
SELF-BUILDING SIMULATION TOOL FOR DAILY DECISION SUPPORT IN 

PRODUCTION CONTROL 
 

András Pfeiffer
(a)

, Botond Kádár
(a)

, Marcell Szathmári
(a)

, Gergely Popovics
(a,b)

,  

Zoltán Vén
(a,b)

, László Monostori
(a,b)

 

 
(a)

 Computer and Automation Research Institute, Hungarian Academy of Sciences 

Kende u. 13-17, Budapest, H-1111, Hungary 
(b)

 Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary 

 
(a)

pfeiffer@sztaki.hu, 
(a)

kadar@sztaki.hu, 
(a)

szmarcell@sztaki.hu, 
(a,b)

popovics@sztaki.hu,  
(a,b)

ven.zoltan@sztaki.hu, 
(a,b)

laszlo.monostori@sztaki.hu 

 

 

 

 

ABSTRACT 

The paper introduces a decision support architecture 

with an integrated, self-building simulation module for 

the validation of the calculated manufacturing 

capacities, a-priori recognition of due date deviations 

and analysis of the effect of possible actions. In the 

underlying research special attention is devoted to the 

prediction and evaluation of the production on a daily, 

rolling time horizon basis (e.g., work in process (WIP) 

trajectories, machine utilizations).  

The paper addresses the simulation module of a 

higher level integrated system in which the simulation 

model is automatically built o the basis of a real-time 

connection to Manufacturing Execution System. The 

main functionalities and advantages are highlighted 

through a real industrial case study. 

 

Keywords: self-building simulation, production control, 

decision support, data mining 

 

1. INTRODUCTION 

In manufacturing systems, at the operational level, 

difficulties arise from unexpected tasks and events, non-

linearities, and a multitude of interactions while 

attempting to control various activities in dynamic shop 

floors. The selection of the most appropriate production 

control decision for a given assignment, as well as the 

prediction of waiting times, workloads or utilisations of 

the resources are not trivial tasks, although they can be 

supported by simulation-based evaluations (Pfeiffer 

2007, Bagchi et al. 2008, Watt 1998).  

Therefore, based on previous results (Monostori et 

al. 2007), we propose a decision support architecture, in 

which the integrated, self-building simulation module 

can be applied for validation of the calculated 

manufacturing capacities, a-priori recognition of due 

date deviations and analysis of the effect of possible 

actions taken. In the research presented in this paper 

special emphasis is given to the prediction and 

evaluation of the production on a daily, rolling time 

horizon (e.g., Work in process (WIP) trajectories, 

machine utilizations).  

The paper addresses the simulation module of the 

proposed architecture highlighting its main 

functionalities and advantages through a real industrial 

case study. An important issue regarding short-term 

(operational level) simulation is the automatic collection 

and definition of simulation input data. Therefore a new 

operation time definition method is presented in the 

paper, as well as a self-building simulation procedure is 

described in details. 

 

2. PRODUCTION CONTROL AND 

SIMULATION – BACKGROUND 

 

2.1. Simulation-supported production control 

The discrete-event simulation (hereafter referred to as 

simulation) approach has been applied to decisions in 

scheduling and control, related to production 

applications (see e.g., Banks 1998, Law and Kelton 

2000, O’Rielly and Lilegdon 1999). The simulation 

models that are used for making or evaluating these 

decisions (e.g., by projecting different key performance 

indicators, KPI-s) generally represent the flow of 

materials to and from processing machines and the 

operations of machines themselves (Rabelo et al. 2003). 

Potential problems can be identified and can be 

corrected using a simulation model. By far the most 

common use of simulation models is for operational 

decisions such as scheduling or dispatching (Law and 

Kelton 2000). 

Simulation captures those relevant aspects of the 

Production Planning and Control (PPC) problem which 

cannot be represented in a deterministic, constraint-

based optimization model. The most important issues in 

this respect are uncertain availability of resources, 

uncertain processing times, uncertain quality of raw 

materials, and insertion of conditional operations into 

the technological routings. 

In simulation supported KPI evaluation, simulation 

is often used for evaluating the different scheduling or 

dispatching logics and methods. The usefulness of 

simulations lies in detecting and preventing the 

problems concerning KPI-s before they might occur at 

the shop floor. Thus, the key benefit of a simulation-

based evaluation system is the feedback about system 

performance and system state (e.g., WIP, tool 
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utilisation) which, in turn, can be used for improving 

subsequent solutions.  

