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ABSTRACT 
Construction projects are exposed to various unexpected 

interruptions, with equipment breakdowns being the 

most common. Proper modeling of these interruptions 

along with the associated uncertainty can significantly 

reduce risk and improve project management. We 

employ a new mathematical approach, the copula 

method, to model the field observations in a tunnel 

excavation project.  We characterize the excavation 

process interruptions with their degree of severity and 

frequency, and develop a Student t copula model for the 

underlying dependence structure. The model is 

consecutively utilized in a Monte Carlo simulation that 

incorporates all available information to forecast the 

project completion time. The adaptive estimates then 

serve as a basis for project management decisions. Our 

approach allows to incorporate the uncertainty within an 

intuitive simulation framework and to accurately model 

the dependence of the different dimensions of the 

process interruptions. 

 

Keywords: copulas, uncertainty, process interruptions, 

Monte Carlo simulation, project management 

 

1. INTRODUCTION 
Uncertainty permeates real-life project management: 

uncertain durations, uncertain cost, sudden weather 

changes, equipment breakdown, human resource 

problems, unexpected changes in project scope, etc. 

Uncertainty is rarely beneficial and takes the form of a 

risk that must be dealt with. It threatens the bottom line 

and, particularly, the project schedule. Many project 

activities are sequential, and alterations to the duration 

of some tasks have a ripple effect on the start times of 

all subsequent tasks down the activity chain.  Although 

a certain amount of contingency time is normally built 

into all project schedules, changes in the schedule have 

to be managed in a timely fashion in order to ensure a 

relatively smooth flow of labor and materials. Thus, the 

forecasting of task execution times becomes an essential 

ingredient of successful project risk management.  

The common approach to decisions made under 

uncertainty relies on probability theory, where the 

quantities of interest are considered random variables (r. 

v.) described by probability distributions. The mean of 

the probability distribution specifies the expected value 

of the modeled quantity, while the standard deviation 

quantifies our uncertainty about the ‘true’ value of this 

mean. The most common distribution used by 

researchers and practitioners alike is the normal, also 

called Gaussian, distribution, which takes the familiar 

bell shape. The popularity of this distribution is due to 

its convenient mathematical properties. It is analytically 

tractable, completely described by only two parameters: 

the mean and the standard deviation. A linear 

combination of normal distributions is also a normal 

distribution with parameters determined by the means 

and the covariance matrix of the original components. 

Also, according to the central limit theorem the 

distribution of the sum of many independent r. v. with 

finite variances approaches normal distribution. 

However, in real life, normal distributions are 

exceptional, rather than the rule. 

The standard approach to modeling data generated 

by a vector-valued random process is to fit a 

multivariate probability distribution, using e.g. the 

maximum likelihood (ML) method. The drawbacks of 

this approach are the lack of control in the fitting 

process and imprecise physical interpretation of the 

components of the distribution.  

Recently, new mathematical objects, called 

copulas, have become very popular for multivariate 

modeling of dependent variables and risk management 

(Nelsen 2003, Yan 2006, Frees and Valdez 1998). 

Copulas are multivariate functions with uniform 

marginals that allow the construction of the joint 

distribution from the constituent marginals capturing 

the dependency structure of the latter (see e.g. Nelsen 

2006). The intuitive copula approach to building 

multivariate distributions is a two-step statistical 

procedure.  In the first step, the empirical marginals are 

obtained by fitting univariate distributions to the data. 

In the second step, an appropriately chosen copula is 

used to combine the univariate marginals into a joint 

distribution. It has been pointed out (Mikosch 2006) 

that the use of this approach is not universally justified, 

but for our purposes it has definite advantages.  

The first advantage of the two-step methodology is 

that it enables meaningful interpretations of the 

marginal distributions, and it applies to and compares 

with existing, well-researched models. The second 

advantage is that, by choosing a specific copula, we can 

tailor the fitting process to the relative importance of the 

dependence domain. 
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In this work, we model the unexpected process 

interruptions in a tunnel excavation project.  The model 

was included as a separate component of a much larger 

distributed decision support and planning system, based 

on discrete-event simulation. The purpose of the model 

was to serve as basis for Monte Carlo simulations, 

where the randomly generated interruptions of the 

excavation are taken into account for an adaptive 

project schedule planning. 

