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ABSTRACT 
This study evaluates a number of methods in 

forecasting lumpy demand – single exponential 

smoothing, Croston’s method, the Syntetos-Boylan 

approximation, an optimally-weighted moving average, 

and neural networks (NN).  The first three techniques 

are well-referenced in the intermittent demand 

forecasting literature, while the last two are not 

traditionally used.  We applied the methods on a time 

series dataset of lumpy demand.  We found a simple 

NN model to be superior overall based on several scale-

free forecast accuracy measures.  Various studies have 

observed that demand forecasting performance with 

respect to standard accuracy measures may not translate 

into inventory systems efficiency.  We simulate on the 

same dataset a periodic review inventory control system 

with forecast-based order-up-to levels.  We analyze 

resulting levels of on-hand inventory, shortages, and fill 

rates, and discuss our findings and insights. 

 

Keywords:  lumpy demand forecasting, neural 

networks, inventory control, simulation 

 

1. INTRODUCTION 
When there are intervals with no demand occurrences 

for an item, demand is said to be intermittent.  
Intermittent demand is also lumpy when there are large 

variations in the sizes of actual demand occurrences.  

Intermittent or lumpy demand has been observed in 

both manufacturing and service environments 

(Willemain, Smart, Schockor, and DeSautels 1994; 

Bartezzaghi, Verganti, and Zotteri 1999; Syntetos and 

Boylan 2001, 2005; Ghobbar and Friend 2002, 2003; 

Regattieri, Gamberi, Gamberini, and Manzini 2005; 

Teunter, Syntetos, and Babai 2010).  In proposing a 

theoretically coherent scheme for categorizing demand 

into four types (smooth, erratic, intermittent, and 

lumpy), Syntetos, Boylan, and Croston (2005) suggest 

49.02 CV  and 32.1ADI  for characterizing lumpy 

demand (where 2CV  represents the squared coefficient 

of variation of demand sizes and ADI is the average 

inter-demand interval). 

We apply a number of forecasting methods to actual 

demand data from an electronic components distributor 

operating in Monterrey, Mexico, involving 24 stock 

keeping units (SKUs) each with 967 daily demand 

observations exhibiting a wide range of demand values 

and intervals between demand occurrences.  Values of 
2CV range between 9.84 and 45.93 while values of ADI 

range between 3.38 and 5.44 (see Table 1) – all well 

over the cutoffs for lumpy demand as specified above. 

 

Table 1: Basic Dataset Statistics 
Series 1 2 3 4 5 6

% Nonzero Demand 30.4 32.8 32.7 34.1 35.7 36.2

Mean Demand 251.02 262.08 271.60 274.43 278.01 324.84

Std Dev 1078.80 985.19 1305.36 1221.31 1191.04 1387.20

CV 2
18.47 14.13 23.10 19.81 18.35 18.24

ADI 4.51 4.25 4.78 3.97 3.77 3.73

Series 7 8 9 10 11 12

% Nonzero Demand 32.4 33.3 34.4 33.8 35.0 35.2

Mean Demand 237.09 274.31 253.77 346.04 303.11 321.61

Std Dev 743.88 1134.55 959.19 1710.19 1229.80 1149.70

CV 2
9.84 17.11 14.29 24.43 16.46 12.78

ADI 5.21 4.73 4.03 4.83 5.14 4.83

Series 13 14 15 16 17 18

% Nonzero Demand 33.6 34.1 35.2 35.0 33.8 36.3

Mean Demand 299.15 296.07 288.78 305.81 228.74 352.32

Std Dev 1425.87 1321.28 1090.65 1257.98 889.07 1480.69

CV 2
22.72 19.92 14.26 16.92 15.11 17.66

ADI 5.44 4.68 4.39 4.41 4.30 4.09

Series 19 20 21 22 23 24

% Nonzero Demand 38.1 34.7 35.8 33.0 35.7 32.7

Mean Demand 322.98 355.48 328.70 394.84 314.33 410.00

Std Dev 1054.75 1609.05 1390.67 2675.95 1438.57 1929.56

CV 2
10.66 20.49 17.90 45.93 20.95 22.15

ADI 3.90 4.86 4.09 4.37 3.38 3.39  
 

Seven forecasting methods were initially 

evaluated, namely: 

 

 single exponential smoothing (SES) 

