors X and Y by the element equal to x1 and y1, 

respectively. This way we have so-called abscissa-
vector X and ordinate-vector Y,  

X = [ x1, x2, ..., xm, xm+1]
T
, Y = [ y1, y2, ..., ym, ym+1]

T
, 

where xm+1 = x1 and  ym+1 = ym. Obviously, we can say 

that there are given no m points Pj, but there are given 

m+1 points  

Pj = (xj, yj), ( j = 1, 2, ..., m, m+1), 

where Pm+1 = P1.  

The augmenting we did simplifies the presentation of 

the method below. This method provides the equation 

of the curve interpolating the sequence 

(P1, P2, ..., Pm, Pm+1) of measured points. 
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Obviously, the profile at hand, as well as the 

sequence (P1, P2, ..., Pm, Pm+1) of measured points, can 

not be entirely covered by the equation of the form 

y = f(x). Fortunately, it can be describe parametrically; 

we can find the functions x = x(t) and y = y(t), both in 

the variable t, such that x = x(t) interpolates the 

abscissa-vector X and y = y(t) interpolates the ordinate-

vector Y. Then the entire curve is governed by the 

equation 

s(t) = [ x(t), y(t) ], 

where t runs an appropriate interval and s(tj) = Pj for 

appropriately chosen values tj of the variable t. These  

values, tj, are called knots, or nodes, of interpolation. 

Below it will appear clear that it is very convenient to 

deal with the knots tj = j. These knots determine the 

intervals <tj, tj+1> = <j, j+1>, j = 1, 2, ..., m; every one of 

them is called an elementary, or basic, interval (for the 

method we apply below). 

Since we want to have an interpolating spline curve, 

we look for splines x = x(t) and y = y(t) satisfying 

collocation conditions  

x(tj) = xj and y(tj) = yj for j = 1, 2, ..., m. 

As in numerous applications, we will find the third 
degree spline interpolation. So we look for 

polynomials of third degree, fj and gj (j = 1, 2, ..., m), to 

interpolate the abscissa-vector X and ordinate-vector Y, 

respectively. For instance, on the j-th basic interval 

<tj, tj+1> the spline x = x(t) can be taken in the form  

x(t) = aj + bj (t – tj) + cj (t – tj)
2
 + dj (t – tj)

3
 

and it is clear that it is defined by its coefficients, aj, bj, 

cj, dj.  

Analogously, the j-th part of the spline y = y(t) is 

determined by other quadruple, j, j, j, j, forming the 

coefficients of the linear combination of the same basic 

functions as above, i.e.,   

t  (t – tj)
k–1

 , k = 1, 2, 3, 4. 

The set of these four functions can be called a Herriot-
Reinch basis. This basis is a key point to find all 

desired coefficients in HeRA, a Herriot-Reinsch 
algorithm (see Herriot and Reinsch 1973 and, e.g., 

Krawiec and Marlewski 2011).  

In this algorithm we first calculate multipliers of the 

second power, (t–tj)
2
, next we use some combinations of 

them to get the multipliers of (t – tj)
3
 and (t – tj)

1
. At 

last, by the collocation condition the free terms are 

produced at once: it is aj = xj for the spline x = x(t) and, 

as easily as here, j = yj for the spline y = y(t).  

The multipliers cj of (t – tj)
2
 standing in the spline 

x = x(t) are solutions of the system of linear algebraic 

equations  

A c = , 

where A is the matrix of the system at hand, c comprises 

the coefficients to be calculated,  is the vector of right 

sides, so  

c = [ c1, c2, ..., cm ]
T
,  

 = [ 1, 2, ..., m ]
T
,  

 

 

The matrix A of order m and the vector  are built 

according to the definition of the spline with the 

additional requirement saying that this spline has to be 

periodic. This periodicity makes that the respective 

spline curve is closed and, at the same time, it puts both 

1’s in the left down and right upper corners (and there is 

the only difference with respect to the natural spline 

interpolation, where instead of these 1’s we have 0’s).  

The elements of the right-side vector  are 

1 = 1 – m, 

j = j – j–1     for j = 2, 3,  ..., m, 

where    j = xj+1 – xj     for  j = 1, 2, ...., m. 

Solution c calculated, we get the vectors d = [ dj ] 

and b = [ bj ] by the formulas  

dj = j+1 – j     for  j = 1, 2, ..., m–1, 

dm = 1 – m , 

bj = rj – 2 j – j+1  for  j = 1, 2, ..., m–1, 

dm = rm – 2 m – 1, 

where    j := cj/3.  

