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ABSTRACT 
Demand forecasting is one of the most crucial aspects 

of inventory management. For intermittent demand, i.e. 

demand peaks follow several periods of zero or low 

demands, forecasting is difficult. Furthermore, the 

choice of the forecasting method can have an impact on 

the inventory management policy that is best used. A 

simulation model is used to study a single-product 

inventory system facing demand of the intermittent 

type. In this paper, a decision support system is 

presented to choose between several forecasting 

methods and inventory management policies for 

intermittent demand.  

 

Keywords: simulation-optimization, intermittent 

demand, forecasting, inventory management 

 

1. INTRODUCTION 

Inventory systems have to cope with uncertainty in 

demand. The inventory control literature mostly makes 

use of the Normal or Gamma distribution for describing 

the demand in the lead-time. The Poisson distribution 

has been found to provide a reasonable fit when demand 

is very low (only a few pieces per year). Less attention 

has been paid to irregular demand. This type of demand 

is characterised by a high level of variability, but may 

be also of the intermittent type, i.e. demand peaks 

follow several periods of zero or low demands. In 

practice, items with intermittent demand include service 

or spare parts and high-priced capital goods. A common 

example of such goods are spare parts for airline fleets. 

Demand forecasting is one of the most crucial 

aspects of inventory management (Willemain et al. 

2004). However, for intermittent demand, forecasting is 

difficult, and errors in prediction may be costly in terms 

of obsolescent stock or unmet demand (Syntetos and 

Boylan 2005). The standard forecasting method for 

intermittent demand items is considered to be Croston’s 

method (Croston 1972). This method builds estimates 

taking into account both demand size and the interval 

between demand occurrences. Despite the theoretical 

superiority of such an estimation procedure, empirical 

evidence suggests modest gains in performance when 

compared with simpler forecasting techniques (Syntetos 

and Boylan 2001). Furthermore, the choice of the 

forecasting method can have an impact on the inventory 

management policy that is best used. 

In this paper, a decision support system is presented 

to choose between several forecasting methods and 

inventory management policies for intermittent demand. 

Because of the uncertainty present in the inventory 

system, often mathematical models cannot accurately 

describe the system. Therefore, a simulation model is 

used. The simulation model is optimised to find the best 

strategy in combining inventory decision making and 

demand forecasting for intermittent demand. However, 

the best strategy depends on uncontrollable factors, i.e. 

the costs of the inventory system and the distribution of 

demand during lead time. 

A good decision support system is necessary 

because there is a considerable increase in the total 

costs of the inventory system when not using the best 

strategy. The decision support system is presented as a 

decision tree where levels of the uncontrollable factors 

indicate which strategy in combining inventory decision 

making and demand forecasting is best chosen. 

The organisation of the paper is as follows: in 

section 2 the simulation model and research approach 

are described; the experimental environment is 

described in section 3; section 4 discusses the results of 

the simulation model and presents the decision support 

system and in section 5 conclusions are formulated. 

 

2. SIMULATION MODEL AND RESEARCH 

APPROACH 
 

2.1. Simulation Model 

The study focuses on a single-product inventory system 

facing demand of the intermittent type. The simulation 

model is developed in Microsoft Excel spreadsheets and 

uses VBA. The simulation model starts by generating 

intermittent demand as described in the previous 

section. Next, the inventory system is simulated for 52 

periods. At each review-time, a demand forecast and an 
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order decision are made. The total costs of the inventory 

system are determined. 10 replications are made for 

each simulation run. 

To generate intermittent demand, demand 

occurrence and demand size are separately generated. 

The demand occurrence is generated according to a 

first-order Markov process with transition matrix 
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where p
00

 is the probability of no order in the next 

period when there has been no order in this period and 

p
10

 is the probability of no order in the next period 

when there has been an order in the current period. 

Individual order sizes are generated using a Gamma 

distribution with shape parameter γ and scale parameter 

β. 

The standard forecasting method for intermittent 

demand items is considered to be Croston’s method. 

However, in practice, single exponential smoothing and 

simple moving averages are often used to deal with 

intermittent demand. These three forecasting methods 

are compared. 

In this research, two periodic review models are 

used. The first one is the (R, s, S) system. This means 

that every R units of time, the inventory level is 

checked. If it is at or below the reorder point s, a 

sufficient quantity is ordered to raise it to S. The second 

system (R, s, Q) is similar to the (R, s, S) system but 

uses a fixed order quantity Q instead of an order-up-to-

level S. 

