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ABSTRACT 

Necessary and sufficient conditions for the pointwise 

completeness and pointwise degeneracy of the standard 

and positive hybrid linear systems described by the 

general model are established. It is shown that the 

standard general model is always pointwise complete 

and it is not pointwise degenerated and the positive 

general model is pointwise complete if and only if its 

matrix A2 is diagonal. 
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1. INTRODUCTION 

In positive systems inputs, state variables and 

outputs take only non-negative values. Examples of 

positive systems are industrial processes involving 

chemical reactors, heat exchangers and distillation 

columns, storage systems, compartmental systems, 

water and atmospheric pollution models. A variety of 

models having positive linear behavior can be found in 

engineering, management science, economics, social 

sciences, biology and medicine, etc. 

Positive linear systems are defined on cones and not on 

linear spaces. Therefore, the theory of positive systems 

is more complicated and less advanced. An overview of 

state of the art in positive systems theory is given in the 

monographs (Farina and Rinaldi 2000; Kaczorek 2002). 

The most popular models of two-dimensional (2D) 

linear systems are the discrete models introduced by 

Roesser (1975), Fornasini and Marchesini (1976, 1978), 

and Kurek (1985). The models have been extended for 

positive systems. An overview of positive 2D system 

theory has been given in the monograph (Kaczorek 

2002). 

A dynamical system described by homogenous equation 

is called pointwise complete if every given final state of 

the system can be reached by suitable choice of its 

initial state. A system which is not pointwise complete, 

is called pointwise degenerated. 

The pointwise completeness and pointwise degeneracy 

belong to the basic concepts of the modern control 

theory of 2D linear systems and they play important 

role specially in positive 2D linear systems. 

The pointwise completeness and pointwise degeneracy 

of linear continuous-time system with delays have been 

investigated in (Olbrot 1972; Popov 1972), of discrete-

time and continuous-time systems of fractional order in 

(Busłowicz 2008; Kaczorek and Busłowicz 2009) and 

of positive discrete-time systems with delays in 

(Busłowicz, Kociszewski and Trzasko 2006; 

Choundhury 1972). The pointwise completeness of 

linear discrete-time cone-systems with delays has been 

analyzed in (Popov 1972). The pointwise completeness 

and pointwise degeneracy of standard and positive 

linear systems with state-feedbacks have been 

investigated in (Kaczorek 2010a; Kaczorek 2009). 

The pointwise completeness and pointwise degeneracy 

of 2D standard and positive Fornasini-Marchesini 

models have been addressed in (Kaczorek 2010b). 

Positive 2D hybrid linear systems have been introduced 

in (Kaczorek 1998; Kaczorek 2007; Kaczorek 2002) 

and positive fractional 2D hybrid linear systems in 

(Kaczorek 2007). Comparison of different method of 

solution to 2D linear hybrid systems has been given in 

(Kaczorek, Marchenko and Sajewski 2008). Realization 

problem for positive 2D hybrid systems has been 

addressed in (Kaczorek 2008b). 

 In this paper the pointwise completeness and 

pointwise degeneracy of standard and positive hybrid 

linear systems described by the general model will be 

addressed.  

The structure of the paper is the following. In section 2 

the pointwise completeness and the pointwise 

degeneracy of the standard general model is 

investigated. Necessary and sufficient conditions for the 

positivity and the pointwise completeness, pointwise 

degeneracy of the general model are established in 

section 3. Concluding remarks are given in section 4.  

In the paper the following notation will be used. 

The set of mn ×  real matrices will be denoted by 
mn×

ℜ and 1×
ℜ=ℜ

nn . The set of mn ×  real matrices 

with nonnegative entries will be denoted by mn×

+
ℜ and 

1×

++
ℜ=ℜ

nn . The nn ×  identity matrix will be denoted 

by In and the transpose will be denoted by T. 
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2. POINTWISE COMPLETENESS AND 

POINTWISE DEGENERACY OF STANDARD 

GENERAL MODEL 

 Consider the autonomous general model 
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where 
t

itx
itx

∂

∂
=

),(
),(& , nitx ℜ∈),( , mitu ℜ∈),( , 

pity ℜ∈),(   are the state, input and output vectors. 

Boundary conditions for (2.1) are given by 

 

ixix =),0(1 , 
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∈ Zi  and 10 )0,(,)0,( tt xtxxtx == & , 
+

ℜ∈t (2.2) 

 

Definition 2.1. The general model (2.1) is called 

pointwise complete at the point (tf, q) if for every final 

state n

fx ℜ∈  there exist boundary conditions (2.2) 

such that ff xqtx =),( . 

Theorem 2.1. The general model (2.1) is always 

pointwise complete at the point (tf, q) for any 0>ft  

and q = 1. 