 Croston’s method 

 Croston’s method with two separate smoothing 

constants 

 the Syntetos-Boylan approximation 

 the Syntetos-Boylan approximation with two 

separate smoothing constants 

 a five-period weighted moving average with 

optimized weights 

 neural networks. 
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1.1 Well-Referenced Methods for Forecasting 
Lumpy Demand 
Croston (1972) noted that SES, frequently used for 

forecasting in inventory control systems, has a bias that 

places the most weight on the most recent demand 

occurrence.  He proposed a method of forecasting 

intermittent demand using exponentially weighted 

moving averages of nonzero demand sizes and the 

intervals between nonzero demand occurrences to 

address the bias problem.  Leading application software 

packages for statistical forecasting incorporate 

Croston’s method (Syntetos and Boylan 2005; Boylan 

and Syntetos 2007). 

While Croston assumed a common smoothing 

constant , Schultz (1987) suggested that separate 

smoothing constants, i  and s , be used for updating 

the inter-demand intervals and the nonzero demand 

sizes, respectively.  Eaves and Kingsman (2004) 

provide a clear formulation of Croston’s method with 

‘two alpha values’.  In the current study, for each 

demand series, we identify the combination of two 

alphas corresponding to the best forecast in the 

calibration sample.  We then apply the best combination 

of i  and s  for each series to forecast the test sample.  

Syntetos and Boylan (2001, 2005) reported an 

error in Croston’s mathematical derivation of expected 

demand, leading to a positive bias.  Syntetos and 

Boylan (2005) proposed what is now referred to in the 

literature as the Syntetos-Boylan approximation (SBA) 

– which involves multiplying Croston’s estimator of 

mean demand by a factor of  21 i , where i  is the 

exponential smoothing constant used in updating the 

inter-demand intervals.   

We note, however, that Syntetos and Boylan 

(2005) used the same smoothing constant for updating 

demand sizes as for updating inter-demand intervals in 

applying SBA to monthly demand histories over a two-

year period of 3000 stock-keeping units (SKUs) in the 

automotive industry.  As we do with Croston’s method 

in the current study, we likewise consider SBA with 

separate smoothing constants, i  and s , for updating 

the inter-demand intervals and the nonzero demand 

sizes.  Other than Schultz (1987), only Syntetos, Babai, 

Dallery, and Teunter (2009) and Teunter, Syntetos, and 

Babai (2010) have to-date reported using two separate 

smoothing constants on inter-demand intervals and 

demand sizes in empirical investigation – in the two 

latter studies, applied to the SBA demand estimator.   

The use of low  values in the range of 0.05-0.20 

has been recommended in the literature on lumpy 

demand (Croston 1972; Johnston and Boylan 1996).  

Syntetos and Boylan (2005) used the four  values of 

0.05, 0.10, 0.15, and 0.20 for the SES, Croston’s, and 

SBA methods.  We use these same four values in the 

current study. 

 
 

1.2 ‘Non-Traditional’ Methods for Forecasting 
Lumpy Demand 
Sani and Kingsman (1997) observed that less 

sophisticated (e.g., moving average) methods can prove 

superior to Croston’s method in practice.  Eaves (2002) 

also found that forecasting methods simpler than 

Croston’s or SBA method can provide better forecasting 

results for intermittent and slow-moving demand.  

Regattieri, Gamberi, Gamberini, and Manzini (2005) 

studied monthly demand data pertaining to spare parts 

for Alitalia’s fleet of Airbus A320 aircraft in 1998-

2004.  They found weighted moving average (WMA) 

forecasts, based on selecting the best sets of weights for 

three, five, and seven-month periods, to perform 

generally better than Croston’s, SES, and other 

smoothing methods (SBA was not considered). 

In the current study, we applied a five-day 

weighted moving average method with optimized 

weights (WMA5) – to correspond to weekly demand 

over a five-day work week.  The method averages the 

last five lagged values of lumpy demand through 

optimized weights. The lagged value 1 means the 

demand during the last time period and so on.  To 

determine the optimized weights, the method runs a 

standardized linear ordinary least square (OLS) 

regression on current period demand as target variable 

and the five most recent lagged period demands as 

predictor variables. The beta values of the lagged 

demands are normalized so that the values add up to 

1.000. The normalized values (see Table A.1 in the 

Appendix) are used as the moving average weights.  