Using copulas allowed us to borrow the familiar 

intuition from actuarial science, where the unexpected 

losses are characterized by two random variables: 

severity and frequency (Klugman 2004). In our case, 

these become the marginal distributions of the severity 

of the interruptions and the time intervals between 

interruptions. The separate choice of the copula allows 

the importance of the relatively rare but severe 

breakdowns to be stressed. 

The paper is organized as follows: Section 2 

introduces the notion of copulas and presents the main 

definitions and important properties. It also includes 

some broad examples of copulas and gives accounts of 

the methodology for statistical inference and simulation. 

This paper considers a case with two random variables, 

so for the sake of simplicity and notational clarity we 

only use bivariate copulas, but all the results presented 

are also valid in higher dimensions (see e.g. Nelsen 

2006 for a general treatment). Section 3 contains an 

overview of the tunnel excavation operations and the 

data collection, particularly of process interruptions. 

The copula model of the excavation process 

interruptions and the results from the simulations are 

presented in Section 4, which also contains a brief 

description of the software framework that encompasses 

the model. The conclusion, Section 5 contains an 

evaluation of the approach and some suggestions for 

future research. Some well-known probability concepts 

are included in Appendix A to serve as an easy 

reference for comparing the properties of two-

dimensional probability distributions and copulas. 

 

2. COPULAS 
2.1. Definitions for bivariate copulas 
The notion of mathematical copulas was introduced by 

Abe Sklar in 1959 as functions that link n--dimensional 

distributions to their one--dimensional margins (Sklar 

1959). Copulas are, in general, distribution functions 

that have as arguments – valued random vectors 

;  for simplicity, we restrict this 

presentation to the two-dimensional case, . 

Formally, in the case of two r. v.,  and , the 

(bivariate) copula, , is a function  

that has the following properties: 

 

• It is a grounded function:  

 

  (1) 

consistent with its margins: 

 

 (2) 

 

• It has a non-negative – volume, i.e. for 

every , such that  

, and    the following 

inequality holds:  

 

 (3) 

 

This property requires copulas to be “2-increasing” 

functions, which is the two-dimensional analog of a 

nondecreasing function of one variable (see Nelsen 

2006 for details). 

 

The basis for the theory of copulas is Sklar's theorem, 

which states that for a two-dimensional joint cdf 

with marginal distributions , 

there exists a unique 2-copula such that: 

 

 (4) 

 

If the random variables X and Y are continuous, 

then Equation 4 is unique. Otherwise, the copula is 

uniquely determined on the range . 

Conversely, if is a bivariate copula and , 

are distribution functions, then the function 

defined by Equation 4 represents a joint 

cdf. Thus, copula “couples” the marginals to form a 

joint cdf.  

One of the methods for copula construction is to use 

Sklar's theorem and invert the expression of Equation 4 

as     

 

 (5) 

 

For continuous r. v., copulas, as every ordinary 

joint cdf, have their corresponding densities, c, 

analogously to Equation A2: 

 

  (6) 

and the bivariate joint pdf has the following 

canonical representation: 

 

 (7) 
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This representation illustrates the decomposition of 

the multivariate probability density,  into 

one-dimensional marginals, , , and a 

dependence structure specified by the copula density, . 

 

 

2.2. Examples of copulas 
Given that every multivariate distribution has a 

corresponding copula, the number of possible copulas is 

enormous. There are three copula families that have 

been found most useful: elliptical, Archimedean, and 

extreme-value copulas. 

Elliptical copulas derive from elliptical 

distributions, with the two main representatives, 

Gaussian and Student's distributions. They are widely 

used for modeling financial time series, particularly in 

the context of factor models (Malevergne and Sornette 

2005). The parameter that is needed for their 

specification is the correlation matrix in the multivariate 

case, or the correlation coefficient, , in the bivariate. 