 

2.2. Simulation-based schedule and control 

evaluation 

As it is stated above, one stream of research in 

simulation-supported production control focuses on the 

simulation-based evaluation of schedules and 

scheduling rules. In these cases the main goal is to find 

solutions with the help of the simulation to daily 

scheduling issues including on-time order completion, 

priority changes, and unexpected changes in resource 

availability. Discrete Event Simulation (DES) helps a 

system engineers in detecting potential scheduling 

problems through checking the resource and schedule 

performances during the scheduling interval (shift, day, 

or week). The new alternative policies are then executed 

and performances of alternatives are compared. This 

process is repeated until a feasible and desired schedule 

is achieved. Indicated in another way, a schedule is 

created by simply simulating the execution of the 

factory and taking the recorded execution history as the 

schedule (Smith 1992).  

Previous solutions introducing simulation-

supported evaluation of schedules and scheduling 

policies are given in Cowling and Johansson (2002), 

Honkomp et al. (1999), Sabuncuoglu and Kizilisik 

(2003) and Vieira et al. (2000). 

Watt (1998) presents a case-study where several 

information sources and applications are integrated. 

Simulation is applied in both off-line and scheduling 

modes. The current plant status and static data from the 

ManuMES are collected periodically and schedules are 

generated by a commercial scheduling package. Off-

line simulations are performed in order to test what-if 

scenarios and reuse the same information for 

scheduling. New rules can be created and tested against 

history data. The improved rules are then applied in the 

scheduling system. 

In several manufacturing areas the amount of 

products, product variants, resources, variation and 

fluctuation in the production processes does not 

facilitate predefined schedules to be adhered to. In these 

cases production is mainly controlled by production 

control rules (e.g., dispatching rules, for order 

management, and resource allocation, etc.) Thus, 

another direction of research does not focus on the 

schedule formulation but on the trajectories of the most 

relevant KPI-s during the simulation execution of the 

production. Solutions in the field of semiconductor 

manufacturing are presented in the followings.  

Bagchi et al (2008) describe a discrete event 

simulator developed for daily prediction of WIP 

position in an operational wafer fabrication factory to 

support tactical decision-making. The model parameters 

are automatically updated using statistical analyses 

performed on the historical event logs generated by the 

factory. 

Bureau et al. (2007) use simulation to compare 

alternative WIP management policies, while Sivakumar 

and Chong (2001) quantify the effects of lot size, lot 

release controls and machine dispatching rules, on 

selected KPI-s (throughput, process time and process 

time spread) for manufacturing steps. Klein and Kalir 

(2006) introduce a simulation system in order to analyse 

transient behaviour of a factory in case of new products 

ramp up and old products ramp down. Lin et al. (2001) 

and Kim et al (1998) present a simulation study on lot 

release control and dispatching rules for batch 

scheduling in semiconductor industry. 

 As it was shown in the previous literature review, 

related works describing some of the application areas, 

as well as the recent solutions of simulation in 

production control, simulation has been typically used 

for off-line decision making. Consequently, effective 

integration into the control process of production was 

restrained. One of the limitations of its use in on-line 

decision making is the considerable amount of time 

spent in gathering and analysing data. In quasi real-time 

control (hours, minutes), however, the three key issues 

are data acquisition, quick response and instantaneous 

feed-back. As a result, decision makers mostly apply 

simulation primarily for off-line decision support and 

not for the critical on-line decision making that may 

arise. 

 

3. SELF-BUILDING SIMULATION SYSTEM 

To support factory wide short-, midterm capacity as 

well as production control (utilization, WIP), 

scheduling and planning decisions, a simulation system 

has been developed – in form of a cooperative research 

project. This simulation system builds the discrete-

event, object-oriented simulation model of the example 

shop-floor system automatically on the base of the data 

retrieved from the Manufacturing Execution System 

(MES) database.  

This section presents the results of the systems’ 

analysis and the developed self-building simulation 

tool. 

 

3.1. Novel simulation architecture – self-building 

simulation tool 

At the beginning of the research activity related to this 

paper, in several preliminary examinations it turned out 

that the drawbacks of the existing simulation-based 

dispatching system are as follows: 

 The input of the simulation model is 

oversimplified, collected and/or generated 

manually, which requires a huge amount of 

human effort; 

 The data provision from shop-floor and 

engineering generates frequent errors; 

 The data maintenance is poor. 