The method determines the weights from calibration 

data (as discussed in Section 2.1) only. 

Researchers have used neural network (NN) 

models in various forecasting applications.  NN models 

can provide reasonable approximations to many 

functional relationships (e.g., White 1992; Elman and 

Zipser 1987), with flexibility and nonlinearity cited as 

their two most powerful aspects.  Hill, O’Connor, and 

Remus (1996) compared forecasts produced by NN 

models against forecasts generated using six time series 

methods from a systematic sample of 111 of the 1001 

time series in a well known ‘M-competition’ 

(Makridakis, Andersen, Carbone, Fildes, Hibon, 

Lewandowski, Newton, Parzen, and Winkler 1982).  

They found NN forecast models to be significantly 

more accurate than those of the six traditional time 

series models for monthly and quarterly demand data 

across a number of selection criteria.  Very few 

previous studies have used NN to forecast irregular or 

lumpy demand (e.g., Carmo and Rodrigues 2004; 

Gutierrez, Solis, and Mukhopadhyay 2008).  

We used a multi-layered perceptron (MLP) trained 

by a back-propagation (BP) algorithm (Rumelhart, 

Hinton, and Williams 1988).  We followed guidelines 

proposed by a fairly recent study on MLP architecture 

selection (Xiang, Ding, and Lee 2005) which suggests 

that one should first try a three-layered MLP.   One 

should also start with the minimum number of hidden 

units required to approximate the target function.  
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Functions learned by a minimal net over calibration 

sample points work well on new samples.  We used 

three layers of network: 

  

 one input layer for input variables 

 one hidden unit layer 

 one output layer of one unit. 

 

We chose three hidden units, which is a reasonably low 

number required to approximate any complex function.  

The network connects all hidden nodes with the input 

nodes representing the last time period’s demand value 

and cumulative number of time periods with zero 

demand.  The output node representing the current 

period’s demand value connects to all hidden nodes.  

We used 0.1 for the learning rate and 0.9 for the 

momentum factor, as recommended by seminal research 

(Rumelhart, Hinton, and Williams 1988). 

NN usually can approximate any function with the 

proper choice of parameters and a specific network 

structure (Lippmann 1987).  Eventually, after a repeated 

change of network structure and parameter values, one 

can find a “successful” combination of calibration and 

validation samples which provides a false impression of 

model generalization.  In this study, we choose a simple 

network structure with the same parameter values 

across all 24 lumpy demand series.  We validate once 

and report the results without going back to improve 

upon them.  If, accordingly, the NN model with this 

restriction outperforms other methods on the test 

sample, we are able to conclude the model to be 

superior.  We do not change the parameter values of NN 

across all the 24 time series.  On the other hand, we 

relax the restriction on other methods by trying out 

different parameter values as recommended in the 

literature. 

 

2. DATA SET PARTITIONING AND 
FORECAST ACCURACY MEASURES 

 
2.1  Data Set Partitioning 
We initially used the first 624 observations of the 967 

daily demand observations in each of the 24 time series 

to “train” and validate the models (the training sample).  

We then tested, at each of the four values of , the other 

forecasting models under consideration on the final 343 

observations (the test sample).  This generated an 

approximately 65:35 (65% training data and 35% test 

data) partitioning.  Researchers typically use an 80:20 

split to validate models (Bishop 1995).  To compare the 

forecasting methods further we have also ran the models 

on 50:50 and 80:20 data partitions.  Due to space 

limitations, however, we report results only for the 

65:35 data partitioning in this paper. 

 
2.2  Forecast Accuracy Measures 
Mean absolute percentage error (MAPE) is the most 

widely used accuracy measure for ratio-scaled data.  

The traditional definition of MAPE involves terms of 

the form 
tt AE  (where At and Et, respectively, 

represent actual demand and forecast error in period t).  
Since lumpy demand involves periods with zero 

demands, the traditional MAPE definition fails.  We 

used an alternative specification of MAPE as a ratio 

estimate (Gilliland 2002), which guarantees a nonzero 

denominator: 

 

100MAPE
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Willemain, Smart, Schockor, and DeSautels (1994) 

conducted a study comparing performance of SES and 

Croston’s method in intermittent demand forecasting, 

using (i) MAPE based on the above ratio estimate, (ii) 

median absolute percentage error (MdAPE), (iii) root 

mean squared error (RMSE), and (iv) mean absolute 

deviation (MAD) as forecast accuracy measures.  

