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ABSTRACT 
Evolution of animals with multiple organs or limbs is 
considered. We report computer-aided modeling and 
simulation of evolution in biological systems with 
living organisms as the effect of extremum properties of 
classical statistical entropy of Gibbs-Boltzmann type or 
its associates, e.g. Tsallis q-entropy. A variational 
problem searches for the maximum entropy subject to 
the geometric constraint of constant thermodynamic 
distance in a non-Euclidean space of independent 
probabilities pi, plus possibly other constraints. Tensor 
form of dynamics is obtained. Some processes may 
terminate rapidly due to instabilities. A gradient 
dynamics can be predicted from variational principles 
for shortest paths and suitable transversality conditions. 

 
Keywords: evolution, entropy, gradient dynamics. 
 
1. INTRODUCTION 
Systems capable of increasing their size and/or number 
of states (growing systems) can exhibit critical behavior 
when their size increases beyond a certain value. In 
effect, some developmental processes, i.e. biological 
evolution, may progress in a relatively undisturbed way, 
whereas others may terminate rapidly due to strong 
instabilities. To describe such phenomena 
quantitatively, we present here an extremum principle 
for entropy S of a physical or a biological system with 
variable number of states, thus making it possible to 
investigate processes of biological development and 
evolution. The extremum principle is of the variational 
nature and may be formulated as the problem of 
maximum S subject to the geometric constraint of the 
constant thermodynamic distance in a (generally non-
Euclidean) space of independent probabilities pi, plus 
possibly other constraints. The dynamics found are 
presented in the tensor form. An essential result implies 
that various dynamics, in particular those of growth 
processes (characterized by the increase in number of 
states), are governed by the gradient of the entropy in a 
Riemannian space. 
  
2. ROLE OF COMPLEXITY AND ENTROPY  
In the thermodynamic theory of evolution extrema of 
complexity Γ with respect to entropy S provide 
important information. There is a multitude of 
complexity measures in the literature, all capturing 

some aspects of what we mean when we say a process 
is complex. According to Saunders and Ho (1976, 
1981) the complexity growth is the most probable effect 
in evolving systems. Complexity Γ  is a function of 
disorder D and order Ω, which, in turn, are functions of 
the information-theoretic entropy S and number of 
possible states n. When speaking about the complexity 
and related entropy one issue is particularly important: a 
nonequililibrium entropy has to be necessarily applied 
because the difference between the maximum entropy 
and the actual system’s entropy governs the 
organization in a complex system. Schrödinger (1967) 
has defined the disorder D and order Ω  as expotential 
functions of non-dimensional quantities S and –S 

respectively, in units of kB. Yet, as pointed out by 
Landsberg (1984) these notions are inappropriate for 
growing systems. For such systems, Landsberg's 
definitions of disorder D and order  Ω   apply  

 

 max/ SSD ≡   (1) 
 

max/ SSD −1=−1≡Ω .  (2) 
 

   As Smax depends on the number of states, n, in 
Landsberg's definition both disorder D and order Ω are 
functions of the information entropy S and number of 
states, n, i.e. ),( nSDD = and ),( nSΩ=Ω . One 

especially simple form is the complexity 
 

)/)(/()( )max()max( nnn SSSSDSΓ −14=Ω4≡   (3) 

 
The coefficient 4 in Eq. (3) is introduced to normalize 

the quantity Γn. The subscript n refers to a complexity 
sequence in a system with growing number of states, n. 
The solution to the following equation 
 

         0=dSSdΓ n /)(    (4) 

 
allows one to determine the extremum value of the 

information-theoretic entropy, Ŝ , which maximizes 
complexity Γn (Szwast, Sieniutycz and Shiner 2002). 
The maximum attained by the function Γn = Γ(S, n) 
equals the unity. This maximum appears for D = 0.5. 

