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ABSTRACT

Electricity deregulation in North America has enabled
owners of small electric generators to become
independent power producers (IPP) by selling electricity
to the grid. Uncertainty affects both the profit
maximizing utilization schedule and the related
valuation of the underlying asset, the power generating
unit (PGU). In addition to price uncertainty, the small
sized power generating units are subject to different
constraints and fuel supplies compared to those of large
power plants, with higher production costs. Monte
Carlo simulation is applied to evaluate the profitability
of small PGUs as potential electricity producers and
stochastic methods are used to model the prices of
electricity and fuel. We extended the mean-reverting
stochastic differential equation for the electricity prices
with term modeling the price spikes. The spike
distribution was done using the ‘peak over threshold’
approach of the Extreme Value Theory. The
profitability measures, net present value and internal
rate of return, were calculated by modeling the term
structure of the interest rate with extended Nelson-
Siegel form.

Keywords: Monte Carlo simulation, price models,
Nelson-Siegel method, extreme value theory

1. INTRODUCTION

The electricity industry is concerned with the processes
of electricity generation, electricity transmission from
location (e.g. power plant) to location (e.g. populated
area), and electricity distribution to the customers. Until
the beginning of the 1990s, the industry was
characterized by a relatively small number of
government regulated and vertically integrated
monopolies that covered the whole process. The
pressure of globalization and the desire for lowering the
price of electricity brought about restructuring and
deregulation in the electricity markets in many
industrial countries. One of the first areas to adopt these
changes was the province of Alberta, Canada. The
transition to fully deregulated electricity generation in
Alberta took several years and established a competitive
market, where the spot price of electricity is determined
by the forces of supply and demand.

Deregulation of the electricity industry opened the
door for owners of small electric generators to become
independent power producers and sell electricity to the
grid. A typical PGU would be a part of an emergency
power system and would be idle most of the time. Most
PGUs have a generating capacity of 0.5 — 2MW and are
driven by diesel engines, resulting in a high cost for the
produced electricity. With uncertainty in the price of
fuel and electricity, there is no simple way to evaluate
the potential profitability of using such generators to
sell electricity to the grid.

One approach is to apply Monte Carlo simulation
within the framework of capital budgeting. The first
step is to build models for the price processes of the
electricity and fuel. For a given realization in these
prices the generator would be ‘switched on’ if the price
of electricity exceeds the price of the fuel necessary to
produce it. The present value of the generated cash
flows are discounted by the appropriate required rate of
return to obtain the values of two profitability measures:
net present value and the internal rate of return.
Generating a large number of sample price paths allows
accurate estimates of the profitability measures to be
obtained.

The major challenge in this approach is to build a
good model for the price of electricity, accommodating
its unique features. We modeled these features by
specifying a seasonal mean-reverting stochastic model
on the basis of standard geometric Brownian motion. To
account for the spikes, we first used the ‘peak over
threshold’ method of the Extreme Value Theory to find
a high threshold above which the data is well described
by the generalized Pareto distribution. We used the
threshold excesses to fit an independent ‘spike’ term
that is a product of spike intensity and spike frequency.

An additional source of uncertainty was the
discount factor used in the calculation of the net present
value and the internal rate of return. We opted for using
these two discounted cash flow measures, as opposed to
more refined approaches such as real options, because
of their intuitive simplicity and ease of communication
with decision makers. The simplest approach would
have been to specify a required rate of return to use as a
discount factor throughout the project lifetime. Because
the typical length of the latter is 10-15 years, different
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heuristic discount factors would yield quite different
results. We decided to use instead a benchmark
approach with the risk-free rate as a discount factor. We
modeled carefully the full term structure of interest rates
by fitting the extended Nelson-Siegel form on the
available Government of Canada bonds.

2. POWER PLANT VALUATION

The current widely accepted capital budgeting method
for assessment of capital investments is the net present
value (NPV). It captures the intuitive guiding principle
that a project should not be undertaken if the
investments in the project outweigh the revenues from
the project, or more formally — if the expected rate of
return on the investment is less than the opportunity
cost of capital. In practice, the calculation of NPV uses
the discounted cash flow (DCF) method to obtain the
present value (PV) of expected cash flows C, from the
project and compare it with the estimated (initial)
capital outlay Cy:

NPV:PV(ZE[Q])—CO. (M

A project is accepted if its NPV is positive and
rejected otherwise. In general, for project that has T+1
number of discrete cash flows that can be both positive
(inflows) and negative (outflows) over the project
lifetime T, the formula can be written as:

E[C]

NPV =Y

where the cash flows C; are explicitly discounted at an
appropriate hurdle rate rt (required rate of return) at
time, ¢. For the case of power generating units, the cash
flows C, are the net difference between the price at
which the generated electrical energy was sold and the
price, paid for the fuel that was used to generate that
unit of electricity, i.e.

