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ABSTRACT 
This paper deals with the design of a sliding mode 
observer using Bond graph for the control of the 
dynamics of a vehicle. The control objective is to define 
and develop effective procedures making it possible to 
observe dynamics correctly in a robust way and to 
detect certain situations sufficiently early. This method 
is shown to be robust with respect to perturbation and 
parametric uncertainties. Experimental results illustrate 
the efficiency of the proposed approach. 
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1. INTRODUCTION 
During these last decades important studies 
(Hocine,2003),(Rill and,Zbiri 2005), were carried out to 
integrate driver assistance system with more and more 
control with a great number of methods of observation, 
and detection of critical situations. The goal consists to 
define and develop effective procedures making it 
possible to observe dynamics correctly in a robust way 
and to detect certain situations sufficiently early. The 
vehicles are a complex Dynamics System with 
unknown inputs (like contact forces, road profile, 
external perturbations…). Their behaviour is affected 
by several factors that may depend or not on its 
structure. The external influence depends mainly on the 
contact between the pneumatic tyre and the road and the 
aerodynamic forces introduced by the wind flowing 
around it. Tire forces affect the vehicle dynamic, 
performance and behavior properties.  
Robust observer with unknown inputs is shown efficient 
for estimation of road profile and for estimation of the 
contact forces. Different dynamic controls on the 
vehicle like tracking, braking and cornering, reduce the 
friction coefficient. The traction and braking control 
reduces the wheel slip, and this can be done by the use 
of sliding mode approach for observation and control. 
For vehicles and road safety analysis, it is necessary to 
take into account the contact force characteristics. 
However, the friction coefficient and different force 
(like traction force) cannot be directly measured. They 
are complex to precisely represent by some 
deterministic model equations. Usually some  

 
experimentally fitted and approximated model are used 
to deduce their values.  
In this work we develop a method to observe tire forces. 
The proposed estimation procedures have to be robust, 
and can then be used to improve the security detecting 
some critical driving situation. This estimation can be 
used in several vehicles control system such as Anti-
lock Brake System (ABS), traction control system 
(TCS), diagnosis systems, etc... An observer is then 
proposed to estimate the forces and friction coefficient. 
The estimations are produced using only the angular 
wheel position and longitudinal velocity as 
measurement and they are the input to the specially 
designed robust observer based on the Second Order 
Sliding Modes (SOSM). ( Imsland and al 2006) The 
method of estimation is verified through simulation 
with as contact model a “Pacejka Model” (Magic 
Formula). (Pacejka & al. 1997,2000), 

 
2. OBSERVERS 
The readers can find in (M’Sirdi & al. 2003,2007), 
(Rabhi 2004,2005) the different models of the whole 
vehicle. In this work, we focus on the use of the sliding 
mode technique with Bond Graph, to show, that this 
combination can replace advantageously the classical 
approaches. We use Second Order Sliding Modes to 
develop a second order differentiator in order to obtain 
the tire road friction estimation. (A. Levant,2003), 
(Fridman2004) 
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Fig 1: Complete Bond Graph Vehicle 
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2.1. High Order Sliding Mode Observer (HOSM)  
Robust Differentiation Estimator (RDE) is used on 

this works to deduce our estimations. Consider a 
smooth dynamics function ( )s x ∈ . The loop 

containing this variable may be closed by some 
possibly-dynamical discontinuous feedback where the 
control task may be to keep the output ( )( ) 0s x t = . 

Then provided that successive total time 

derivatives
. ..

( 1), , ,..., rs s s s −  are continuous functions of 
the state space variables, and the sliding point set is 
non-empty and consist locally of Filippov trajectories. 

 
. ..

( 1)... rs s s s −= = = = 
 The motion on set is called r-sliding mode (rth-
order sliding mode). The HOSM dynamics converge 
toward the origin of surface coordinates in finite time 
always that the order of the sliding controller is equal or 
bigger than the sum of a relative degree of the plant and 
the actuator. To estimate the derivatives s1 and s2 we 
will use the 2nd-order exact robust differentiator of the 
form. 
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 where z0, z1 and z2 are the estimate of sw, s1 and s2, 
respectively, 0, 0,1, 2i iλ > = . Under condition 

0 1 2λ λ λ> >  the third order sliding mode motion will be 
established in a finite time. 

The obtained estimates are 1 1 wz s s= =


and 

2 2 wz s s= =


 can be used in the estimation of the state 
variables and also in control. 