Proceedings of the International Conference on Modeling and Applied Simulation, MAS 2009
ISBN 978-84-692-5417-2 123



Hence the complexity-maximizing S equals to one half 
of the maximum entropy (the total randomness) 
  

)(ˆ
max nSS

2
1=     (5) 

 
  Evolution occurs on submanifolds that are surfaces 
of constant entropy (Szwast, Sieniutycz and Shiner 
2002). Here the generalized q-entropy or Tsallis entropy 
S is used in probabilities p= p0, p1, ....pn 
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where pk is the probability of finding an element in the 
state i among n states possible and Σpk=1. Equation (6) 
refers to Tsallis statistics (Kaniadakis, Lissia, 
Rapisarda, 2002) which generalizes the Boltzmann-
Gibbs statistics by introducing an additional parameter 
q, that is called non-extensivity parameter. The additive 
Boltzmann entropy is regained from (6) in the limit of 
q=1. Performing maximization of S one can easily show 
that for a sole constraint Σpk=1 maximum of entropy 
occurs for the total randomness. All probabilities satisfy 
then the equality pi=pk =n-1and the maximum entropy is 

 

 ( )qnqS −11− −11−= )(max .  (7) 

 
 In the classical case (q →1) this formula yields a 
well-known result, Smax= ln(n).  
 Yet, in an example considered, a multi-organ 
animal is a system with 2n+1 probabilities that describe 
n pair of legs plus the remaining part of the body, hence 

 

( )qnqS −11− 1+2−11−= )()(max . (8) 

 
 In the classical case (q →1) this formula yields, 
Smax= ln(2n+1). The complexity-maximizing entropy 

nŜ equals to one half of these quantities. In the classical 

case of q=1 one obtains 
 

 )ln()/(ˆ nSn 2+121= .  (9) 

 
Generally, the complexity-maximizing entropy is 
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where nŜ of Eq. (9) follows  in the classical case of q=1. 

To work with independent pi we eliminate the last 
probability from entropy (6) and normalization 
condition Σpi=1. We then obtain a tilde entropy function 

 

),...,(
~

1−10= npppSS    (11) 

and, from Eq. (3), a related complexity  
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Using independent probabilities we work with the tilde 
entropy. For the evolutions satisfying the maximum 
complexity (Saunders and Ho 1976), the entropy 

)(
~

pS equals to the complexity-maximizing entropyŜ . 

This is consistent with the statement of Saunders and 
Ho (1976) "The only completely reversible changes are 

those which are isocomplex". For SS
~ˆ = (p0, p1,..pn-1), a 

subset of probabilities p = (p0,p1,..pn-1) is found 
describing the evolution submanifolds by an equality 

       

 nn SpppS ˆ),...,(
~ =1−10    (13) 

 

and assuring the value of nŜ = (1/2)Smax(n). Within this 

manifold, a reversible modification of states is possible. 
In other words, in the evolution examples, the solutions 

to equality S
~

(p0, p1,..pn-1) = (1/2)Smax(n) refer to the 
submanifolds of evolution, or surfaces on which 
modifications (mutations) of organs may occur.  
  
3. EVOLUTIONS OF MULTIPLE ORGANS 

WITHOUT MUTATIONS  
Following earlier works (Saunders and Ho 1976, 1981; 
Szwast, Sieniutycz and Shiner 2002; Szwast 1997) we 
analyse here the evolution of a multiple-organ or a 
multi-limb organism, e.g. trilobite, an animal with many 
pair of legs. Although trilobites died out millions years 
ago, their anatomical structure is known due to the 
excavations. For our purposes it is sufficient to 
distinguish one pair of legs, of probability 2pi

 ≡  2p1
 

from the remaining parts of the organism. The 
remaining part has probability p0. For a multi-organ 
animal with n pairs of legs, the following holds 

 

   ( )qq nppqS 10
1− 2−−11−= )(   (14)           

 
and, in the classical case, 

 
    1100 2−−= pnpppS lnln .  (15) 

 
They both hold subject to the condition of Σpi=1, or 

 
npp 2−1= 01 /)(   (16) 

  
Whence the entropy in terms of single independent p0  
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and its classical limit of q=1 
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   Each of these entropies must be equal to its 

complexity-maximizing counterpart  as described by 
Eq. (10) and its classical limit (9). By comparing Eq. 
(10) and (17), for an arbitrary q, we obtain equations for 
independent probabilities in terms of n and sole p0  
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In the case of classical entropy 
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From these equations probabilities p0 and (then) p1 can 
be calculated in terms of n. Graphs of these results for 
q=1 are presented in the literature (Szwast, Sieniutycz 
and Shiner 2002; Szwast 1997), where appropriate 
results are restricted to points describing the evolution 
without modifications or specializations. 
    