Figure 1 shows the copula densities for two elliptic 

copulas with the same correlation coefficient a 

normal copula and a Student t copula with 3 degrees of 

freedom. 

 

 
Figure 1: The Copula Densities for Two Elliptic 

Copulas with a Correlation Coefficient  = 0.5: (a) 

Normal Copula, and (b) Student t Copula with 3 

Degrees of Freedom. 

 

Student t copulas are particularly interesting 

because of their higher densities in the corners , 

and , as seen on Figure 1b. We illustrate the 

effect of the correlation coefficient on the density 

distribution of a Student copula that links two beta 

marginal distributions. Beta distribution is a flexible 

distribution with density  

 

 (8) 

 

where , and  are shape parameters and the 

normalization constant is the beta function, 

. 

Figure 2 shows an example of two marginal beta 

distributions with parameters , and 

. The copula used to link these marginals is 

the Student t with two degrees of freedom. Figure 3 

shows the contour plots for different values of the 

correlation coefficient, . 

 

 
Figure 2: Two Marginal Beta Distributions with 

Parameters  and  

 

Archimedean copulas often arise in the context of 

the actuarial modeling of sources of risk (Frees and 

Valdez 1998). They are constructed without referring to 

the distribution functions. Instead, the construction is 

done using a continuous strictly decreasing function, 

, called generator, such that 

, and the formula: 

 

 (8) 

 

Where   is the pseudo-inverse of , defined 

as: 

 

 (9) 
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Figure 3: Contour Plot of Student t Copulas with Two 

Degrees of Freedom that Link the Beta Marginals from 

Figure 2 with Different Correlation Coeffieicents: a) 

, b) , c) , and d)  

 

Different generators give rise to different copulas. 

For example, the Clayton copula 

 

 (11) 

 

is obtained from the generator: 

 (12) 

 

Figure 4 shows the contour plots of the Clayton 

copula with parameter  and its density. It is clear 

that Clayton copula has a heavy lower tail, the – 

corner. This copula is very important in the multivariate 

statistics of extremes, because it can be shown that it is 

the limiting copula for the class of the Archimedean 

copulas when the probability level of the quantiles  

approaches zero.  

 

 
Figure 1: Contour Plots of the Clayton Copula with 

Parameter , Panel (a), and its Density, Panel (b). 

 

Another popular example is the Gumbel copula 

 

 (13) 

 

which is obtained from the generator: 

 

 (14) 

 

The Gumbel copula has a density that peaks at the 

 corner and is, in a sense, complementary to 

Clayton copula which density is the highest at the 

 corner. The Gumbel copula is also an example 

of extreme-value copulas, which are derived from 

generalized extreme value distributions. 

 

2.3. Statistical inference and simulation 
The majority of the copula estimation approaches rely 

on the maximum likelihood technique. ML can be 

applied either to the joint estimation of the parameters 

of the marginals and the copula, or the two can be 

treated separately. We follow the latter approach, 

because it gives a better control on the estimation 

process.  The method, called inference function for 
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margin (IFM) (Joe and Xu 1996), is a two-step 

procedure: first, the marginals are fitted to the data, and 

then the copula is estimated conditionally on the fitted 

marginals.  Both the fitting of the marginals and the 

copula involve a choice of the appropriate distributions. 

Fitting univariate distributions to data is a well-studied 

problem (see e. g. Joe and Xu 1996). The identification 

of the appropriate copula is still largely empirical. 

Currently, there is a non-parametric identification 

methodology only for the Archimedean copula class 

(Genest and Rivest 1993, Wang and Wells 2000). 

The best fit for the marginals was found to be the 

gamma distributions. The probability density function 

of the gamma distribution, as parameterized by the 

shape parameter, , and the rate parameter, , is 

given by 

 

 (15) 

 

where the normalization constant is the gamma 

function, . The expression 

is used to signify that the 

random variable  has a gamma distribution with the 

corresponding shape and rate parameters. 