C,=q(P ~hE)) 3)

where P¢ is the spot price of electricity ($/MWh), p/

is the price the fuel was bought at time 7 <¢
($/MMBEtu), /4 is the unit heat rate (MMBtw/MWh) and
q is the unit output level, which, for small PGUs, is
usually close to 1. The quantity in the brackets is called
the spark spread. Since the generator is only switched
on if it is deemed profitable to do so, the spark spread in
this case is always positive.

A second popular measure is the internal rate of
return (IRR), which is defined as the discount rate
corresponding to zero NPV, i.e. it is the rate that solves
the equation:

L E[C] ~
;(1+1RR)‘

=+ )

C,=0. 4)

For a small number of periodic cash flows,
Equation (4) can easily be solved numerically. In the
case of frequent cash flows over a long period of time,
T, a different approach is needed. We adopt a Future
Value (FV) point of view (Ourdev and AbouRizk 2006)
and calculate the total amount of cash generated over
the lifetime of the project by summing up all the cash
flows compounded by the corresponding forward rate,

FVziE[Ct]F”(O,tO,T—tO). )

t=1

The continuously compounded forward rate,
F<(0,t,,T —t,), is the rate as seen from time 7=0 that

starts at time ¢, with residual maturity 7-z). The total
return rate over the period is obtained by solving

(1+ IRR)" = FV /C,. (6)

The two measures, NPV and IRR, require a
continuous set of interest rates. A continuous function
representing the spot rates, r, for different times to
maturity is referred to as term structure of interest rates.
There is a limited number of fixed income securities,
and only a few of them are zero-coupon bonds, i.e. can
provide spot rates. The rest are coupon-bearing bonds,
and their yield to maturity depends on the coupon rates.

The zero-coupon bonds are typically represented
by the Treasury bills, available with maturities up to
one year. The remaining portion of the spot rate curve
has to be estimated from the available longer term
Government bonds, decomposing each coupon bond
into a portfolio of zero-coupon bonds, with each zero-
coupon bond corresponding to a coupon payment. The
implied forward rates can be obtained from the spot rate
curve by representing each forward rate as a synthetic
portfolio of two bonds with equivalent cash flows
(Martellini et al. 2003).

The most flexible estimation for the spot and
forward rates is given by the Extended Nelson—Siegel
form (Svensson 1994). Introducing, for readability, the
auxiliary functions

A(0,) = exp(=0,),
1- -
B(gk): e‘xp( 9}()
o,
the fitting function that represents the instantaneous
forward rate for the time @ is defined as:

()

>

F"(O,Q) :ﬂo +ﬂ1A(‘91)+ﬂzglA(92)+ﬂ392A(93) (8)

Here,9, =6 /7, is the scaled time, and the parameters
are two groups: scaling parameters r,7,, and shape
parameters, S, ,k=0:3. The implementation of the

method involves fixing a priori the scaling parameters
and obtaining the shape parameters through
optimization.

Proceedings of the International Conference on Modeling and Applied Simulation, MAS 2009

ISBN 978-84-692-5417-2

177



The continuously compounded spot rate R, T)
at trade time t and maturity time T can be interpreted as
the average of the instantaneous forward rates with
settlements between time t and T, hence

R”(t,T)zﬁIF“(t,@)d@. ©)

The spot rate is derived from Eq.(8) using Eq.(9) as
follows:

R%(0,0) = B, + B,B(6,) + B,[B(6,) — 4(6,)] (10)

+ﬂ3[B(92)_A(92)]--

One problem with using the discounted cash flow
method for project valuation is that the method is
essentially static. First, it assumes that the state of the
world remains unchanged during the life of the project
and ignores the uncertainty of parameters, such as time
and the size of the cash flows. More importantly, the
DCF method assumes passive commitment to the
project at the inception and ignores the ability of the
management to make decisions that adjust project
parameters in response to changing market conditions.
These issues can be addressed by the real options
method (Ronn 2003). In this work, we use only the
traditional DCF measures, NPV and IRR, because of
their simplicity and ease of communication with
decision makers.