 The responses in dynamic manufacturing 

environments are generally slow; 

 

The main goal of development is the enhancement 

of the simulation-based analysis and dispatching system 

by eliminating the manual data collection through 
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automatic interfaces, creating a more realistic model of 

the real factory and improving the dispatch logic inside 

the simulation model. Furthermore the self-building 

production simulation should provide both, prospective 

(e.g. locate anticipated disturbances, identify trends of 

designated performance measures), and retrospective 

(e.g. gathering statistics on resources) simulation 

functionalities. Self-building simulation means that the 

simulation model is build up by means of the 

combination of the MES data as well as the knowledge 

extracted from the MES  data (e.g. resource and 

execution model). In addition to the automatic model 

building feature, main requirement of the solution is to 

minimize the response time of the experiments and to 

enable the quasi “real-time” applicability of the 

simulation.  

3.1.1. Automated, component-based simulation 

model generation 

In order to meet all the requirements and achieve the 

desired functionality for a flexible, self-building 

simulation system, a so-called component-based 

simulation method has been developed (Pfeiffer 2007). 

Resources, products, routings, production information, 

i.e., directly and indirectly usable data are gathered 

from MES database, and transformed as well as 

processed to the same form for all system components 

(e.g., for the simulation system, or for the Decision-

maker to analyse KPI-s). Note that simulation relevant 

data (e.g. resource model, execution policies, process 

flow model) are redundantly stored locally in the 

simulation model. 

 

 

 
Figure 1: The structure and the data-flow of the new self-building simulation architecture (dotted lines represent 

information flow, while solid lines represent data flow)

 

Figure 1 represents the dataflow of the new self-

building simulation architecture. All the data necessary 

for simulation is retrieved from the MES database 

(represented on left side in Figure 1). The first interface 

splits the aggregated data of the MES into separated 

inputs and performs statistical analysis by applying 

previously developed algorithms. Production data are 

then further transferred and processed by the second 

interface into the simulation model (Prepare data in 

Figure 1). The simulation model keeps its own, internal, 

simulation-specific database to support fast response 

time. The exchange of the data is necessary only in the 

early state of the simulation when the automatic model 

building and data initialization is performed. 

Data preparation is carried out before the overall 

simulation (production related data is refreshed on a 

weekly, while MES data for factory snap-shot is 

refreshed on a daily basis, see Figure 1). The redundant 

data storage in the simulation model is compensated by 

the advantage of the shorter response time. Modelling 

real production systems frequently brings up the 

problem of handling hundreds of resources in a 

simulation model. Having the modelling objects in 

hand, which were created on the base of the conceptual 

model, in our architecture the simulation model is 

created automatically based on the pre-processed data 

(phase b).  

The automatic generation of the model is followed 

by initialization (phase c). There, besides classical 

parameter settings, the procedure involves the 

generation of input parameter specific model 

components (entities such as products, tools, machines 
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and the snapshot of the factory, detailed in Section 3.3). 

Contrary to the previous phase, this one is carried out 

for each replication. The simulation model incorporates 

a number of new dispatching rules with which the 

simulation runs can be manually initialized by 

simulation experts. In a following version of the 

simulation the automatic selection of proper dispatching 

rules and rule combinations will be implemented in 

order to achieve better performance in the shop-floor. 

The simulation is started on the base of these statistics 

by generating random production orders which cover 

the product type distribution calculated from the MES 

database. Naturally, instead of randomly generated 

orders, the users of the simulation can also provide the 

input for the simulation model on the base of real 

customer order data. 

The simulation runs are repeated until the required 

number of replications is obtained (phase d). Each 

replication is a terminating, non-transient simulation 

run.  

In the last phase, the results are evaluated (critical 

values for defined KPI-s) and the results of the 

evaluation process are interpreted by the Decision-

maker (e.g., planner or dispatcher) who is responsible 

for taking the necessary actions. Several simulation 

results and statistics are calculated inside the simulation 

model and a graphical user interface (GUI) is provided 

for the visualization via a web browser of both, input 

settings, and statistical results. The first version of this 

self-building simulation prototype is developed in Plant 

Simulation v8.1 software, while the GUI is 

implemented in a web application. 

 

3.1.2. Production information – data in the MES 

database 

The production environment to be modelled by the 

simulation covers a whole production section of a real 

industrial factory. The factory produces several 

different products which are identified by different 

product types. Each product type is assigned to a 

routing. The sequence number is the position of a 

defined operation in the routing. In order to have a 

better traceability of products moving through the 

factory a number of operations are logically grouped 

into so called groups. Regarding resources in the factory 

we can differentiate between operators and machines. 