The fitting of the marginal distributions is done in 

two steps. First, using the method of the moments we 

obtain rough estimates for the shape parameter, , and 

the rate parameter, . Then we use the moment 

estimates as a starting point for the maximum-

likelihood estimation step. 

The method of moments is a well-known technique 

for obtaining parameter estimates. The construction is 

done by matching the sample moments, , with the 

corresponding distribution moments , and solving for 

the latter. In the case of the gamma distribution only the 

first two sample moments are needed, , and 

, where is the usual sample mean, 

 is the sample variance and is the sample size. The 

corresponding (central) distribution moments are 

defined as  and for the gamma density, 

Equation 15, the integrations give a mean 

, and a variance 

. The matching step yields 

the following starting estimates: 

 

  (16) 

These initial estimates are used as starting points 

for the ML step, which maximizes the sample 

likelihood.  

The IFM method for a two-parameter marginal 

distribution functions, as in our case, involves a clear 

separation of the marginal parameters   from 

the association parameters . The likelihood function 

for independent observations and a 

density distribution  is defined as 

 

 (17) 

 

Substitution of the gamma density, Equation 15, in 

this expression yields the following form of the log-

likelihood function: 

 

 (18) 

 

For our bivariate case, there are $n$ pairs of 

observations of interruptions 

with severity, , occurring 

at intervals, . We also need to introduce additional 

index, , that enumerates the two marginals, 

. Thus the IFM estimates for the parameters 

of two gamma distributions with densities, , 

and , become 

 

   
 (19) 

 

The second step finds the IFM estimate of the 

association parameter, , using the copula density, , 

as 

 

 
    (20) 

 

The ML estimates, obtained above form the 

foundation of Monte Carlo simulations (Fishman 2003, 

McLeish 2005). The simulation of process interruptions 
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modeled by a specific copula uses Sklar's theorem.  The 

approach relies on some algorithm (e.g. Malevergne and 

Sornette 2005) for generation of two uniform random 

numbers , and , on the interval with a 

dependence structure given by the copula, . In order 

to generate two random variables, , and , from the 

proper joint distribution 

, only the 

application of the generalized inverse is needed: 

, and . 

We apply the steps for modeling and simulation 

described above to the data for excavation process 

interruptions. 

 

3. DATA 
 

The data consists of the durations of the delays and 

interruptions in the stage SW3 of the South Edmonton 

Sanitary Sewer (SESS) tunneling project in the City of 

Edmonton, Canada. The project involves the excavation 

of a 3.5 km long sanitary sewer tunnel using a tunnel 

boring machine (TBM). It started in February 2006 and 

was completed in August 2007. The tunneling 

operations are constantly monitored and the relevant 

data is recorded and collected by a decision support 

system, called COSYE.  

The information about the daily operation of the 

TBM comes from two sources:  one is an engineering 

survey system called TACS (tunnel advance control 

system), and the other is the report prepared at the end 

of the day.   The daily report contains information about 

the number of work shifts per day,  the length of the 

shifts in hours, and the source and the duration of the 

project delays and interruptions.  

 

3.1. TBM operations 
Tunnel construction by means of tunnel boring 

machines is considered to be a state-of-the-art 

technology. The main TBM element is a cylindrical 

rotating cutterhead with a diameter approximately equal 

to that of the tunnel that bores in the earth strata. The 

support for the forward press is provided by gripper 

shoes that engage outwardly with the tunnel wall. The 

support for the wall of the tunnel is provided by one-

meter long cement rings that are placed as the tunnel is 

being dug. Each ring consist of two semi-circular 

segments, called liners.  The front part of the tunnel, 

where the actual excavation takes place is called the 

tunnel face.  

The SW3 tunnel has a relatively small diameter, 2.34 m, 

which to a large extent determines the tunneling 

operations. It has a single-track railway for most of the 

tunnel length, which becomes a double-track only in the 

area close to the entrance shaft. Still, in order to save 

time on loading and unloading operations, two trains 

carry loads between the face of the tunnel and the 

entrance shaft.  