Proof. From (2.1) for i = 0 we have 

 

)0,()1,()1,( 2 tFtxAtx +=&                 (2.3) 

where 

 

110010 )0,()0,()0,( tt xAxAtxAtxAtF +=+= & .   (2.4) 

 

Assuming 00 =tx , 01 =tx  we obtain F(t,0) = 0 and 

from (2.3) 

 

)1,0()1,( 2 xetx
tA
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Substituting t = tf  and q = 1 we obtain 

 

)1,0(2 xex ftA

f =                       (2.6) 

and 

  f

tA
xex f2)1,0(

−
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Therefore, for any final state xf there exist boundary 

conditions 00 =tx , 01 =tx  and f

tA
xex f2

1

−
=  such that 

ff xtx =)1,(  since the matrix ftA
e 2−

 exists for any 

matrix A2 and any 0>ft . □ 

From theorem 2.1 we have the following corollaries. 

Corollary 2.1. Any general model (2.1) is pointwise 

complete at the point (tf, 1) for arbitrary 0>ft . 

Corollary 2.2. The pointwise completeness of the 

general model at the point (tf, 1) is independent of the 

matrices A0 and A1 of the model. 

Definition 2.2. The general model (2.1) is called 

pointwise degenerated at the point (tf, q) in the direction 

v if there exist a nonzero vector nv ℜ∈  such that for all 

boundary conditions (2.2) the solution of the model for  

t = tf, i = q satisfies the condition 0),( =qtxv f

T . 

Theorem 2.2. The general model (2.1) is not pointwise 

degenerated at the point (tf, 1) for any 0>ft . 

Proof. Using the solution of (2.3)  
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we obtain 

 

∫
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where F(t,0) is defined by (2.4). From (2.8b) it follows 

that does not exist a non-zero vector nv ℜ∈  such that 

for all boundary conditions (2.2) 0)1,( =f

T txv  since the 

matrix ftA
e 2  is nonsingular for every matrix A2 and 

0>ft . □ 

Example 2.1. Consider the general model (2.1) with the 

matrices 
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Find the boundary conditions (2.2) at the point 

)1,1(),( =qt f  for 







=

3

2
fx . 

Taking into account that the eigenvalues of A2 are 

2,1 21 −=−= λλ  and using the Sylvester formula we 

obtain 
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from (2.7) we have the desired boundary conditions 
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and 0)0,( =tx , 0)0,( =tx& , 0≥t . 

The above conditions can be extended as follows. 

From (2.1) for i = 1 we have 

 

)1,()2,()2,( 2 tFtxAtx +=&               (2.12) 
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where 

)1,()1,()1,( 10 txAtxAtF &+= .             (2.13) 

 

Substitution of (2.3) and (2.5) for F(t,0) = 0 into (2.13) 

yields 

 

)1,0()()1,()()1,( 2

210210 xeAAAtxAAAtF
tA

+=+= . (2.14) 

 

Assuming x(0,1) = 0  we obtain F(t,1) = 0 and from 

(2.12) 

)2,0()2,( 2 xetx
tA

=                      (2.15) 

 

Continuing this procedure for i = 2,…,q–1 we obtain the 

following theorem, which is an extension of Theorem 

2.1. 

Theorem 2.3. The general model (2.1) is always 

pointwise complete at the point (tf, q), 0>ft , 

,...}2,1{=∈ Nq  for any matrices Ak, k = 0,1,2.  

Theorem 2.2 can be also extended for any point (tf, q). 

 

3. POINTWISE DEGENERACY AND 

POINTWISE DEGENERACY OF THE 

POSITIVE GENERAL MODEL  

Definition 3.1. The model (2.1) is called positive if 
nitx
+

ℜ∈),( , 
+

ℜ∈t , 
+

∈ Zi  for any boundary 

conditions  
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Theorem 3.1. The general model (2.1) is positive if and 

only if  

nMA ∈2                             (3.2a) 

nnnn AAAAAA ×

+
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+
ℜ∈+=ℜ∈ 21010 ,,        (3.2b) 

 

where Mn is the set of nn ×  Metzler matrices (with 

nonnegative off-diagonal entries). 