Products are processed on machines with predefined 

tools and machines are grouped into cells.  

Operators are responsible for loading, starting, 

finishing, as well as unloading the machines. The data 

in the MES database are collected manually by the 

operators of the machines during the manufacturing 

process in the shop-floor. The products are transferred 

from station to station in lots. When a product arrives to 

a station the operator of the station registers the arrival 

and the product is waiting for the manufacturing in the 

queue of the station. Depending on the type of the tool 

different products might be processed together.  

When an operation is completed the operator of the 

station registers the completion of the work. As a 

consequence the MES database contains a large list of 

data records about the life-cycle of the products 

cataloguing the entrance and completion events.  

The data about the resources, their types and 

availability, routings, process times are also calculated 

from the MES database. MES-based statistics are 

collected about the most important product types and 

their distribution in the production order.  

 

3.2. Defining operation times on MES data 

In simulation systems representing a complex, wide 

scale production system, exact processing times are 

crucial for successful and credible simulation results.  

Defining process times for simulation models 

based on logged production (e.g., MES) data is a well 

known and widely used method. Bagchi et al (2008) 

present a linear regression method for calculating 

process times based on raw process times (RPT) 

collected for single, batch and sampling tool types. 

Sivakumar and Chong (2001) present a case study, 

where the theoretical process times are defined by the 

mean values, however the authors state that based on 

the wide distribution in theoretical process times, 

theoretical ratio based on mean is indefinite. 

 

 
Figure 2: Frequencies of raw process times for a defined 

operation subtype on batch tool machines in seconds 

 

In Figure 2 an example is given, representing the 

characteristic of the raw process time distribution. The 

main goal is to define the so called basic process time 

for the given operation and tool relations. Since several 

factor influences the raw process time as for instance 

different waiting times in the input buffer of tools, 

different operators, etc., the most relevant way is to 

scrape the raw process times from the effect of 

disturbing factors, and thus, to identify the relevant 

lower bound (excepting unnecessary, problematic data), 

i.e., the shortest possible raw process time of the data 

presented in Figure 2. It is clear that by calculating the 

mean (31193 s) or the mode (29520 s) values for the 

data set does not provide the necessary lower bound.  

Thus, as one of the most important issues 

regarding the self-building simulation system, a 

significantly more effective method (compared to e.g., 

mean or modus statistical methods) had to be developed 

in order to have reliable and up-to date process times in 

the simulation. It is also important that the calculated 

process times will be applied in the near future for static 

capacity calculations in the factory.  
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Intensive research is still ongoing in our laboratory 

to calculate the raw process times. The system 

presented in this paper applies the preliminary results of 

the first algorithms. The detailed algorithm will be 

published soon in an upcoming paper of the authors. 

 

3.3. Simulation model - Creating snapshot of the 

production 

In order to have as much precise simulation results of a 

daily WIP prediction as possible, the initial state of the 

simulations (from which the system starts evolving) is 

critical. Therefore, a snapshot of the production (WIP, 

status of resources, etc.) is necessary (Figure 3). 

 

 
Figure 3: Proposed architecture of the simulated 

execution of a MES section, the formulation of the WIP 

snapshot and the prospective simulation 

 

In Figure 3 the blue box represents the operations 

executed during the Log Simulation, while green boxes 

represent the steps to be processed in the routing. The 

main challenge is the transition phase at time point T0 , 

where the execution of the log-based operations should 

be changed to routing-based operations for each unit to 

be processed. 

We propose the following simulation procedure to 

ensure a short warm-up phase and a reasonable initial 

state of the production status. 

 The user should define the simulation time 

horizon  

 Starting time (T0) at which the prediction 

starts 

 Length of the WIP prediction phase (e.g. 1 

week), i.e., T+ - T0 

 Estimation is given on the length of the play-

back period, required for the snapshot 

formulation (T0 - T-), in order to have the 

actual WIP state of the factory (warm-up 

phase) 

 Define the level of significance and the 

number of simulation runs required 

 Play-back of the log (Log Simulation) 

 From the snapshot point in time (T0) execute 

the WIP prediction phase (several independent 

simulation runs, Prospective Simulation) 

 Evaluation of the results, notify user 

 

In the simulation model we do not simulate the 

movement of individual products, but the movement 

and processes done on the lots. Therefore, the selected 

section (defined by T0 - T-) of the log (for creating the 

log file in the simulation) is decomposed and forwarded 

to lot objects in an aggregated way. This procedure 

improves the speed of the simulation, while this lower 

level of model granularity does not significantly 

influences the output quality.  