3. MOTIVATION FOR THE STUDY

The motivation for this study lies in the idea of using
small scale power generating units as commercial
electrical generators. Typically such PGUs will be part
of the Emergency (standby, backup) Power Systems
(EPS), alternate reserve sources of electric power that
provide energy to critical loads in case of power
outages.

Depending on the load, power sources for EPS can
be batteries, uninterruptible power systems (UPSs) or
PGUs, also called gensets. PGUs are electric power
generators driven by engines or turbines. Most widely
used are diesel engine generator sets with sizes in the
range from 100 £ to 2,000 kW (Kusko 1989). Because
PGUs vary in both size and efficiency, we take as a
representative  example a  mid-range  genset
manufactured by SDMO with a Volvo Penta engine
yielding 500 kW stand-by power. The fuel consumption
at this level is 122.1L/h. Although the efficiency
slightly increases at lower levels of utilization, the
difference does not justify a separate treatment in this
case.

The requirements for the design and
implementation of EPS’s are specified in the national
standards and codes of good practices (NFPA 2005).
One of the requirements of the National Fire Protection
Association (NFPA) limits the capacity of unenclosed
day tanks to 660 gal (2,498L) (NFPA 1998). In

accordance with this rule, we assume that the genset for
our example is supplied with a tank with a capacity of
2,442 L, which is equivalent to 20 hours of
uninterrupted work. At the end of the period, the tank is
refilled at the average retail price of diesel at the time.

4. MODELING ENERGY PRICES

The two commodities involved in this project valuation
are diesel and electricity. As with any commodity, their
prices are determined by the interplay of the forces of
supply and demand, but both retail diesel and electricity
exhibit quite specific characteristics that affect the price
formation.

4.1. Characteristics of Electricity Prices

4.1.1. Electricity Supply

In the deregulated electricity market design, supply
meets demand on a short-term spot market that is
organized either in the form of a pool or as a power
exchange. In both cases, the price formation is realized
via a bidding process for each hour or half-hour of the
following day 0.

Electricity has some features that make it quite
distinct from other commodities. Electricity is a non-
storable commodity and the matching of supply and
demand has to be done in real time. Both the supply and
demand are subject to unexpected shocks from weather
changes, congestion, unit failures, etc. Demand
fluctuations are exacerbated by the fact that the
deregulated producers have no incentives to keep excess
capacity idle, except for old and inefficient generating
facilities with high production costs.

One additional factor that affects the supply is the
electricity transportation. Electricity is transported in a
single transmission network, usually referred to as the
grid, that in many cases is geographically localized. The
lack of alternative transportation channels increases the
risk of failure and introduces an upper limit of the
transmission capacity.

4.1.2. Electricity Demand

The demand side is characterized by recurring patterns
over multiple time scales. The longest time scale is the
one that reflects the seasonal changes in the specific
geographic region (including demands related to heating
and cooling). The second time scale deals with weekly
variations due to industrial activity and thirdly, there are
intraday patterns of variation.

The intraday wvariability is reflected in the
terminology used by the exchanges. The 24 hour day is
divided into three time periods: one on-peak and two
off-peak periods. The on-peak period encompasses the
time of the day with higher electricity demand and its
boundaries vary with the geographic region. For
Alberta, on-peak is defined as the period from HE 9 to
HE 21 inclusive, Mountain Prevailing Time during a
business day. Here “HE” (hour ending) refers to the 60-
minute period ending that hour. For example HE 21
includes the time interval between 20:00 and 21:00. The
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average price over the whole 24-hour daily interval is
referred to as the baseload. Figure 1 illustrates the
weekly variability of the three different time periods —
on-peak load, off-peak load, and baseload — for 2005.
The different time periods are preserved even for the
prices over the weekends and holidays, denoted by
‘Hol’.
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Figure 1: Average weekday and holiday prices for 2005.

Because the baseload is, in fact, the average of the
off- and on—peak period prices we can use it as a
representative of the daily price variations. Figure 2
shows the typical pattern of baseload price changes for
Alberta.
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Figure 2: Baseload electricity prices for Alberta, 2005

In engineering terms, the realized current demand
is referred to as the load on the system and represents
the total amount of electricity consumed by the
customers at any given moment. There are two main
categories of load: base load and peak load. This
differentiation attains importance because of its relation
to the corresponding types of generating stations. Base
load is the minimum amount of electricity that is pulled
out of the grid by the consumers. This type of demand
is covered by nuclear and hydro-power units that
typically have lower marginal production costs, but also
longer dispatch and response times. Peak load is the
maximum amount of electricity demanded, usually

understood as the marginal difference over and above
the normal base load. It is typically covered by oil and
gas power plants.