 

2.2. 5BCascaded Observers and Estimator 
This work uses the previous approach to build the 
observer and obtain an estimation scheme in 20-Sim. 
 We produce the estimation in steps using like input 
the wheel angular position and the longitudinal body 
speed. The inputs are considered available for 
measurements. 
 The robust differentiation observer is used for 
estimation of the velocities and acceleration of the four 
wheels. 
 1st Step: produces estimation of angular velocity of 
the wheel. The convergence of these estimates is 
guaranteed in finite time t0. 
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 2nd Step: Estimation of the forces xF (longitudinal) 

and zF  (vertical). 
 To estimate the xF  we used the following equation, 
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 The torque could be also estimated by means of use 
additional equation from engine behavior or measured.  
 To estimate the 

zF  we use the following equation, 
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where (21) is for the front axis, and (22) is for the rear 

axis. 
xv


and 
xω


 are produced by the Robust Estimator 
(RE). 
 3rd Step: We estimated the friction coefficient or 
pneumatic adherence. 
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 4th Step: We estimated the Rolling Resistance and 
Aerodynamics Resistance Force. 
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5th Step: We estimated the Slope Angle. 
  

1/ 2 )
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x rollingxpromair frontalF A R
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 where     
1 2 3 4x x x x xF F F F F= + + +  

    
1 2 3 4rolling rolling rolling rolling rollingR R R R R= + + +  

 are the total traction forces and rolling resistance 
(each by tire-four wheels). 
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2.2 Implementation in 20-Sim 
The observer is build in 20-Sim with blocks element. 
20-Sim admits the interaction between bond graph and 
signal components (Getting Started with 20-Sim 3.6”, 
2005). We used the bond graph vehicle model to get the 
powers variables using sensors (flow and effort 
sensors), and are introduced in the observer and 
estimator modules like signal mode. The inputs in the 
observer module are the tire angle position and the 
measured longitudinal body velocity. 
 The observer module produces the estimated 
variables used in the estimator module to get the 
longitudinal and vertical forces. The friction coefficient 
is also estimated. Torque is measured with a sensor on 
the bond graph model, it is an input for the estimator 
module. 
 Figure 7 shows the general observer module where 
the inputs are the measured variables and the outputs 
are the first and the second derivative estimated. In our 
work the inputs are the angular position and the 
longitudinal body velocity, and the outputs are the 
angular acceleration estimated and longitudinal 
acceleration estimated. It is possible to get the angle 
velocity estimated and then the estimated angle 
acceleration. 
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Figure 1: General Observer module with blocks diagram 

Figure 8 shows the xF  estimated module, where the 
inputs are the estimated tire angular acceleration 
(estimated in the observer module) and the torque 
measured (or estimated). On this module other 
parameters are needed to estimate the longitudinal force 
( xF ) by the equations (18). 
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Figure 9 shows the zF  estimated module, where it has 
as input the longitudinal acceleration estimated 
(estimated in the observer module). On this module 
other parameters are needed to estimate the vertical 
force ( zF ) by the equations (19) and (20). 
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Figure 3: Fz Estimate Module 

Figure 10 shows the µ  estimated module, where it has 
as inputs the Longitudinal and Vertical Forces estimated 
(  ,x zF F ) by the equation (21). 
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Figure 4: µ Estimate Module 

 Figure 11 shows the Rolling resistance estimated 
module, it has as inputs the Longitudinal Velocity 
measured and Vertical Forces estimated ( ,x zv F ) by the 
equation (22). 
 This module is used in each wheel to estimate all 
different rolling resistance. These modes of use make an 
optimal estimated slope angle, so we can make 
individual estimation for each wheel. 
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Figure 5: Rolling Resistance Estimate Module 

 Figure 12 shows the Aerodynamics Resistance 
estimated module, where it has as input the 
Longitudinal Velocity ( xv ) by the equation (23). Other 
coefficients like Cx, Area, ρair are inputs for the module. 
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Figure 6: Aerodynamics Resistance Force Estimate Module  
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 Figure 13 shows the complete estimated module for 
the slope angle, where the inputs are the estimated 
variables from each wheel. Then we estimate each 
rolling resistance, and the aerodynamics resistance 
force. Finally we can obtain the Slope angle estimated 
by the equation (24). Other coefficients are necessary 
like inputs for the estimated module. 
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Figure 7: Complete Slope Angle Estimate Module 

 Figure 14 shows the complete bond graph model 
for the suspension system, where the mechanical 
suspension system is modeled with bond graph, sensor 
placed on the bond graph model and the observer and 
estimated modules with their signal inputs. 
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Figure 8: Suspension System with Observer and Estimate modules 

Figure 15 shows the complete bond graph model for the 
vehicle, where we have the BG vehicle model and the 
Slope Angle Estimated Module. 
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Figure 9: Vehicle BG Model and Slope Estimate Module 

3.    SIMULATION 
 In this part we show the results obtained with 
simulation on 20-Sim.  The simulation shows us the 
behavior of vehicle dynamic and validates our approach 
and the proposed observers. The state and forces are 
generated by the Bond Graph Vehicle dynamics 
proposed. The data used are from a car Renault Clio RL 
1.1. The simulation begins with zero velocity (vehicle 
stopped). On the second 8, the accelerator changes his 
position from 0 to 1 (the butterfly valve obtains 
maximum position) and begins the acceleration. It 
produces a torque from the engine to the traction tires.  
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Figure 10: Engine Torque 