However, they reported only MAPEs, noting that 

relative results were the same for all four measures.  

Eaves and Kingsman (2004) applied MAPE, RMSE, 

and MAD in comparing the performance of several 

methods (SES, Croston’s, SBA, 12-month simple 

moving average, and the previous year’s simple 

average) in forecasting demand for spare parts for in-

service aircraft of the Royal Air Force (RAF) of the 

UK.  Using demand data over a six-year period for 

18750 SKUs randomly selected out of some 685000 

line items, they found SBA to provide the best results 

overall using MAPE, but the 12-month simple moving 

average yielded the best MADs overall.       

Armstrong and Collopy (1992) did an extensive 

study for making comparisons of errors across time 

series.  For selecting the most accurate method, they 

recommend the median RAE (MdRAE) when few time 

series are available.  The relative absolute error (RAE) 

is calculated for a given series, at a given time t, by 

dividing the absolute error under method m, 
ttm AF ,

, 

by the corresponding absolute error for the random 

walk, 
ttrw AF ,

.  We compute the random walk 

forecast by simply adding one unit to the actual demand 

in the immediately preceding period.  Hence, 

 

  ttttmt AAAF   1RAE 1,
.  (2)

  

MdRAE is simply the median of all tRAE  values 

across the entire test sample. 

Syntetos and Boylan (2005) employed two 

accuracy comparison measures: relative geometric root-

mean square error (RGRMSE) and percentage best 

(PB).  The first measure is as follows: 
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where the symbols Am,t and Fm,t denote actual demand 

and forecast demand, respectively, under forecasting 

method m at the end of time period t.  PB, another scale-

free accuracy measure, is the percentage of time periods 

that one method outperforms all the other methods.  We 

use absolute error as the criterion to assess alternative 

methods’ performance under the PB approach.  

Gutierrez, Solis, and Mukhopadhyay (2008) used 

MAPE as well as RGRMSE and PB to assess 

performance of the SES, Croston’s, SBA, and NN 

forecasting methods.     

In the current study, we assess and compare the 

performance of the seven forecasting methods – 

specified in Section 1 – as applied to the test samples in 

the 24 time series in the dataset, using four scale-free 

error criteria: (i) MAPE, (ii) MdRAE, (iii) RGRMSE, 

and (iv) PB.  We used SAS software release 9.1 for our 

empirical investigations of both forecasting 

performance (reported in Section 3) and inventory 

control performance (reported in Section 4). 

 

3. EMPIRICAL INVESTIGATION OF 
FORECASTING PERFORMANCE 

Like Syntetos and Boylan (2005), Gutierrez, Solis, and 

Mukhopadhyay (2008) applied four  values: 0.05, 

0.10, 0.15, and 0.20.  The latter study found the SES, 

Croston’s and SBA methods to work best with  = 0.05 

for all 24 time series considered, which appears 

consistent with the lumpiness observed in the dataset. 

For the Croston’s and SBA methods with separate 

smoothing constants, we identified in the current study 

– for each demand series – the combination of i  and 

s  corresponding to the best forecast in the training 

sample, based upon a minimum MAPE criterion.  We 

then use the best combination for each series (see Table 

A.2 in the Appendix) to generate forecasts on the test 

sample.  (Eaves and Kingsman (2004), in applying the 

SES, Croston’s and SBA methods, likewise optimized 

smoothing constants using MAPEs only, but cautioned 

that the smoothing methods may yield better results if 

smoothing constants were optimized using a different 

forecast accuracy criterion.) 

Figure 1 shows the relative performance of all the 

seven methods with respect to MAPE under the 65:35 

data partitioning.  NN MAPEs are superior for 20 of the 

24 time series.  WMA5 is clearly the worst performer in 

all series.  For four series (4, 22, 23, and 24), NN, 

Croston, SBA, and SES perform quite closely.  If 

MAPE is the criterion to select the best method, a 

simple NN model is clearly the best performing method 

overall. 

In the current study, we did not observe any 

substantial improvement in forecast accuracy arising 

from using separate smoothing constants, i  and s .  