The demand is usually categorized as short-run and
long-run. The short-run demand refers to time scales
during which there is no change in the existing loads,
such as residential appliances, industrial infrastructure,
technological processes, etc. Currently, it is accepted
that the short-run demand for electricity is income and
price inelastic (Lafferty et al. 2001).

Ordering the generating units by their size and
marginal production cost yields the supply stack. In the
short-run, peak level electricity demand can only be
matched by the remaining generating units from the far
right side of the stack. Since these units are typically
inefficient and have high marginal costs, the supply also
becomes inelastic.

4.1.3. Features of Electricity Prices

The system exhibits significant uncertainty due to
unexpected weather changes, generation failures,
transmission congestion, etc. The combination of
inelastic demand with inelastic supply in an
environment with high levels of uncertainty determines
the following unique features of electricity prices:

e Cyclical seasonality patterns on three
different time scales — yearly, weekly, and
daily — driven by the regular variation of the
demand,

e Random price spikes — sudden jumps in
prices relative to the average level for the
season, due to unanticipated shocks in either
demand or supply, e.g. unusually hot weather
or congested transmission,

e  Mean reversion — the tendency of the prices to
revert to a dependent on the season average
price level.

Figure 2 illustrates both the mean reversion and the
price spikes, as well as the yearly seasonal dependence.
Figure 3 clearly shows both the weekly patterns and the
difference in the peaks intensity over two different
representative months: May and November.

4.2. Alberta Energy Market

The design of a typical electrical system involves
coordination between the independent power producers
and importers on the supply side and the retailers and
exporters on the demand side, including the interests of
the owners of the transmission facilities and the owners
of the distribution system. All transactions are
channelled through the Power Pool operated by Alberta
Electric System Operator (AESO), a statutory
corporation. It has about 200 participants and over $7
billion in annual energy transactions. The Pool’s
Operating Policies and Procedures (AESCO 2006)
require pool participants to submit their hourly bids and
offers for the next seven days every day before noon.
Distributors and exporters submit bids specifying the
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amount of energy they are willing to buy at specified
prices. Power suppliers submit offers for blocks of
power at prices they are willing to accept. The quotes
are binding only for the next trading day. All valid bids
and offers for a settlement interval are sorted in
ascending order of how expensive they are and
generation and load units are dispatched according to
this merit order. There is a price cap currently set at
CADS$1,000MWh. The System Marginal Price (SMP),
i.e. the price of the last block of energy dispatched to
meet the load, is updated every minute in real time. The
ex-post time-weighted average of the SMPs gives the
market pool price for that hour.

500
400+
300~

= N

Qo o

o o
T T

1 60 200 300 400 500 600 700

-
(=]
o
o

b)

Electricity price (CAD/MWh)
A O @

o O O

e e ° 2

N
[=]
o

OO

100 200 300 400 500 600 700
Time (hours)

Figure 3: Hourly electricity prices for Alberta for two
periods of 2005, a) May 01 — Jun 01, and b) Nov 01 —
Dec 01.

4.3. Price Models
The taxonomy of electricity price models includes
various approaches broadly classified in six groups
depending on the mathematical methods used for
process description, namely: time series models, game
theory models, structural models, non-parametric
models, statistical models, and production cost models
(Gonzalez et al. 2005). For the purposes of the Monte
Carlo simulations, the most appropriate models are the
ones based on financial time series methods.

Modern finance theory postulates that price
follows specific random process X, and uses the

methods of stochastic calculus for its description (see
e.g. Bjork 2004). Here the subscript, #, shows time
dependence. The main building block in the theory of
stochastic processes is the (standard) Brownian motion
(BM) and its mathematical formulation, Wiener
process, W, . BM is the continuous limit of the random

walk and is the basic model of the effect of continuous
noise over time ¢ The process has independent
increments, and its change, dW,, over a short period of

time At is normally a distributed random variable with
zero mean and a variance proportional to the length of
the time interval, i.e.

Wiin =W, ~ N(0,VAL). (11
If we denote the random draws from the
standardized normal distribution N (0,1) as g, the

discrete version of the increments of the Wiener process
can be written as AW, = ¢, At which is the expression

used in the Monte Carlo simulations.