If necessary, go to Krinze a (2006) to see how the 

system A c =  is built, and to Carnahan et al. (1969) to 

state that A is symmetric, irreducible and positively 

determined. The last fact was proved by de Boor and 

DeVore (1985) for arbitrarily spaced knots, but in our 

case we have a regular mesh and the determinants for 

m = 3, 4, 5, 6, 7, .., 24, 25 are equal 18, 64, 242, 900, 

3362, 12544, ..., 17767236614400, 66308229755042 (it 

seems that there is still unknown a general formula for 

the value of m-th determinant).  

In view of above remarks, the system A c =  can be 

solved iteratively by Jacobi method. It can be also sol-

ved directly, c = A–1
, by SOSes (symbolically oriented 

systems, as Derive from Texas Instruments, Inc., 

Mathematica from Wolfram Research, Inc.) without any 

roundings. Let’s give an example: with m = 5 there is  

. 

Fortunately, the system A c =  can be also solved by 

direct methods (including the basic one: Gauss 

elimination method) in NOSes (numerically oriented 

systems, e.g. Pascal, C++), because its matrix 
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A = [ aj,k ] j,k=1,2,..,.m is well-conditioned; for instance, its 

condition number generated by maximal norm, 

|| A || = max { | aj,k | : j, k = 1, 2, ..., m }, does not exceed 

1.16 when m  51. 

The construction of the equation y = y(t) concerning 

the ordinate-vector Y is identical as that presented 

above, and this way it is reduced to solve the linear 

system A  =  with the same matrix A. Therefore we 

can treat these two tasks at once, namely instead of 

solving two systems of linear algebraic equations we 

solve the system  

A W = F, 

where both W = [ c |  ], F = [  |  ] are m 2-matrices, 

their columns are vectors c and , and the 

vectors  and  are determined by the 

abscissa-vector X and the ordinate-

vector Y, respectively, 

            A is as above, so it is worthy to get the inverse 

matrix A–1
 or to apply any other method 

simultaneously to the pairs (c, ) and 

( , ) composed of columns involved in 

matrices W and F. 

The solution W of this system, via its columns c 

and , yields the other coefficients (bj, dj etc.) of desired 

functions  

x = x(t), y = y(t) 

covering the positioning of abscissas and ordinates 

related to the equidistantly distributed knots tj = j related 

to the variable t, j = 1, 2, ..., m+1. This way we finally 

get the desired spline 

s(t) = [ x(t), y(t) ]. 

where t is the parameter;  for t  <j, j+1>  we have the 

j-th fragment of the final spline curve, 

j = 1, 2, ..., m, 

           x = x(t) is the function in the variable t; it covers 

the behavior of the spline at hand along the 

horizontal axis Ox, 

           y= y(t) is the function in t; it describes the 

changes along the vertical axis Oy. 

 

3. ANGLES AT WHICH A TOOL CUTS A PLATE 

Obviously, to cut a desired pulley, or gear, off a steel 

(an aluminium alloy etc.) plate, the cutting tool 

controlled by a computer has to have not only the 

equation of the outside profile, but also the depth of 

toothing and the direction at which the a laser (a water 

jet etc.) moves. The depth, in millimeters, is the same 

for every tooth and it is simply passed in through the 

control panel. The directions are defined by angles, in 

grades, at which the tool is oriented with respect to the 

zero-direction (it is set just when the cutting machine 

starts its work, see Fig.5). The angles vary from tooth to 

tooth and they are passed to the cutting machine 

controller through a specialized programme as the 

sequence of numbers accompanying the coordinates of 

nodes Pj. 

 

 

Fig.5. Forming the non-regular noncircular belt pulley 

on CNC milling machine Deckel Maho from DMG 

 

Let  

x(t) =  aj + bj (t – j) + cj (t – j)2
 + dj (t – j)3

, 

y(t) = j + j (t – j) + j (t – j)2
 + j (t – j)3

, 

be the parametric equation of a j-th part of the spline 

curve [ x, y ] = sj(t) obtained above; it says that this  

equation covers this curve when j runs from the point Pj 

to the point Pj+1. Since for every t where the derivative 

x’(t) does not vanish there holds true 

  

so at Pj the tangent line has the slope j/bj and, in 

consequence,  

 

is the angle under which, at the point Pj, the normal line 

to the curve s = sj(t) is inclined to the zero-direction of 

the cutting machine.  