To execute forecasting and demand management, 

calibration of two-alpha combinations will add more 

complexity to the process.  In light of practical 

implications, we decided to drop the two-alpha Croston 

and SBA methods.  Moreover, because the SBA method 

is consistently superior to Croston’s method, we 

proceed to investigate only four methods – SES, SBA, 

WMA5 and NN. 

 

 
Figure 1: Comparison of MAPEs 

 

Figure 2 shows the performance of the four 

remaining methods with respect to PB.  NN is again the 

superior method overall, while WMA5 ranks second. 

 

 
Figure 2: Comparison of Percentage Bests 

 

Table 2 shows, for the 65:35 data partitioning, the 

best performing method across the 24 series for each 

accuracy measure.  NN is the best method overall with 

respect to MAPE, MdRAE, and PB, while NN and 

WMA5 perform equally well with respect to RGRMSE.  

However, WMA5 performs poorly when MAPE is the 

criterion for selecting the best method.  The other two 

methods, SES and SBA, which were developed and 

heavily researched for forecasting of intermittent/lumpy 

demand, did not perform as well as NN and WMA5.   

 

4. EMPIRICAL INVESTIGATION OF 
INVENTORY CONTROL PERFORMANCE 

Demand forecasting and inventory control have 

traditionally been examined independently of each other 

(Tiacci and Saetta 2009; Syntetos, Babai, Dallery, and 

Teunter 2009).  In reality, demand forecasting 

performance with respect to standard accuracy measures 

may not translate into inventory systems efficiency 

(Syntetos, Nikolopoulos, and Boylan 2010).  In an 

Page 4



intermittent demand setting, a periodic review inventory 

control system has been recommended (Sani and 

Kingsman 1997; Syntetos, Babai, Dallery, and Teunter 

2009).  A number of recent studies that address both 

forecasting and inventory control performance for 

intermittent demand (e.g., Eaves and Kingsman 2004; 

Syntetos and Boylan 2006; Syntetos, Babai, Dallery, 

and Teunter 2009; Syntetos, Nikolopoulos, and Boylan 

2010; Teunter, Syntetos, and Babai 2010) have 

employed the order-up-to (T,S) periodic review system 

(see, for example, Silver, Pyke, and Peterson 1998) – 

where T and S represent the review period and order-up-

to level, respectively. 

 

Table 2: Best Method by Forecast Accuracy Measure 

MAPE MdRAE RGRMSE PB

1 NN NN WMA NN

2 NN NN NN NN

3 NN NN WMA NN

4 NN NN WMA NN

5 NN NN NN NN

6 NN NN NN NN

7 NN NN WMA NN

8 NN NN NN NN

9 NN NN NN NN

10 NN NN NN NN

11 NN NN NN NN

12 NN NN NN NN

13 NN NN WMA WMA

14 NN NN WMA WMA

15 NN NN NN NN

16 NN NN NN WMA

17 NN NN NN NN

18 NN NN NN NN

19 NN NN NN NN

20 NN NN WMA NN

21 NN NN WMA WMA

22 SBA NN WMA WMA

23 NN WMA WMA WMA

24 SBA WMA WMA WMA

Overall NN NN N/W NN

Series

65:35 Data Partitioning

 
 

In the study by Eaves and Kingsman (2004) earlier 

discussed in Section 2.1, simulations of a (T,S) system 

were performed on actual demand data, aggregated 

quarterly, for the 18750 randomly selected SKUs.  

Forecast-based order-up-to levels S were determined as 

the product of the forecast demand per unit of time and 

the “protection interval”, T+L (where L is the reorder 

lead time).  Implied average stockholdings were 

calculated using a backward-looking simulation 

assuming a common fill rate (or percentage of total 

demand filled by on-hand inventory) of 100%.  SBA 

yielded the lowest average stockholdings among the 

five forecasting methods evaluated. 

Syntetos and Boylan (2006) used a dataset 

consisting of monthly demand observations over a two-

year period for 3000 SKUs in the automotive industry.  

They modeled demand over T+L in a (T,S) system by 

way of a negative binomial distribution – a compound 

Poisson distribution whose variance is greater than its 

mean.  Two target fill rates were considered: 90% and 

95%.  Using two cost policies in simulation 

comparisons, they demonstrated the superior inventory 

control performance of the SBA forecasting method 

relative to Croston’s, SES, and 13-month simple 

moving average methods. 