 

4. PRELIMINARY SIMULATION RESULTS 

The main goal of the simulation studies are the 

prospective analysis of the WIP movements in the 

factory, as well as the monitoring and reporting on 

bottle-neck machines and machine groups (for capacity 

analysis). 

Our solution is distinct in the sense that the extent 

of modelling is relatively large (whole factory) while 

the data available for model formulation is limited only 

to the – continuously updated and statistically analysed 

– MES data (no conventional process and resource data 

is available). 

The production system to be modelled has the 

following main features: 

 several million rows in the MES database, 20-

50.000 new rows every day; 

 3000-4000 products for snapshot (Factory 

WIP); 

 approx. 500 resources; 

 500-1200 operations in a routing for a defined 

product type; 

 avg. lead time 20-40 days; 

 ~ 10-15% rework process. 

 

The section presents an example of the validation 

process of the simulation model (Section 4.1), and 

preliminary results of the simulation experiments. 

Section 4.2 introduces the steady state analysis of 

system performance, while in Section 4.3, results on 

testing improved execution and sorting logics are 

described. 

 

4.1. Validation – comparison of throughput 

In order to have credible results computed by the 

simulation model, a comprehensive validation 

procedure is mandatory. In the followings a short 

example is given about the validation of throughput 

values. 

One stream of the validation procedure of the 

proposed system is based on the comparison of the 

simulated WIP prediction results (simulated log) with 

the real original data (Figure 4). This validation 

procedure serves as a feed-back for the iterative fine-

tuning (trace technique, Law and Kelton (2000)) of the 

execution policies, tool models, process times and 

dispatching rules applied in the simulation. 
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Figure 4: Simulated and real throughput diagram 

 

In Figure 4 the results of a comparison for one 

week period is highlighted. If the total number of 

products in the system (WIP) is considered as 100%, 

then the ratio of exiting products all together in the 

simulation for the one week time horizon in 

consideration is 1.222%, while the real, log based ratio 

is 1.306%. The difference between the predicted and the 

real total throughput is relatively low (6.38%), however 

the distinct steps in the log based curve can not be 

represented exactly with the simulation. 

 

4.2. Testing production control rules - steady state 

performance 

Regarding the shop-floor level control of the 

production, several control rules are implemented and 

used in the factory. One of the most relevant groups of 

these control logics is the work-load balancing 

dispatching rules of the machines. These rules define 

the logic of choosing the successor machine in case of 

the next operation can be processed on more than one 

(alternative) machine. At the current phase of 

implementation the following rules are available for the 

simulation: 

 Random: the simplest logic to send products 

randomly to the next tool. 

 Min queue: this logic prefers the machine 

where the queue is the minimum. 

 Relative occupation (Tool): this logic gives 

priority for the machine that has the Tool with 

the lowest relative occupation. 

 Relative occupation (Buffer): similar the one 

above, but considers the Buffer. 

 Next free (Tool): this logic prefers the machine 

where the Tool is free. It chooses randomly if 

there is no free Tool among the alternative 

machines. 

 Next free (Buffer): similar the one above, but 

considers the Buffer. 

 Min wait time: in this logic a method calculates 

the time remaining to the start time of the 

process for the product on every possible 

machine. The product is sent to the Tool where 

this time is the minimum. 

 

In order to be able to analyse the effect of 

dispatching rules on bottle-neck machines, first the 

long-term, steady-state analysis of the simulation model 

was performed (Table 1). It can be stated that the 

different dispatching rules significantly affect the 

systems’ throughput performance, e.g. the rule Min wait 

time ). 

 

Table 1: The average number of finished products 

(simulation time horizon is 50 days, number of 

replications is 100) 

Dispatching rule No. of finished  

products 

Next free (Tool) 2619 

Relative occupation (Tool) 2188 

Relative occupation (Buffer) 2434 

Min wait time 2865 

 

As an important output of the self-building 

simulation system, situation-dependent selection of the 

most relevant control rules are intended to be tested and 

analysed. Therefore, contrary to the above described 

analysis, not only the steady-state performance of the 

defined control rules is of interest, but the short-term 

effect regarding the WIP in the input buffers of the 

machines. Moreover, the dynamic behaviour, e.g., the 

movement of these WIP “waves”, from machine to 

machine has to be considered. 