The excavation is a batch process with activities 

naturally partitioned into cycles. The beginning of a 

cycle is marked by the unloading of the liners from the 

train. The unloaded train is positioned behind the TBM 

and excavation begins. The carts of the train collect the 

dirt from the excavation.  After the one-meter length is 

excavated, the train, loaded with dirt, starts traveling 

back towards the entrance shaft, while the TBM begins 

the installation of the liner blocks. The loaded train 

dumps the dirt into a sump pocket, while the first train, 

already loaded with liner blocks, starts traveling 

towards the face of the tunnel. The crane hoists the dirt 

from the sump pocket to the surface, where it is 

stockpiled. Afterward, the crane lowers down the liners 

blocks for the next segment of the tunnel. This 

completes one cycle of tunnel operations. 

 

3.2. Excavation interruptions 
Tunnel construction is a process of several 

interdependent activities, placing the equipment under a 

significant strain. Machine breakdowns and system 

malfunctions are common and often result in 

interruptions of the whole chain of operations. In our 

approach, we disregard the specific source of 

interruption. No distinction between a breakdown in the 

excavation process and an interruption in some of the 

support operations is made. The system of tunneling 

operations is modeled as a whole. The main reason for 

this approach is that we do not have enough data to 

model the elements separately. Another reason is the 

high degree of coupling (correlation) between the 

system elements. The general system approach solves 

both problems.  

Thus, the only assumption we make is that the 

characteristics of the system will remain practically 

constant for the duration of the project until completion. 

For example, no new equipment will be introduced, or 

the load on the existing equipment will remain the 

same. The soil composition profile of the site, which is 

one of the main determinants of the load on the TBM, 

has little variation as inferred on the basis of the 

exploratory borehole samples. Also, experience 

indicates little effect due to seasonal changes.  

Figure 5 shows the interruptions that occurred 

between September 14, 2006 and May 10, 2007. The 

-axis represents the time line measured in work shift 

operating hours.  The breakdown’s severity is measured 

in terms of the work shift time it takes to fix the 

problem. The excavation operations take place during 

work-shifts. Normally there is one 10-hour shift per 

day, with weekends off, but depending on the overall 

progress of the project or external events, the project 

manager can decide on splitting the work into unusual 

8-hour shifts, one or two per work-day. Only the time 

during which the equipment is in operation contributes 

to the probability of breakdowns, thus only work shift 

time is taken into account. The frequency of the 

interruptions is quantified by the interval between two 

successive breakdowns. The severity of the break is 
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measured in terms of the work shift time it takes to fix 

the problems and restart excavation. 

 

4. MODEL 
 

4.1. The COSYE system 
The model of the process interruptions was embedded 

in the general simulation and decision support system 

COSYE (Construction Synthetic Environment). Details 

of the system are given elsewhere (AbouRizk and 

Mohammed 2000). Here we only include a very brief 

general description. 

The COSYE simulation environment is a .NET 

implementation of the HLA (High Level Architecture) 

IEEE standard for modeling and simulation (SISC 

2000). The HLA architecture is a general framework for 

creating complex distributed simulations from relatively 

independent simulation units called federates. It has two 

main elements: the federate interface specification 

(FIS), and the object model template (OMT). FIS 

specifies the communication interface for combining the 

individual simulation components and maintaining the 

interoperability between them, while OMT describes 

the exchanged data. The model execution is provided by 

a run time infrastructure (RTI) server. 