4.   ORGANISMS WITH MUTATIONS OR 

SPECIALIZATIONS OF ORGANS OR LIMBS 
Here we analyze the evolution of a multiple-organ 
animal with mutations or specializations. An example 
relevant to this case follows the scheme including the 
stage trilobite⇒ crab. With entropies S expressed in 
terms of independent probabilities pi (functions 

S
~

(p0,....pn-1) one may consider effects of reversible 
modifications (mutations) of multiple organs (e.g. pair 

of legs), for a fixed value of nŜ . In the considered 

example, after modification of a pair of legs to claws a 
crab emerges from a trilobite. Considering the 
anatomical structure of the crab, one pair of claws is 
distinguished with probability 2p2. When the 
modification occurs without change in number of pairs 
of legs and claws, the following equality holds  

 
1=+1−2+2 012 ppnp )( .    (21) 

 
For an organism with one pair of organs modified 

(specialized) on the reversibility surface, Eq. (13) and 
(21) are applied in the space of independent 
probabilities to describe the equality of the generalized 

entropy S
~

 and the complexity-maximizingnŜ . After 

comparing the two entropy expressions we obtain 
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in the generalized case, and  
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in the classical case. The probability function p2(p1, p0) 
used in these equations has the form 
 

))(( 102 1−2−−1=
2

1
pnpp   (24) 

 
that follows from the condition Σpi=1 represented by 
Eq. (21). Note that 2p2 is the probability attributed to 
the modified organ or limb. The complexity-
maximizing entropies (nŜ =Smax/2) are those used 

earlier, Eq (10). The evolution submanifolds are now 
the family of lines p0(p1, n). They describe organisms 
possessing n-1 of identical organs (pairs of legs) and 
one organ being modified, specialized, or subjected 
mutations. A special subset of data refers to organisms 
without specialization (Sec.3). 
 In the evolution literature Williston's law is 
frequently quoted  (Saunders and Ho 1976, 1981; 
Szwast, Sieniutycz and Shiner 2002), which subsumes 
the results of observation and comparative analysis. 
This law states that if an organism possesses many of 
the same or similar elements, a tendency appears to 
reduce the number of these elements along with the 
simultaneous modification (specialization) of these 
elements which are saved by the organism. In the 
example considered here, the evolution submanifolds 
describe organisms possessing n-1 of identical organs 
(pairs of legs) and one organ being modified, 
specialized, or subjected mutation. Spontaneous 
increase of complexity is here a basic feature of 
evolution. For biological systems a reasonable measure 
of complexity is the different number of components 
they contain, so as to be consistent with well-known 
Williston's law which predicts that very similar 
components will either merge or specialize. Staying on 
the ground of the idea of increasing complexity, the 
system's organization acts as a force which prevents 
loss of components and allows complexity increase by 
the integration of new ones. This leads to a principle 
stating that an organism with more of organs (e.g. pairs 
of legs) is more susceptible to evolution towards an 
increase in the number of these organs.  
 Yet, during reversible specialization of organs, the 
state of an organism can fall into the region of the 
catastrophic decrease of number of these organs. These 
catastrophes constitute the price of specialization. The 
likelihood of falling in the catastrophe region increases 
with the number of organs. This explains why 
organisms possessing large number of similar organs 
ultimately reduce this number, despite the fact that they 
are more susceptible to evolutionary increase in the 
organ number. This also agrees with the well-known 
formulation of Williston's law of evolution  (Saunders 
and Ho 1976) that subsumes the results of observation 
and is confirmed by the excavation experiments. In the 
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dynamical description of this problem an extremum 
principle provides a quantitative picture of biological 
development. It shows that a discrete gradient dynamics 
(governed by the entropy potential) can be predicted 
from variational principles for shortest paths and 
suitable transversality conditions. 

 
 

  
 
Figure 1. An original optimization problem for a system 
with n states is that of maximum change of entropy or 
complexity Γ  between a point and the surface of 
constant distance from the point. 
 
5. A VARIATIONAL APPROACH TO THE 

EVOLUTION DYNAMICS  
Working in the dynamical context, (Szwast, Sieniutycz 
and Shiner 2002), we may analyze the evolution of 
living organisms as multi-organ or multi-limb systems 
by using the complexity criterion based on a potential, 
usually taken as the classical statistical entropy (of 
Shannon-Boltzmann) and the entropy-based 
complexity.  

Here, however, in order to penetrate a vaster 
spectrum of stability (instability) properties, the 
generalized Tsallis entropy S is used (in kB units) as a 
function of independent probabilities p0, p1, ....pn. In the 
analysis of this sort, classical thermodynamic quantities 
do not appear, yet the model used satisfies an extremum 
principle that, similarly as in thermodynamics, implies 
the maximum of entropy subject to the geometric 
constraint of a given thermodynamic distance.  