A deterministic lead-time L is assumed. The 

following costs are considered: unit holding cost per 

period C
h
, ordering cost C

o
 and unit shortage cost per 

period C
s
. The simulation starts with an initial 

inventory level I
0
. 

 

2.2. Experimental Design 

The parameters of the inventory system to optimise 

include both qualitative and quantitative factors. The 

experimental design includes two qualitative factors: the 

forecasting method and the inventory management 

policy. In addition, depending on the choice of the 

qualitative factors, a set of quantitative factors are part 

of the experimental design. If the (R, s, Q) inventory 

management policy is used, the safety stock SS and 

order quantity Q are the parameters to optimise. If the 

(R, s, S) inventory management policy is used, the 

safety stock SS and order-up-to-level S are the 

optimising parameters. For single exponential 

smoothing and Croston’s method, the smoothing 

parameter α is optimised and for moving averages, the 

weights of the past values are optimised. 

 

2.3.  Research Approach 

Because of the dependence of the quantitative factors on 

the choice of the qualitative factors, we use for the 

optimisation the research approach described in this 

section. 

For every combination of forecasting method, 

inventory management policy and review period, the 

optimal values of the quantitative factors are 

determined. The total costs of the inventory system are 

optimised using tabu search. Tabu search is shortly 

described below. Once the optimal values are found, the 

best combination of forecasting method, inventory 

management policy and review period is chosen. 

Tabu search uses a local or neighbourhood search 

procedure to iteratively move from one solution to the 

next in the neighbourhood of the first, until some 

stopping criterion has been satisfied. To explore regions 

in the search space that would be left unexplored by the 

local search procedure and escape local optimality, tabu 

search modifies the neighbourhood structure of each 

solution as the search progresses. The solutions 

admitted to the new neighbourhood are determined 

through the use of special memory structures. Tabu 

search uses both long-term and short-term memory, and 

each type of memory has its own special strategies 

(Dengiz and Alabas 2000, Glover 1989). 

Tabu search is a heuristic optimisation technique 

developed specifically for combinatorial problems. 

Very few works deal with the application to the global 

minimization of functions depending on continuous 

variables. The method we propose in this paper is based 

on (Chelouah and Siarry 2000, Siarry and Berthiau 

1997). The purpose in these papers is to keep as close as 

possible to original tabu search. Two issues must be 

examined: the generation of current solution neighbours 

and the elaboration of the tabu list. 

To define a neighbourhood of the current solution, a 

set of hyperrectangles is used for the partition of the 

current solution neighbourhood. The k neighbours of 

the current solution are obtained by selecting one point 

at random inside each hyperrectangular zone. 

Once a new current solution is determined, the 

immediate neighbourhood of the previous solution is 

added to the tabu list. 

 

3. EXPERIMENTAL ENVIRONMENT 

The experimental environment contains the 

uncontrollable factors of the inventory system: the costs 

of the inventory system and the parameters for 

generating intermittent demand. These factors can have 

an effect on the results that are obtained. The research 

approach described above, is executed using a single 

combination of the costs of the inventory system and 

demand. A fractional factorial design of 16 

experimental points is set up for these factors and the 

optimisation phase is repeated for each experimental 

point. 
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Demand occurrence is generated using a first-order 

Markov process with transition matrices: 

 

 

 P
1

= 



 

0.78750.2125

0.85 0.15
 

or 

 P
2

= 



 

0.56670.4333

0.65 0.35
. 

 

They correspond with a probability of 20% to have 

demand in a certain period for the first matrix and a 

probability of 40% to have demand in a period for the 

second matrix. The size of demand is generated using a 

Gamma distribution with 4 different combinations of 

the scale parameter γ and the shape parameter β. These 

values are summarized in Table 1. 

Table 1: Parameters of the Gamma Distribution 

Level γ β 

1 6 1 

2 12 1 

3 3 2 

4 24 0.5 

The levels of the costs of the inventory system are given 

in Table 2. The initial inventory level I
0
 equals 5. 

Table 2: Levels for the Costs of the System 

Level C
o
 C

h
 C

s
 

1 100 2 5 

2 200 4 10 

The fractional factorial design is shown in Table 3. This 

fractional factorial design makes it possible to 

determine the impact of uncontrollable factors as the 

cost structure and the demand during lead time. 