The simplest non-trivial generalization of the
Wiener process is the arithmetic Brownian motion,
which has a deterministic term with driff, v, and a
random term that is multiplied by a scale factor, ¢ , that
has the meaning of standard deviation of the process

dX, =vdt+odW,. (12)

This equation already allows for the modeling of
the variable drift and variance and is appealing due to
its simplicity, but because the random variable X, can

take negative values it cannot be interpreted as price.
The simplest solution is to make the instantaneous mean
and standard deviation proportional to the random
variable, §,, formulating, in fact, the most popular

model for description of price evolution, the geometric
Brownian motion (GBM)

dS, = uS,dt +oS,dW,. (13)

Using Ito’s lemma, it is quite easy to show 0 and
Pindyck 1994) that this is equivalent to setting
X, =1InS, and defining the drift as v=py-c/2.

Thus the distribution of the price return over a time
interval A¢ is normal with mean yArs and variance

o*At

X, - X, ~N(At,c*At) (14)

t+At

ie. the random variable § from Eq.13 can be

interpreted as (log-normally distributed) price.

GBM is commonly accepted as a model for stock
price, but in its basic form it cannot adequately describe
random variables with mean reverting behaviour, such
as electricity prices. The first mean-reverting models
were developed to describe the term structure of interest
rates, i.e. the interest rate yield curve for different times
to maturity (Vasicek 1977, Hull and White 1990). The
simplest approach is to modify the drift term of the
basic model Eq.13 as follows:

dS,=A(a-S8,)dt+ocdW,. (15)

The first term of this equation changes its sign
depending on the difference between the magnitude of
the price, S and the long-term mean-reversion level o

thus ensuring reversion towards this level with speed
proportional toA. The second term is the usual
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normally distributed stochastic term. This one-factor
model is known as the the Vasicek model, or for the
special case of zero level mean reversion, i.e. ¢ =0 as
the Ornstein-Uhlenbeck process. Still, it does not have a
mechanism to describe price seasonality.

Price seasonality is usually modeled by adding a
deterministic term to the mean-reverting part of the
model, §M* as

S =SM 4 f. (16)

The most common choice of the deterministic
function f is some combination of sinusoids

(Roncoroni and Geman 2003), sometimes with the
addition of deterministic linear trend and/or terms to
account for the seasonalities at different time scales
(Lucia and Schwartz 2002). One fairly general form of
the deterministic function is (Escribano et al. 2002)

ft=a+ﬂt+7Dt+zg’nsin((t+9n)§zzj, 17)

for a set of constant parameters «, 3,7,¢,,0, - Usually

the sum is restricted to only two terms, which is enough
to describe two annual maxima. The term yD, is

sometimes used to capture the day-of-week variability.
With this adjustment for the existence of deterministic
periodicity the stochastic differential equation
describing the process takes the form

ds,=A(a,-8,)dt +cdW,, (18)

with the deterministic function ¢, defined as

a,=f+ f'14. (19)

A comparison with Equation 15 shows that the
model specified by Equation 18 can be regarded as an
extended Vasicek model (Hull and White 1990) with a
time dependent mean-reverting level given by the
deterministic function ¢, .

None of the models considered so far exhibit
spikes, which are so prominent in the Alberta electricity
market. The most common approach is the formulation
of a jump-diffusion model (Eydeland and Geman 1999)
by adding a jump component J dg, to Equation 18,

with jump size J, and intensity given by g¢,. The

problem with these models is that the duration of the
electricity spikes is rarely longer than one hour, while
jumps have much longer durations. Different
approaches of forcing the jump back (Roncoroni and
Geman 2003) increase model complexity and introduce
statistical distortions. Therefore, an alternative set of
approaches has been tested. In the hidden Markov
models (HMM) an approach towards the price process
is split in two regimes: the stable regime and the spike

regime, and the spot price switches between the regimes
(Gonzalez et al. 2005). The drawback of HMM is the
difficulty of incorporating the seasonality. Yet another
approach involves direct modeling of the supply and
demand processes (Eydeland and Geman 1999, Burger
at al. 2004).

For the purposes of this study, where the
importance of the price spikes on hourly resolution
scale is crucial, the model must incorporate the features
of both the base price (Equation 18), and the frequency
and intensity of the spikes.