Obviously, the same straight line is perpendicular to 

the adjacent spline fragment s = sj–1(t) (for j = 1 we 

identify s0 = sm+1). If bj = 0, then the tangent line is 

parallel do the axis Ox and  j is 90° or 270° depending 

on the sign of the coefficient j. 

In Fig.6 there are traced segments of perpendicular 

lines to the spline curve. For instructive purpose, 

a segment of the normal at the knot P2 is traced longer 

than other segments. Since here the zero-direction of the 

cutting machine coincides with the direction of the Oy 

axis and the direction at which the object in forming is 

clockwise, we have  2 = 170.489° (the normal at P2 is 

inclined to the axis Oy upon the angle 170°29’) and, 

e.g. 1 = 4.8545° = 4°51’, 24 = 22.8724° = 22°52’, 20 

= 86.9719° = 86°58’. 
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Fig.6. Nodes Pj (marked by values of their index j: 1, 2, 

3, ..., 24) of the interpolatory spline, the spline curve 

itself and the normal lines to it passing through the 

nodes (figure produced in Derive 5 for Windows) 

 
5.  MANUFACTURING IRREGULAR PULLEYS 
AND GEARS  

Belt pulleys, as well as gears, are manufactured by the 

profiling (a.k.a. shaping) method or by the envelope 

method; they both are classified as matching techniques. 

The disadvantage of the profiling technique is that it 

needs to use few cutting tools and, practically always, 

an additional mechanical polishing has to be performed. 

Moreover, manufactured gears have so-called pitch 

error, which results from nature of process. By contrast, 

the envelope technique, a.k.a. the direct generation of 

noncircular gears, requires the design of non-typical 

manufacturing process and application of numerical 

controlled slotting machine; as several years earlier, the 

last one treatment is still not very common, see 

Kujawski (1992).  

Noncircular belt pulleys can be also shaped by 

abbrasive water jets, a.k.a. watersaws, which are tools 

capable of slicing into metal, or other material, using a 

jet of water (usually enriched with an abrasive 

substance)  at high velocity and pressure.  

Another way to manufacture gears and pulleys is 

the laser cutting (in particular by lasers where CO2 is 

the lasing material), but here only relatively thin gears 

can be obtained, see, e.g., Krawiec (2009).  

As we read in Krawiec (2010), a good alternative 

method to all techniques mentioned above is the 

application of universal CNC milling machine with set 

of end mills, as well as rapid prototyping and rapid 

manufacturing methods (e.g., 3D-printing, FDM, SLS) 

to get gear wheels. A relatively new idea of gears 

forming is the usage of numerical controlled milling 

machine, where there is installed special two cutting 

edges tool. In accordance with this idea the 

manufacturing process of gear wheel is composed of the 

following movements: tool rotation in relation to 

spindle axis, rotation and displacement of numerical 

controlled table, where initially shaped blank is 

positioned. In the referred method the basic task in the 

elaboration of the controlling program is the proper 

correlation between the movement of the table and the 

rotation of the cutting head. This relation can be 

doubtlessly stated by mathematical formulas and the 

spline description presented in this paper provides it.  

 

4. FINAL COMMENTS  

Taking into account the regimes obligatory for the 

manufacturing belt pulleys and gears we derived the 

equation of spline curve passing through given points 

chosen, by a designer, from points provided by any 

scanning machine. The accuracy at which these data are 

gathered is fairly better than the ranges at which the 

desired gear/pulley has to be manufactured; the 

respective errors are even 0.001 mm in CMM and 0.1 

mm in cutting process if the diameter ranges between 

50 and 100 mm. That’s why we did not smooth the 

scanned data and we did not smooth the spline 

determined on given points. The second procedure, 

aiming in the smoothing of a spline generated by given 

sequence of points Pj, is discussed, a.o., in Reinsch  

(1967) and, moreover, Hutchinson and de Hoog (1985).   

Since invented, the spline interpolation is widely 

applied not only in civil engineering and mechanics, but 

also in such areas as statistics, geometry and (rail)way 

planning – see Kamenschykova (2008), Kranjc (2009) 

and Moreb (2009). When applied to the problem 

considered in this paper, it also provides a fast way to 

determine the angles of the cut and that’s why it is more 

friendly to the practice than Bézier approximation 

(although the formulas involved in the spline 

description are more complex that the simply, elegant 

dependency taking place in Bézier approach).  
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