Two recent studies (Syntetos, Babai, Dallery, and 

Teunter 2009; Teunter, Syntetos, and Babai 2010) used 

a large dataset from the RAF of the UK, involving 84 

monthly observations of demand for 5000 SKUs over 

seven years (1996-2002).  The first 24 observations of 

each time series were used to initialize estimates of 

demand level and variance, and the second 24 

observations were used to optimize separate smoothing 

constants, 
i  and 

s , on inter-demand intervals and 

demand sizes, respectively.  Simulation of inventory 

control performance in applying the SBA method was 

then performed over the final 36 observations.  In the 

2009 article, the authors noted that in many 

intermittent-demand situations the ADI is larger than the 

lead time (or the lead time plus one review period).  

They accordingly excluded those SKUs in the RAF 

dataset with ADI less than T+L (with T = 1 month in 

this case), resulting in 2455, or 49% of the original 

5000 SKUs, actually being considered.  In the 2010 

article, lead time demand was modeled as a compound 

binomial process, with demands in successive periods 

being identically and independently distributed.  Both 

studies introduced a new approach to determine, in a 

(T,S) inventory control system, order-up-to levels 

utilizing both inter-demand interval and demand size 

forecasts explicitly whenever demand occurs.  Using 

various service-oriented and cost-oriented criteria, the 

two studies observed the superiority of the new 

approach compared to the classical approach which uses 

only the SBA estimate of average demand size.          

Sani and Kingsman (1997) have earlier applied 

simulation of real data (consisting of 30 long series of 

daily demand data over five years for low demand 

items), involving a single run for each data series, as a 

form of empirical evaluation.  In the current study, our 

simulations have also taken the form of a single run 

performed on the test sample consisting of the final 343 

daily demand observations for each of the 24 series in 

the dataset.  Simulation experiments involving multiple 

runs have not been attempted owing to the difficulty of 

mathematically modeling the degree of demand 

lumpiness observed in our dataset.   

We assume in the current study a (T,S) periodic 

review inventory control system with full backordering.  

For initial simulation runs, T is five days (one week) 

and we assume a deterministic reorder lead time, L, of 

10 days (two weeks).  Let tI  and tB , respectively,  

denote on-hand inventory and inventory shortage/ 

backlog at the time of review t, and 
jF  represent the 

forecast demand for period j (j = t+1, …, t+T+L).  

Without providing a safety stock component, the 
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replenishment quantity based upon a forecast-based 

order-up-to level is 

  

tt

LTt

t jt BIFQ   

1
.    (4)   

 

In our simulation studies, we continue to 

investigate only the four methods remaining under 

consideration – SES, SBA, WMA5 and NN – as 

identified in Section 3.  Figure 3 shows the mean 

inventory on-hand for each of the 24 SKUs throughout 

the test sample.  We excluded WMA5 from this figure, 

because means for most series are well over those 

computed when using SBA, SES, and NN.  We find that 

the mean inventory on-hand arising from the use of NN 

is lower, in most instances, than when SBA or SES is 

used.   
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Figure 3: Mean On-Hand Inventory with No Safety 

Stock Provision 
 

In Figure 4, however, we observe average 

backorders to be higher with NN than with SBA or 

SES.  Mean shortages are much lower with WMA5, 

consistent with the much higher average on-hand 

inventory levels observed in Figure 3 for this method.  

Figure 5 shows that the percentage of time when 

inventory shortages occur is generally highest when NN 

is used.  In like manner, we see in Figure 6 that the 

average fill rate is lowest overall when NN is used. 

We reiterate that Figures 3-6 pertain to the case 

where there is no safety stock provided.  The literature 

on inventory control suggests a safety stock component 

in order-up-to levels to compensate for uncertainty in 

demand during the “protection interval” T+L.  For each 

demand series, we calculated the standard deviation trs  

of daily demand during the training sample.  Initially, 

we set the safety stock level to be k standard deviations 

of daily demand during the training sample – i.e., trsk   

– with k = 4, 6, 8, 10, and 12.  We then proceeded to 

conduct single run simulations over the 343 

observations in the test sample for each of the 24 series.  