5. EXTREME VALUE THEORY

Extreme Value Theory (EVT) addresses the behavior of
stochastic processes that exhibit heavy tails. The
classical EVT is based on the asymptotic Generalized
Extreme Value (GEV) function that models the
distribution of maxima over a specified period. An
alternative approach, called ’peaks over threshold’
(POT), models the observations that exceed a high
threshold, the threshold exceedances. For a sequence
X,,X,, - of independent and identically distributed

random variables with an unknown underlying
distribution function F(x)= P{X, <x} we define the

distribution of the excesses over a high threshold u as
the conditional probability:

F(x)=P{X-u<x|X>u} (20)

It can be observed that the excess distribution can
be written in terms of the underlying distribution F as:

F(x+u)-F(u) Q1)

T T

which implies that if the underlying distribution is
known, then its excess distribution is easily computed.
It has been shown (Balkema and Haan 1974) that for a
wide class of underlying distributions and sufficiently
high threshold the excess distribution F  can be

approximated by the generalized Pareto distribution
(GPD) given by:

I-(1+&x/ )" &=#0, (22)

Gﬁ’ﬂ(x):{ l-exp(-x/p) £&=0,

with a scale parameter g > 0. The value of the shape
parameter £ determines the particular type of
distribution function subsumed in GPD. When ¢ =0,
the GPD is the exponential distribution; when¢& < 0, it
is known as Pareto type II distribution, and when £ > 0

, it is the ordinary Pareto distribution, which has a long
history in actuarial mathematics as a model for large
losses.

5.1. Parameter estimation
In order to take advantage of the extreme values
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distribution tail approximation

F(x) =G, »(x) (23)

we need to estimate the parameters £and g for a

properly chosen threshold u. The most common
technique for parameter estimation is the Maximum
Likelihood Estimation (MLE) method which is part of
most statistical software packages. Figure 4 shows the
MLE results for shape parameter £ and scale parameter

p of the GPD, with the 95% confidence intervals for
different threshold values.

a)

0.5¢

Shape, &

100 150 200 250 300

200 250 300
Threshold (CAD/MWh)

Figure 4: Maximum likelihood estimates of the
parameters of GPD, a) shape parameter | Jand b) scale

parameter with 95% confidence intervals for
different threshold values.

The choice of an appropriate threshold value is
more difficult. On the one side, the threshold has to be
high enough for the approximation of Equation 23 to
hold, but on the other, we need a large enough number
of exceedances to ensure good statistics. In addition to
the QQ plots another useful tool is the conditional
sample mean excess (SME) function defined as
e(u)=E(X -u|X >u), u=0, (24)
An important property of GPD for values & > —1 is that
SME is a linear function of the threshold, u

e(u)zli—iu. (25)
+¢& 1+¢

SME can be empirically estimated as the total
distance of exceedance over the threshold divided by
the number of points exceeding that threshold, i.e.

e (u)= zV: (X, —u)" zV: Ly s (26)

where n is the sample size, the ‘+’ sign denotes the
positive part of the expression in the brackets, i.e.
A" =max(A4,0), and the indicator function /=1 if

X, >0 and 0, otherwise. The empirical estimate of the

SME, Equation 26 can be used to infer an appropriate
threshold value by identifying a linear part of the
function (Embrechts et al. 2004) according to the
linearity property, Equation 25. Figure 5 shows the
variation of the SME function on the electricity data for
2005.

At threshold, ¥=130 CAD/MWh, the maximum
likelihood estimates for the shape and scale parameters

of the GPD are (£, )=(0.257, 85.47) with
confidence intervals: Cl(égs%) =(0.167, 0.346)and

CI(Bys,) = (76.65, 95.31).
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//" g "I'If( "'4:-':,’“;,::';"': o
/" ,

Threshold, u=130
50 il L

0 100 200 300 400 500 600
Threshold (CAD/MWh)

150

1001

Sample Mean Excess over threshold

Figure 5: Sample Mean Excess function over threshold
for hourly Alberta electricity prices for 2005

The graphical comparison between the GPD
calculated with these parameters and the empirical
histogram created on the basis of the same tail data is
presented in Figure 6. Visual inspection confirms the
goodness of fit for the chosen parameter.

In addition to the rather subjective visual
inspection we applied the more formal goodness of fit
test. We formulated the null hypothesis that the
empirical tail distribution is a sample coming from the
theoretical GPD against the alternative that it does not
come from that distribution. We applied two-sample
Kolmogorov—Smirnov tests to the data. Bearing in mind
the limited power of the test (Choulakian and Stephens
2001, Zempleni 2004), it also confirmed the null
hypothesis at 95% confidence level with p—value of
p=0.