In Figure 5 and Figure 6 the predicted trajectories of the 

WIP are presented for the selected bottle-neck 

machines, simulated for the dispatching rules Min wait 

time and Random, respectively. Based on the simulation 

results it can be stated that, the control rules with a 

reasonable high performance for steady-state studies, 

not always perform similarly good regarding short-term 

decisions (e.g., for eliminating WIP in buffers). 

 

 
Figure 5: Simulated WIP movement diagram, for 

selected bottle neck machines (number of products in 

the input Buffers/ time, for a one week horizon, applied 

dispatching logic: Min wait time)  
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Figure 6: Simulated WIP movement diagram, for 

selected bottle neck machines (number of products in 

the input Buffers/ time, for a one week horizon, applied 

dispatching logic: Random)  

 

4.3. Suggestions for improving utilisation of parallel 

machines 

During the analysis of the real systems’ data in the MES 

database, it turned out that the actual load of some 

machines, and thus the utilization is constantly low.  

These machines are of principally one type, 

namely, special parallel machines, characterised by a 

certain maximal load capacity and with high operation 

costs. In case of the processing of the products starts, no 

more products can be loaded into the machine unless 

the processing is finished. Thus, the main goal is to 

minimize the idle time of these machines and to 

maximize the utilization (load). Therefore, three 

different loading logics have been developed and 

compared through simulation experiments. The three 

logics are as follows: 

 FIFO (or no group) means the simplest logic: 

product lots are processed based on the FIFO 

rule;  

 Group logic regroups the product lots, based 

on the operation type (OpType) required, and 

then it sorts according to the number of 

products in the new group. The order of 

processing is FIFO; 

 Group and sort logic first regroups the product 

lots as described in Group. Each group (based 

on the OpType) has a predefined “starting 

level”. It defines a loading level at which 

processing is allowed to be started. A waiting 

time is also assigned to each OpType The 

group which first exceeds the starting level or 

exceeds the waiting time will be first processed 

on the machine. 

 

The upper chart in Figure 7 presents the case, 

where No group (FIFO) rule is applied to load the 

parallel machines, while the lower chart presents the 

case, where the special sorting logic (Group and sort) is 

applied in order to have a higher machine utilization 

ratio. In the first case, the machine does not wait for 

OpType1 operations to load the machine up to full 

capacity, but starts processing immediately after 

receiving products for OpType1, or OpType2. Contrary, 

in the second case, the processing of products requiring 

OpType1 are postponed, because the minimum level 

assigned to this type of operation is not exceeded. 

 

 
Figure 7: The effect of no group logic (upper chart) and 

group and sort logic (lower chart) on lead time, for 

loading a parallel machine 

 

The results of simulation experiments regarding 

the effectiveness to the new sorting logics are presented 

in Figure 8 and Figure 9 for two selected different 

machines. It is clear that the new Sort and group 

algorithm has a positive effect on the WIP level of 

machine input buffers. 
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5. SUMMARY AND FURTHER STEPS 

The features provided by the new generation of 

simulation software facilitate the integration of the 

simulation models with the production scheduling and 

control systems. Additionally, if the simulation system 

is combined with the production database of the factory, 

it is possible to instantly update the parameters in the 

model and use the simulation parallel to the real 

manufacturing system supporting and/or reinforcing the 

decisions on the shop-floor. 

However, some tasks are still under development 

stage (e.g. calculation of reliable process times), in this 

paper the authors presented a novel solution to build 

simulation models from the MES database. Moreover, 

the initial validations, which were carried out with real 

industrial data, showed that the behaviour and the 

results of the simulation model are close to the ones of 

the real system.  

As a further step, regarding the usage of our self-

building simulation approach, we propose the re-

initialization and memorization of sequential simulation 

runs in a rolling time intervals. In case of high 

difference arises between the simulated and the real 

production KPI-s (WIP, waiting times, etc.), an 

examination is initiated in the log of the last interval to 

identify the root cause of the deviation.  

The main challenges related to this rolling time 

horizon analysis are the identification of relevant rolling 

interval (i.e., the frequency of simulation experiments), 

defining significant ΔKPI-s and the definition of look-

ahead horizon. 

With predefined simulation protocols, this method 

will result in an easy-to-use decision support tool for 

shop floor engineers, which gives prediction of future 

events at a time by which necessary actions can be 

taken in advance. 
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