 

4. RESULTS 

Each run of a single experiment from the fractional 

factorial design leads to a best inventory policy, 

together with its set of optimal parameter values, and to 

a best forecasting method, together with its set of 

optimal parameter values (Table 4). This section aims to 

investigate which design factors have an influence on 

the choice of inventory policy and forecasting method. 

At first, a detailed study is made of the influence of 

each individual factor, and afterwards an attempt is 

made to simplify and structure these findings in a 

decision support system, which is generated using a 

classification tree. 

Eight experimental points have the order-up-to-level 

(OUL) inventory management policy with S=1 as best 

strategy but with various best forecasting methods. For 

the other eight experimental points, the best strategy is 

an OUL-inventory management policy with S≥15 or a 

fixed order quantity (FOQ) policy with Q≥15. An FOQ-

inventory management policy as best goes together with 

the moving averages (MA)-method as best forecasting  
 

Table 3: Experimental Design 

Exp C
o
 C

h
 C

s
 Freq γ β 

1 200 4 10 0.4 12 1 

2 100 4 5 0.4 12 1 

3 200 2 5 0.4 24 0.5 

4 100 2 10 0.4 24 0.5 

5 200 2 5 0.4 3 2 

6 100 2 10 0.4 3 2 

7 200 4 10 0.4 6 1 

8 100 4 5 0.4 6 1 

9 200 2 10 0.2 12 1 

10 100 2 5 0.2 12 1 

11 200 4 5 0.2 24 0.5 

12 100 4 10 0.2 24 0.5 

13 200 4 5 0.2 3 2 

14 100 4 10 0.2 3 2 

15 200 2 10 0.2 6 1 

16 100 2 5 0.2 6 1 

 

method. Also in case the OUL-inventory management 

policy with S≥15 is best, MA shows to be the best 

forecasting method. In case the OUL-inventory 

management policy with S=1 is best, no specific 

forecasting method is preferred. The results also 

indicate that the parameters of the forecasting method 

have no significant impact on the results. In the next 

paragraphs, the influence of the uncontrollable factors 

on the results is examined in further detail. 

When the demand frequency is generated using 

matrix P
1

, corresponding to a probability of 20% of 

having demand in a certain period, an order-up-to-level 

S of 1 unit is optimal. When the demand frequency is 

generated using matrix P
2

, which corresponds to a 

probability of 40% of having demand in a certain 

period, the order-up-to-level S or fixed order quantity Q 

is a value between 15 and 30. This can be explained 

because the intermittent character of demand is more 

distinct when the probability of demand is equal to 

20%, leading to an optimal order-up-to-level S of 1 unit. 

When the intermittent character of demand is less 

distinct (40%), it is better to order a quantity of at least 

15 units. The only exception to this order-up-to-level S 

of 1 unit for a demand probability of 20% can be found 

when both the ordering cost and the unit shortage cost 

are high and the unit holding cost is low. In these 

circumstances it is better to order a bigger quantity 
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because it is less costly to hold inventory than to have a 

stock-out or to order a small quantity every time.  

 

Table 4: Optimal Results based on Tabu Search 

Exp Best strategy 

1 MA/FOQ; ROP=0; Q=25 

2 ES/OUL; ROP=0; S=1 

3 MA/OUL; ROP=0; S=30 

4 MA/OUL; ROP=0; S=25 

5 MA/FOQ; ROP=0; Q=20 

6 MA/OUL; ROP=0; S=15 

7 MA/FOQ; ROP=0; Q=15 

8 ES/OUL; ROP=0; S=1 

9 MA/FOQ; ROP=0; Q=20 

10 ES/OUL; ROP=0; S=1 

11 CR/OUL; ROP=0; S=1 

12 ES/OUL; ROP=0; S=1 

13 MA/OUL; ROP=0; S=1 

14 MA/OUL; ROP=0; S=1 

15 MA/OUL; ROP=0; S=15 

16 ES/OUL; ROP=0; S=1 

 

Inversely, when a demand probability of 40% is 

used, it is better to use an order-up-to-level S of 1 unit 

when both the ordering cost and the unit shortage cost 

are low and the unit holding cost is high. 

When comparing results for changing the 

parameters of the demand size, no significant impact of 

these changes on the results can be detected. 

Changes in the cost structure of the inventory 

system have a significant impact on the results. When 

the ordering cost is equal to 100, an order-up-to-level 

inventory management policy is used with the order-up-

to-level S equal to 1, except when the unit holding cost 

is low, the unit shortage cost is high and the demand 

probability of a certain period is 40%. The level of these 

three factors all favour holding more units in inventory. 