Figure 7 shows the position of the threshold that
separates the extreme values of the hourly electricity
prices according to EVT. There are 937 extreme points
over the threshold out of total of 8,471 observations, i.e.
11%.
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Figure 6: Diagnostic plot of GPD probability density
and the empirical histogram for the values of Alberta
hourly electricity prices for 2005 over the threshold
u=130.
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Figure 7: Threshold for the extreme value theory plotted
against the hourly prices for 2005

6. MONTE CARLO SIMULATION

6.1. Algorithms

In this study, we apply Monte Carlo simulation
within the framework of capital budgeting. The problem
involves three sources of uncertainty, the price of fuel,
the price of electricity, and the level of interest rate. The
prices are modeled as stochastic processes. The hourly
price of fuel is obtained by sequentially applying the
discretized version of Equation 18. The hourly price of
electricity is obtained from the same equation with the
added ‘spike’ term.

The simulation is run N, number of times. Each

time, an hourly comparison of the simulated prices of
fuel and electricity is performed. If the price of
electricity is higher than the price of fuel used to
produce it, the spark spread, the power generating unit
is ‘dispatched’ for that hour. If the spark spread is
negative, no energy is sold to the grid. The cash flows
generated during the day are used to perform a DCF
analysis of the investment.

The interest rate used in the DCF analysis, the third
source of uncertainty, is modeled by fitting the extended

Nelson-Siegel form to the data of tradable Canada
Government bonds, as described below. The spot rate,
Equation 10, is used to calculate the present value of the
cash flow for every day, PV (CF,) . The sum of all cash
flows is used to determine the net present value for the
particular realization NPV, . In parallel, the forward
rate, Equation 8, is used to calculate the future value of
the cash flow for every day, FV (CF,) the sum of which
is used to determine the total future value for the
particular realization Fy**. The latter is plugged into

Equation 4 in order to calculate the internal rate of
return from the asset for the particular realization /RR .

The values of both NPV and [RR, are retained at the

end of each realization, thus at the end of the simulation
we can calculate their average values (point estimators
for the population means)

N,

v, 27)

p- LSy
Nrr:l

where V stands for both NPV and /RR. The standard
error of the estimator ¥ is calculated as (Hines et al.
2003)

eW)y=c()IJN,, (28)

where the sample standard deviation is given by

a(r?)=\/N l_li(v,-r?)z 29)

r=1

6.2. Data

The data for the electricity and fuel prices in Edmonton
covers the period of 2001-2006, i.e. the period starting
after the full deregulation of the electricity market in
Alberta. The electricity data has an hourly frequency
and some representative samples of the data are shown
in Figure 2 and Figure 3.

The diesel price data refers to the weekly average
prices at Exxon Mobil gas stations. Because the price
differentials between the gas stations of the different oil
companies is typically in the range of 1-2 cents, we
take these prices as representative for the city. The price
levels for the period are shown in Figure 8.

These weekly diesel prices were further re-sampled
by linear interpolation in order to obtain hourly values.
The low weekly variation allows obtaining the hourly
price data by linearly interpolating between the weekly
data points.

The data used to fit the extended Nelson-Siegel
model consists of four Government of Canada Treasury
bills with maturities of 1, 3, 6 and 12 months, and five
selected Government of Canada benchmark bonds with
maturities of 2, 5, 7, 10, and 30 years, summarized in

Table 1.
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Figure 8: Weekly average retail prices of diesel in
Edmonton for 2001-2006.

Table 1: Selected Government of Canada T-bills and
benchmark bonds used to construct the term structure of
the interest rates. The yields are based on mid-market
closing values.

Maturity Yield Coupon
(years) (% per anum) (% per anum)

0.08 4.1 0
0.25 4.15 0
0.50 4.12 0
1 4.00 0

3.785 4.25

3 3.76 4.25

5 3.745 3.75

7 3.79 5.25

10 3.86 4.00

30 3.96 5.75

6.3. Calibration

Diesel prices are modeled as a mean-reverting process
described by Equation 18. In order to estimate the
parameters of this model from data we write the
equation in discretized form as

X - X A(a - XAt + o¢,. (30)

k+1

where the stochastic term, ¢, ~ X (0,1) are draws from

standard normal distribution. This equation is recast as a
linear function of the price levels:

X, -X,=a,+aX, +0s,, (31)

k+l

and the parameters g, = AaAf, and a, = -AAt,
alz-XAt, are estimated by the least squares method.

Using the log-prices data, the estimation yields
a,=0.0419+0.0711, and g, =-0.0088+0.0163.

From here we determine the following parameters for

the fuel model A, =0.4593,

o, =0.125.