 At time=100 second, the accelerator passes from 1 
to 0 causing the deceleration of the vehicle. Figure 17 
shows the accelerator profile between 0 and 1 position. 
We propose a variable slope angle as it presented in 
table 1. 

model

0 20 40 60 80 100 120
time {s}

0

0.5

1

1.5 Accelerator Profile

 

Time Slope Angle 
Proposed 

0s-10s 0° 
10s-20s 5° 
20s-50s 10° 

>50s 3° 
Figure 11: Accelerator Profile Table 1: Slope Angle Proposed 

 
Figure 18 shows the engine behavior, with the RPM, 
Torque and speed gearbox. Figure 19 shows the 
principal behavior of the vehicle, with Speed on axis 
‘X’, Speed on axis ‘Z’, Pitch Angular Speed, 
Longitudinal and Vertical Position of the Centre 
Gravity.  Figure 20 shows the Chassis Position on the Z 
global axis. 
Figure 21 shows the tire angular velocity estimated and 
measured. The figure shows the good convergence to 
tire angular velocity. 
Figure 22 shows the angular acceleration estimated and 
linear acceleration estimated. The 2dn step on the 
observer model gives us the estimated longitudinal 
force xF  and the vertical estimated force zF . Figure 23 
shows the xF estimated and real (vehicle simulation). 
Figure 24 shows the zF estimated and real (vehicle 
simulation). 
The 3rd step on the observer model gives us the friction 
coefficient estimated. 
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Figure 25 shows the friction coefficient tire estimated 
and the friction coefficient obtained with the Pacejka 
model. 
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Figure 12: Principal behavior Centre of Gravity,  Figure 13: 

Engine Behavior 
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Figure 14: Z Chassis Position Figure 15: Tire Angular velocity 
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Figure 16: Angular Acceleration and Linear Acceleration 
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Figure 17: Longitudinal Force Estimated and Simulated;  Figure 

18: Vertical Force Estimated and Simulated 
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Figure 19: Friction Coefficient Estimated and with the Pacejka Model 

; Figure 20: Rolling Resistance Estimated and Simulated 

The 4th step on the observer model gives us the 
estimated rolling resistance and aerodynamics 
resistance force. Figure 26 shows the estimated and real 
Rolling resistance. Figure 27 shows the estimated and 
real Aerodynamics resistance force. 
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Aerodynamics Resistance Module
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Figure 21: Aerodynamics Resistance Force Estimated and Real; 

Figure 22: Slope Angle Estimated and Real 

 The 5th step on the observer model gives us the 
estimated slope angle. 
Figure 28 shows the Slope Angle Estimated and Real 
proposed by table (1) to the vehicle model. 

    CONCLUSION 
In this work we have developed a method to observe 
tire forces. The proposed estimation procedures are 
robust, and can then be used to improve the security by 
detecting some critical driving situation. This estimation 
can be used in several vehicles control system such 
Anti-lock Brake System (ABS), traction control system 
(TCS), diagnosis systems, etc. An observer was 
proposed to estimate the forces and friction coefficient. 
The estimations are produced using only the angular 
wheel position and longitudinal velocity as 
measurement and they are the input to the specially 
designed robust observer based on the Second Order 
Sliding Modes (SOSM). The method of estimation is 
verified through simulations using a  contact model ,the  
“Pacejka Model” (Magic Formula) (H.B. Pacejka 
1973). 
This work presents a vehicle model composed by 
different modules. We have the chassis like rigid body, 
the suspension system, the pneumatics tire (Pacejka), 
transmission and engine. This model was constructed 
and simulated with the bond graph model in 20-Sim. 
Then we used the proposed efficient robust estimator, 
based on the second order sliding mode differentiator, 
to build an estimation scheme to identify the 
longitudinal and vertical forces, the friction coefficient, 
the tire rolling resistance and the slope angle. The 
estimation converging finite time produced allows us to 
obtain virtual measurements of model inputs, in five 
steps by cascade observers and estimators. Using the 

vehicle model we can compare the estimation variables 
with real variables (not measurable). These robust 
estimations on line are necessary for use on vehicle 
control dynamics. The observer and estimators were 
constructed and simulated in 20-Sim with the vehicle 
model. 
 This form of construction of models allows 
obtaining more finished and complex models, making 
possible to improve the definition of variables. It is 
possible to obtain estimations for different components 
specifically and individually, achieving a major 
precision in the estimation of variables. All this is 
possible with the relative simple construction of 
models. The plots obtained on the simulation in 20-Sim 
verify the correct works of the proposed robust observer 
for the estimation of variables. 
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