The combination of these three levels therefore changes 

the best policy to a policy with an order-up-to-level or 

fixed order quantity between 15 and 30, although the 

order cost is low. When the ordering cost is equal to 

200, the order-up-to-level S or fixed order quantity Q is 

between 15 and 30, except when the unit holding cost is 

high, the unit shortage cost is low and the demand 

probability of a period equals 20%. 

When the unit holding cost is equal to 2, an order-

up-to-level S or fixed order quantity Q between 15 and 

30 is used, unless both the ordering cost and the unit 

shortage cost are also low and the demand probability 

of a period equals 20%. When this combination of 

factor levels occurs, an inventory policy with an order-

up-to-level S equal to 1 is better used because all these 

factor levels give preference to a lower inventory level. 

When the unit holding cost equals 4, an order-up-to-

level S of 1 is the best choice, unless the ordering cost 

and unit shortage cost are also high and the demand 

probability of a period is 40%. This combination of 

factor levels favours a higher inventory level and thus 

an order-up-to-level or fixed order quantity between 15 

and 30 is better used. 

A unit shortage cost of 5 implies an order-up-to-

level S of 1 unit, except when the unit holding cost is 

also low and the probability of demand for a certain 

period equals 40%. When the shortage cost is low, it is 

not necessary to keep a lot of units in inventory. 

Therefore, an order-up-to-level equal to 1 is the best 

policy. However, if the holding cost is also low and the 

intermittent character of demand is not so distinct, it is 

better to have more units in inventory even though the 

shortage cost is low. Doubling the unit shortage cost 

leads to an order-up-to-level S or fixed order quantity Q 

between 15 and 30, except when the unit holding cost is 

high and the demand frequency is equal to 20%. 

Overall, it can be concluded that the uncontrollable 

factors have an impact on the best strategy for 

combining inventory decision-making and demand 

forecasting for intermittent demand. Furthermore, there 

is interaction between these factors. 

To structure these findings, a decision support 

system is developed using a classification tree. The 

classification tree is constructed using the C4.5 

algorithm, a well-known algorithm in data mining 

(Quinlan 1993). The classification tree can be found in 

Figure 1. Using this tree, it can be decided which of the 

two strategies is best: an order-up-to-level inventory 

management policy with S=1 or an order-up-to-level 

inventory management policy with S≥15 or a fixed 

order quantity model with Q≥15. Three factors are 

needed to determine the best strategy in combining 

inventory decision making and demand forecasting: the 

frequency of demand, the order cost and the inventory 

cost. If one of these three factors is not known, the 

knowledge of the stock-out cost is also sufficient to 

make a classification. Summarizing, it can be said that 

if three factors of the four just mentioned (frequency of 

demand, order cost, inventory cost and stock-out cost) 

are fixed, the best strategy is presented. 

 

 

 
Figure 1: Classification tree 

 

A good classification is necessary because there is a 

considerable increase in the costs of the inventory 

system when using the other strategy. When a fixed 

order quantity inventory management policy with Q=15 

is used instead of an order-up-to-level inventory 
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management policy with S=1, total costs are on average 

20% higher. In the opposite case, when an order-up-to-

level inventory management policy with S=1 is used 

instead of an order-up-to-level inventory management 

policy with S≥15 or a fixed order quantity model with 

Q≥15, total costs increase with more than 40% on 

average. 

 

5. CONCLUSIONS 

In this paper a decision support system is presented to 

choose between several forecasting methods and 

inventory management policies for intermittent demand. 

A best strategy in combining inventory decision making 

and demand forecasting is proposed, using a simulation 

model. An experimental design is set up to determine 

the impact of uncontrollable factors: the cost structure 

and the demand. Depending on the experimental 

environment, two options for optimal strategies can be 

distinguished: an order-up-to level inventory 

management policy with an order-up-to level equal to 1 

and a reorder point equal to 0 or an inventory 

management policy with a fixed order quantity Q>1 or 

an order-up-to level S>1 and a reorder point equal to 0. 

Four factors of the experimental environment have an 

influence on which of the two strategies is best chosen: 

the frequency of demand, the inventory holding cost, 

the order cost and the stock-out cost. When the level of 

three factors out of these four are fixed, it is possible to 

determine the optimal strategy. To structure these 

findings, a decision support system is developed using a 

classification tree. It is important to know which of both 

strategies is best because there is a significant increase 

in total costs of the inventory system if the wrong 

strategy is chosen. 
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