The calibration of electricity prices is similar to the
calibration of the diesel prices, but involves additional
steps because of the presence of spikes. Using the
threshold u=4.8675, corresponding to logarithm of
$130$/MWh, as determined in the previous section, we
separate the ‘normal’ regime from the spike regime.
The latter is modeled as a product of two distributions,
one describing the frequency of the spikes, and the other
describing their intensity. The frequency component
was modeled with the Poisson distribution, and the
intensity component was modeled with the Gamma
distribution. The maximum likelihood estimates for the

a,=4.7393, and

%G and the scale parameter % of the
(Gg»Ag) = (89.2453,0.0576)

shape parameter,

Gamma distribution are

with confidence intervals:
&GDS% =(85.1712,93.5142)and
,{G‘%% =(0.0549,0.0603) Similarly, for the Poisson

distribution we obtain ,{P =5.1392 with values at

95% confidence interval ,{P‘%% =(5.0642,5.2142).

The fitting of the term structure of interest rate,
Equation 10, to the data in

Table 1 was formulated as a minimization problem
(Soderlind and Svensson 1997)

Ny

min > (R(4,)- R(1))

2
4 2 >
(B.t)eR xR =

(32)

where the squared price deviations are calculated for all
bonds, N, =10, and the corresponding times to

maturity ¢, , subject to

By>0, By+p, >0, 7,,>0. (33)

The solution of this nonlinear minimization
problem is quite sensitive to the starting point. We used
a Matlab implementation of the Nelder-Mead simplex
method, and our choice of the starting points was
guided by the interpretation of the parameters (g,7) .

In practice, g, is interpreted as a long-term interest
rate, S is the spread between long- and short-term
interest rates, f,and g, determine the height and the
directions of the curvatures, and the scale parameters |
and 7, determine curvature positions. The values of

these parameters as determined from the optimization
are shown in

Table 1. The continuous term structure of the spot
and interest rates, calculated from formulas (Equation 8
and Equation 10) using the parameters from Table 2 are
graphed in Figure 9.

Following the algorithm described in the previous
subsection, we simulated N , =500, the number of
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paths for both the electricity prices and fuel prices for a
period of 15 years. At each path, we calculated the NPV
and the IRR of the cash-flows for positive price spread.
Assuming an initial investment (hook-up cost) of
C, = $25,000 and no extra maintenance cost, the final

estimates are: NPV =$605,686 and NPV =248%.
The standard error in the two estimates are respectively
SE(NPV)=27%  ngSEURR)=29% (.
comment about the high value of IRR is that the
calculation does not take into account the cost of the
generation unit, only the part related to its connection to
the grid. As noted before, such generators would
already be in place as part of EPS. In addition, the value
of the NPV is somewhat inflated and can only be used
as a benchmark. The reason for this is the discount
factor, which we assumed to be the risk free rate. For
any other required rate of return this value would be
smaller.

Table 2: Estimated extended Nelson-Siegel parameters
used to calculate the continuous term structure interest
rates curve

Bo By B, B 7 7

0.0454 2.5232 | 25.6014

0.0044 | 0.0149 | 0.0145

a

A A A A
[ - )
T
\

Interest rate (%)
H

3.8
3.6 |
3.4r |
- Yields to maturity
3.2+ —Fitted spot rate
------- Fitted forward rate
3 5 10 15

Time to maturity (years)

Figure 9: Extended Nelson-Siegel fit for the estimated
duration of the project

7. CONCLUSION

In order to estimate the potential profitability of
independent power producers, we performed the Monte
Carlo simulations calculating two commonly accepted
measures in the capital budgeting profitability: the net
present value and the internal rate of return. These two
measures were calculated on the basis of the cash flows
generated by the power asset. A cash flow would be
generated when the spread between the prices of the
energy sold and the price of the fuel to produce this
energy would be positive.

Our approach differs from most valuations of
power generating assets in several aspects. First, we
modeled the prices of electricity and fuel separately.
This allowed for the incorporation of realistic sampling
of fuel prices, subject to fuel tank capacity constraints.
The tank would be “refilled” at the current fuel prices
when emptied and the time between re-fills would be
dependent on the time interval where the spark spread is
positive.

Secondly, we paid close attention to the
distribution of the spikes in electricity prices. Small
power generating units with high production cost have
high sensitivity to the extreme values as a result of their
high production cost. We used the ‘peaks over
threshold” method to fit the tail distribution of the
electricity prices and model more accurately the price
spikes.

Finally, in order to account for the changes of the
interest rates over time and their effect on the
profitability measures we modeled the term structure of
the interest rates by the extended Nelson-Siegel form.

Our results for the parameters of the chosen
representative power generation unit show the viability
using units that are currently part of the emergency
power systems for peak hour power producing.
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