 
Figure 5: Excavation Interruptions Occurring between 

September 14, 2006 and May 10, 2007 

 

The COSYE architecture for the simulation of the 

tunnel boring operations is comprised of several 

federates. One federate simulates the operations at the 

face of the tunnel, which include the excavation and the 

installation of the liners; another federate simulates the 

creation of tunnel sections; a third one handles the 

motion of the trains and the crane operations, etc. (see 

Ourdev et al. 2007) for details). The unexpected 

interruptions due to equipment failures and breakdowns 

are included in the breakdown federate, which 

implements the model described below. Figure 6 shows 

a plot of the breakdown characteristics, tracking the 

severity of the breakdown by the number of hours 

needed for repair and the time interval between 

breakdowns. The top histogram represents the marginal 

distribution of the severity, and the histogram on the 

right represents the marginal of the time interval. 

 

4.2. Copula interruptions simulation 
As pointed out in Section 2, the inference function for 

margin method involves two steps:  first, fitting the 

marginals to the data, and then estimating the copula 

conditionally on the fitted marginals. The first step for 

finding the best fit for the marginals is to calculate the 

starting point for the numerical procedure. The data 

consist of  observations. The sample mean of 

the breakdown severity is  hours and its 

variance is hours. Substitution of these 

values into Equation 4 yields the following starting 

estimates for the parameters of the marginal distribution 

of the severity of the breakdowns: shape parameter, 

, and rate parameter . 

Similarly, we calculate the sample mean of the 

breakdown interval is hours and its 

variance is hours. The substitution of 

these values into Equation 4 yields the following 

starting estimates for the parameters of the marginal 

distribution of the interval between the  breakdowns: 

shape parameter, , and rate parameter 

. 

 

Figure 6: Plot of Breakdown Characteristics 

 

Using the above initial estimates as starting points for 

the MLE procedure, we find that the best fit for the 

severity is given by a gamma distribution with 
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parameters . The 

standard errors of the estimated parameters are: 

, and . For the 

frequency of the breakdowns we find another Gamma 

distribution with parameters 

. The standard error of the 

estimated parameters of this distribution are: 

, and . Figure 7 

shows the histograms of the breakdown severity, and 

the intervals between breakdowns, with the 

corresponding probability densities of the best fits. 

Similarly, Figure 8 shows the empirical cumulative 

distribution functions (ecdf) of the breakdown severity, 

and the intervals between breakdowns, with the 

corresponding cumulative distributions of the best fits. 

We used the Kolmogorov-Smirnov (KS) test to 

ascertain formally the goodness of fit of the above 

distributions. KS test quantifies the difference between 

the ecdf and the theoretical cdf, as shown in Figure 8 to 

formulate a hypothesis testing. The  hypothesis is 

that the data comes from the specified distribution, 

versus the alternative, , that the data is not from that 

distribution. The test statistics are formulated as the 

greatest difference between the ecdf, , and the 

hypothesized theoretical cdf, 
 

 

  ( 21) 

 

 
Figure 7: Histograms of the Breakdown Severity, Panel 

(a), and the Intervals Between Breakdowns, Panel (b), 

with the Corresponding Probability Density of the Best 

Fits 

 

 

Figure 8: Empirical Cumulative Distributions of 

the Breakdown Severity, Panel (a), and the Intervals 

Between Breakdowns, panel (b), with the 

Corresponding Cumulative Distribution of Best Fits 

 

The null hypothesis is rejected if the test statistics 

is greater than some critical value, or, alternatively, if 

the p-value is below the significance level.  

The calculation for the KS test yields a p-value of 

 for the severity of the breakdowns, and a 

p-value of  for their frequency, so for both 

cases we cannot reject the null hypothesis at the 

significance level of . 

Having the best fits for the marginals, next, we proceed 

to find the best fit copula. Based on the observed two-

dimensional data distributions, Figure 6, and the general 

considerations outlined above, we searched for a copula 

from the Student t copula class. We use the estimates of 

the shape parameters for the severity and frequency of 

the interruptions, , and , and the corresponding 

rate parameters, , and , obtained as described 

above as starting points of the maximum likelihood 

method. 

The result of the MLE procedure brings a slight 

modification for the parameter of the marginals. The 

gamma distribution parameters for the severity become 

 with standard errors of 

, and . For the 

gamma distribution parameters for the frequency we 

find with standard 

errors of , and . 