The values of k we have thus far tested give rise to 

safety stocks which are, more or less, comparable with 

the dLTz   suggested when daily demand 

during the protection interval is assumed to be 

identically and independently normally distributed with 

standard deviation d  (e.g., Silver, Pyke, and Peterson 

1998).  With the safety stock component, the 

replenishment quantity to order is  

 

tttr

LTt

t jt BIskFQ   

1
.   (5) 
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Figure 4: Mean Shortage with No Safety Stock 

Provision 
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Figure 5: Percentage of Time Stocking Out with No 

Safety Stock Provision 

 

When safety stock is set at 
trs4 , mean shortages 

as shown in Figure 7 have decreased significantly, 

although levels of on-hand inventory, as expected, have 

markedly increased.  We see in Figure 8 that mean fill 

rates have substantially improved overall compared 

with those seen in Figure 6, even as mean fill rates 
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when using NN continue to be generally lower than 

when WMA5, SES, and SBA are applied. 
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Figure 6: Average Fill Rates with No Safety Stock 

Provision 
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Figure 7: Mean Shortage with Safety Stock = trs4  
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Figure 8: Average Fill Rates with Safety Stock = trs4  

We continue to see essentially the same mean fill 

rate comparisons as k is increased to 6, 8, 10, and 12.  

Mean fill rates when k = 8 are shown in Figure 9.  We 

observe that all four methods under consideration lead 

to fill rates of 100% for series 22 and series 24. 
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Figure 9: Average Fill Rates with Safety Stock = trs8  

 
Figure 10 shows the average on-hand inventory 

levels when k = 8.  (Since fill rates arising from all 

methods are already at 100% for series 22 and series 24, 

these two series have been left out of Figure 10.)  On 

the other hand, average backorder levels are shown in 

Figure 11.  The lower mean fill rates with NN as 

forecasting method are clearly associated with generally 

lower average on-hand inventory levels but also 

generally greater mean shortages. 
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Figure 10: Mean On-Hand Inventory with Safety Stock 

= trs8  

 

Overall average fill rates across all 24 SKUs for 

each of the four methods under consideration are 

reported in Table 3 for the values of k tested.  
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Figure 11: Mean Shortage with Safety Stock = 
trs8  

 

Table 3: Overall Average Fill Rates with Safety Stock = 

k Standard Deviations of Daily Demand 
k SBA SES WMA NN
0 69.5 74.9 86.2 50.2
4 82.8 86.1 91.9 68.8
6 86.8 89.5 93.8 74.6
8 89.8 92.3 95.2 79.3
10 91.9 94.1 96.3 83.1
12 93.9 95.4 97.2 86.3  

 

We have also conducted simulations with L = 3 

days, for k = 0, 3, 5, 6, 7, 8, and 9.  Similar comparisons 

of average on-hand inventory, backorders, and fill rates 

have arisen. 

In view of the much higher levels of average on-

hand inventory associated with demand forecasting 

using WMA5, we focus our attention on NN, SBA, and 

SES.  At similarly specified safety stock levels, we 

observe much lower mean fill rates (i.e., inferior 

customer service levels) when NN – the “best” of the 

four methods based upon ratio-scaled traditional 

forecast accuracy measures – is applied in comparison 

with fill rates attained when using SES and SBA.  In the 

same vein, NN yields relatively lower average on-hand 

inventory levels (i.e., lower inventory carrying costs) 

but higher mean shortages (i.e., higher backorder costs).  

While our dataset does not include specific cost 

information, a distributor of electronic components will 

be expected to pay significant attention to customer 

service levels and backorder costs. 

Of additional interest is how SES and SBA 

compare in terms of stock control performance when 

demand is lumpy.  Eaves and Kingsman (2004) and 

Syntetos and Boylan (2006) have found SBA to 

outperform several forecasting methods, SES included, 

when demand is intermittent though not lumpy.  While 

SES is less sophisticated than SBA, the former yields 

generally higher average fill rates and lower average 

backorders than the latter.  On the other hand, however, 

SES leads to somewhat higher average on-hand 

inventory levels than SBA. 

 

5. CONCLUSIONS AND FURTHER WORK 
In the current study, we find support for earlier 

assertions that demand forecasting performance with 

respect to standard accuracy measures may not translate 

into inventory systems efficiency.  In particular, an NN 

model was found to outperform the SES and SBA 

methods in performance with respect to a number of 

scale-free traditional accuracy measures, but appears to 

be inferior when it comes to inventory control 

performance.   