Proof. Necessity. Necessity of nnA ×

+
ℜ∈0  and 

nnA ×

+
ℜ∈1  follows immediately from (2.4) since 

ntF
+

ℜ∈)0,( , 
+

ℜ∈t  and xt0, xt1 are arbitrary. From 

(2.5) it follows that nMA ∈2  since nntA
e ×

+
ℜ∈2  only if 

A2 is a Metzler matrix, ntx
+

ℜ∈)1,( , 
+

ℜ∈t  and x(0,1) is 

arbitrary. From (2.12) it follows that ntF
+

ℜ∈)1,( , 

+
ℜ∈t  for any nx

+
ℜ∈)1,0(  only if 

nnAAAA ×

+
ℜ∈+= 210 . The proof of sufficiency is 

similar to the one given in (Kaczorek 2002: pp.255). □ 

Definition 3.2. The positive general model (2.1) is 

called pointwise complete at the point (tf, q) if for every 

final state n

fx
+

ℜ∈  there exist boundary conditions 

(3.1) such that 

 

ff xqtx =),( , 0>ft , ,...}2,1{=∈ Nq .         (3.3) 

 

It is assumed that xt0 = 0 and xt1 = 0 for 
+

ℜ∈t . 

Theorem 3.2. The positive general model (2.1) is 

pointwise complete at the point (tf, 1) if and only if the 

matrix A2 is diagonal. 

Proof. In a similar way as in proof of Theorem 2.1 we 

may obtain the equation (2.7). It is well-known 

(Kaczorek 2002) that nntA
e ×

+
ℜ∈2 , 

+
ℜ∈t  if and only if 

A2 is a Metzler matrix. Hence nntA fe ×

+

−
ℜ∈

2  if and only 

if A2 is a diagonal matrix. In this case for arbitrary 
n

fx
+

ℜ∈  if and only if nx
+

ℜ∈)1,0( . □ 

In a similar way as for standard general model we can 

prove the following theorem. 

Theorem 3.3. The positive general model (2.1) is 

pointwise complete at the point (tf, q) 0>ft , 

,...}2,1{=∈ Nq  if and only if the matrix A2 is diagonal. 

From Theorem 3.3 we have the following corollary. 

Corollary 3.1. The pointwise completeness of the 

positive general model (2.1) is independent of the 

matrices A0 and A1 of the model. 

Definition 3.3. The positive general model (2.1) is 

called pointwise degenerated at the point (tf, q) if there 

exists at least one final state n

fx
+

ℜ∈  such that 

ff xqtx ≠),(  for all nix
+

ℜ∈),0(  and 0)0,( =tx , 

0)0,( =tx& , 
+

ℜ∈t . 

Theorem 3.4. The positive general model (2.1) is 

pointwise degenerated at the point (tf, q) if the matrix 

nMA ∈2  is not diagonal. 

Proof. In a similar way as in proof of Theorem 2.1 we 

may obtain the equality (2.7) which can be satisfied for 
n

fx
+

ℜ∈  and nx
+

ℜ∈)1,0(  if and only if the Metzler 

matrix A2 is diagonal. The proof for q > 1 is similar. □ 

These considerations can be easily extended for 
nix
+

ℜ∈),0( , ntx
+

ℜ∈)0,(  and ntx
+

ℜ∈)0,(& , 
+

ℜ∈t . 

Example 3.1. Consider the general model (2.1) with the 

matrices 
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The model is positive since the matrices A0 and A1 have 

nonnegative entries and  
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The matrix A2 is diagonal and the positive model with 

(3.4) by Theorem 3.2 is pointwise complete at the point 

(tf, 1), 0≥ft . Using (2.7) we obtain 
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for any 2

+
ℜ∈fx  and 

+
ℜ∈ft . 

Example 3.2. Consider the general model (2.1) with the 

matrices (2.9). The model is positive since A0 and A1 

have nonnegative entries, nMA ∈2   and  
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Let 
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fx . Using (2.10) and (2.7) we obtain the 

vector 
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with nonnegative second component for 0>ft . 

Therefore, the model is pointwise degenerated at the 

point (tf, 1). The same result follows from Theorem 3.4 

since the matrix A2 is not diagonal. Note that the vector 

x(0,1) given by (2.11) for T

fx ]32[=  has positive 

components. 

 

4. CONCLUDING REMARKS 

 The pointwise completeness and pointwise 

degeneracy of the standard and positive hybrid linear 

systems described by the general model have been 

addressed. Necessary and sufficient conditions for the 

pointwise completeness and pointwise degeneracy have 

been established. It has been shown that the standard 

general model (2.1) is always pointwise complete at the 

point (tf, q) for any tf and 1≥q  and it is not pointwise 

degenerated at any point. Necessary and sufficient 

conditions for the positivity of general model (2.1) have 

been established. The positive general model is 

pointwise complete at the point (tf, q) for t > 0, 1≥q  if 

and only if the Metzler matrix A2 of the model is 

diagonal. The considerations have been illustrated by 

numerical examples. These considerations can be 

extended for linear hybrid systems with delays. An 

extension of these considerations for fractional hybrid 

systems is an open problem. 
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