The correlation is estimated as  with a 

standard error of . The contour plot 

for the resulting multivariate distribution is presented in 

Figure 9. 
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Figure 9: Contour Plot for the Multivariate Distribution 

Function Obtained as a Best Fit 

 

With these estimated parameters, we can draw random 

samples from the interruptions distribution, to be used 

for the Monte Carlo simulation. The dots on Figure 10 

represent 350 simulated values for process interruptions 

with severity and frequency obtained from the best fit to 

the observed interruptions as described above. The 

triangles on the figure visualize the actual observed to 

that moment interruptions and serve as additional check 

for the goodness of fit. 
The procedure outlined above, involving the steps of 

fitting to the data and the Monte Carlo simulation, can 

be repeated every time a new interruption is registered 

by the system. Thus, the quality of the statistical fit will 

improve with the increase of the available data point. 

Such an online algorithm also allows the model to adapt 

to changes in the environment, such as equipment wear 

or variation among excavated strata. 

 

 
Figure 10:  Simulated Values for Process Interrruptions 

with Severity and Frequency Obtained from the Best Fit 

to the Observed Interruption 

 

5. CONCLUSIONS 
In this paper we presented the first, to our knowledge, 

application of copulas to a construction project. We 

modeled the process interruptions that occur during a 

tunnel excavation by applying a system approach. In 

order to retain enough data for a meaningful statistical 

inference, we considered the operations comprising the 

excavation process as a system with the interruptions as 

one of the characteristic variables.  

Although copulas are inherently multivariate 

objects, we restricted ourselves to the two-dimensional 

case. This allowed us to preserve the interpretation of 

one of the marginal distributions as the severity of the 

interruptions and the other as the frequency of 

interruptions (respectively: the interval between the 

interruptions). We carefully fitted the marginal 

distributions and the copula to the available data. The 

resulting two-dimensional probability distribution was 

used to generate random samples for a Monte Carlo 

simulation. The simulation results were used to estimate 

the changes in the project schedule and for more 

accurate and adaptive project management. 

Our results showed the power of the copula 

approach for modeling and simulating uncertain 

dependent variables. The ease with which the copulas 

fit into the framework of Monte Carlo indicate a much 

broader application area, which would include more 

adequate risk modeling and risk management that does 

not rely on the assumption of normality. 

 

APPENDIX A 
The purpose of this appendix is to serve as an easy 

reference for comparison between some properties of 

the two-dimensional probability distributions and the 

copulas. The probabilistic approach to modeling 

uncertain quantities is to treat them as random variables 

(r. v.). Random variables, generally speaking, consist of 

two parts: the expected (most often occurring) value of 

the variable, and a measure of how uncertain we are 

about this expected value. The natural representation of 

a r. v., ,  discrete or continuous, is its cumulative 
distribution function (cdf), defined as: 

 

 (A1) 

 

For continuous random variable there is an 

alternative presentation, the probability density function 

(pdf), defined as the first derivative of cdf, i.e. 

 

  (A2) 

 

For a given pdf, $f_X(x)$, the fundamental 

theorem of calculus allows calculating the 

corresponding cdf: 

 

  (A3) 

 

It is very useful to introduce also the quantile 

function, which is the generalized inverse of the cdf, 

defined as: 

 

 (A4) 

 

For strictly increasing , the quantile function 

 

becomes the ordinary inverse. 

For a pair r. v., , the dependence is 

completely described by their joint cdf defined as: 
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 (A5) 

 

The equivalent probability model for the r. v.  

and  is given by their joint pdf, defined 

as: 

 (A6) 

 

The relation between the joint cdf and the joint pdf, 

corresponding to Equation 12 is given by: 

 

 (A7) 

 

Integration over one of the r. v. yields the marginal 
distribution of the other, e.g. 

 

  (A8) 

 

Two random variables, X and Y, are independent if 
and only if 

 

 (A9) 

 

The same proposition also holds in terms of cdfs, 

i.e. 

 

 (A10) 
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