We intend to do further simulation work that will 

search, for each SKU in the dataset, for the value of k 

(and, hence, the safety stock component of the forecast-

based order-up-to-level) that would meet a specified fill 

rate.  Simulation studies of periodic review inventory 

systems generally involve searching for order-up-to-

levels satisfying a target customer service level – e.g., a 

probability of not stocking out or a fill rate – often with 

a cost minimization objective (Solis and Schmidt 2009).  

For instance, Syntetos and Boylan (2006) evaluated 

performance of forecasting methods at target fill rates of 

90% and 95%, while Teunter, Syntetos, and Babai 

(2010) considered target fill rates of 87%, 91%, 95%, 

and 99%.  Boylan, Syntetos, and Karakostas (2008) 

initially set a fill rate of 95%, but later treated fill rate as 

a simulation parameter varying from 93% to 97%.  

Starting with comparable target fill rates, we will 

conduct simulation searches, with the resulting levels of 

on-hand inventory and backorders accordingly 

compared across the forecasting methods in terms of 

potential cost implications.    

Based on the simulation searches outlined above, a 

more rational comparison between methods, especially 

between SES and SBA, should be possible. 

 
APPENDIX 

 

Table A.1: Optimized Weights for WMA5 
Optimized Weights on Lagged Demand

Series Lag 1 Lag 2 Lag 3 Lag 4 Lag 5
1 0.434 0.348 0.036 0.055 0.127
2 0.113 0.086 0.174 0.344 0.282
3 0.151 0.162 0.205 0.133 0.349
4 1.017 -0.113 0.030 0.019 0.047
5 0.064 0.226 0.061 0.126 0.524
6 0.130 0.295 0.082 0.059 0.433
7 0.274 0.038 0.484 0.125 0.079
8 0.172 0.149 0.122 0.190 0.366
9 0.215 0.210 0.228 0.109 0.237
10 0.212 0.220 0.152 0.198 0.218
11 0.095 0.144 0.527 0.067 0.168
12 0.048 0.131 0.100 0.012 0.709
13 0.041 0.320 0.262 0.232 0.145
14 0.078 0.042 0.710 0.023 0.147
15 0.018 0.246 0.100 0.557 0.079
16 0.297 0.296 0.120 0.203 0.085
17 0.167 0.229 0.364 0.119 0.122
18 0.175 0.061 0.136 0.294 0.333
19 0.154 0.313 0.176 0.054 0.303
20 0.150 0.429 0.139 0.162 0.119
21 0.185 0.153 0.186 0.294 0.181
22 0.102 0.166 0.083 0.240 0.408
23 0.151 0.449 0.032 0.152 0.216
24 0.158 0.080 0.628 0.065 0.069  
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Table A.2: Minimum MAPEs of Two-alpha SBA and 

Two-alpha Croston’s Methods on Training Sample 
Two-alpha SBA Method Two-alpha Croston's Method

Minimum Minimum
Series MAPE (%) i s MAPE (%) i s

1 164.0 5% 5% 165.9 5% 5%
2 152.9 5% 5% 154.5 5% 5%
3 164.3 10% 5% 166.2 10% 5%
4 166.0 10% 5% 167.9 15% 5%
5 160.5 10% 5% 162.3 10% 5%
6 154.8 10% 5% 156.4 5% 5%
7 154.5 10% 5% 156.0 10% 5%
8 159.5 10% 5% 161.1 10% 5%
9 147.4 10% 5% 148.8 10% 5%

10 165.8 10% 5% 167.7 10% 5%
11 159.1 10% 5% 160.8 10% 5%
12 154.0 10% 5% 155.6 10% 5%
13 161.8 5% 5% 163.6 5% 5%
14 161.8 5% 5% 163.5 5% 5%
15 158.7 5% 5% 160.4 5% 5%
16 158.1 5% 5% 159.8 5% 5%
17 154.7 10% 5% 156.3 10% 5%
18 160.3 5% 5% 162.1 5% 5%
19 231.6 15% 20% 235.3 15% 20%
20 159.1 5% 5% 160.9 5% 5%
21 157.1 5% 5% 158.9 5% 5%
22 161.4 5% 5% 163.2 5% 5%
23 155.0 5% 5% 156.7 5% 5%
24 163.6 10% 5% 165.4 10% 5%  
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