More specifically, an original optimization problem 
for a system with n states is that of maximum change of 
entropy or entropy-related complexity Γ  between a 
point and the surface of constant distance from the point 
(Fig.1).  

Dual forms of this principle can also be considered, 
where one mimimizes the thermodynamic length 
subject to a fixed change of the system’s complexity or 
entropy (Fig.2). In the dual problem one searches for 
minimum length between a point (for a system with n 
states) and the entropy manifold of the system with n+1 
states.  In this formulation specific properties of the 
shortest lines variational problems can directly be 
applied, (Lyusternik 1983), if one doesn’t want to use 
standard theory of variational calculus (Elsgolc 1960).  
 

 
 
Figure 2. Dual optimization problem for a system with 
n states is that of minimum length between a point and 
the surface of constant entropy for the system with 
n+1states. 

In the variational formulation, an s-dimensional 
evolution can be obtained via minimization of the 
length functional 
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where independent probabilities pi are constrained to 
reside on the constant-entropy manifold satisfying the 
constraint dS

~
=0. (As in our example above we restrict 

to the system of two independent pi.) The "conformal 
coefficient" a(p0, p1) takes into account the deviation 
from the Euclidean measure of length in the simplest 
way possible. Regarding the problem of geodesic lines, 
see, e.g., (Lyusternik 1983). To handle the constraint 

d S
~

=0 one introduces the function Fn(p0, p1)= nSS ˆ~ −  

whose numerical value equals zero for all states 
corresponding to the complexity-maximizing entropy. 
These are states residing on the evolution submanifolds 
or "reversible isolines”. The direction coefficient of 

tangent to the submanifold nS
~

(p0, p1..) is the derivative 

vn ≡  (dp1/dp0)n. This derivative can be determined in 

terms of the partial derivatives functions  nS
~

 or Fn as 
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To predict the location of a point on the submanifold 
n+1 when a point on the submanifold n is given, we 
consider the variational problem of the shortest line 
between the two points located on the submanifolds 

nS
~

and 1+nS
~

.This corresponds with a minimum of the 

length functional (25).  
The necessary extremum condition (the Euler 

equation) shows that any deviation from the Euclidean 
metric (measured in terms of a) influences, in general, 
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shapes of shortest-distance extremals which lead from 
the submanifold n to the submanifold n+1. Of course, 
upon restriction to the Euclidean metric and the 
Euclidean distance (a =1), extremals are the family of 
the straight lines p1=C1p0 +C2. Generalization to non-
flat spaces is given below, but we shall first consider the 
transversality condition for an arbitrary integrand L of 
(25) that may be associated with curvilinear spaces. An 
extremal which starts from a point on the submanifold n 
and terminates on the submanifold n+1 satisfies 
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(c.f. Elsgolc 1960), where δp0 and δp1 are linked by 
condition (22) applied for n+1 rather than n.  

For any length-type integral J, Eq. (27) defines the 
condition associated with the extremal which starts 
from a point on the submanifold n and terminates on the 
submanifold n+1. In view of arbitrary variations of p0 

the substitution of δp1 from Eq. (26) into Eq. (27) yields 
the equality un+1 = -1/vn+1, where un is the slope 

coefficient of the normal to isoline 1+nS
~

. This means 

the orthogonality of the slopes un+1 and vn+1 in 
Euclidean spaces.  In other words, in the case of an 
assumed or imposed Euclidean geometry (the 
transversality condition unaffected by the coefficient 
a(p0, p1)=1) the slope coefficient of the tangent to the 
extremal is 
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This condition implies the gradient dynamics in flat 
spaces, with probabilities changing with time in the 
form 
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(i=0,1). The frequency-type coefficient ω has the 
interpretation of a kinetic constant. A related discrete 
dynamics of evolution contains the finite differences 
p(n+1)- p(n) instead of the time derivatives. 

Next, it may be shown that the gradient dynamics 
also holds also in curvilinear spaces. In fact, admitting 
non-flat metrices (i.e. working with situation when a 
Lagrangian associated with a non-flat metric is 
effective) one may show (Gołąb 1956) that the tensor 
generalization of the continuous model (29) is  
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where τ = ωt is a nondimesional time and     ω is the 
frequency coefficient of Eq. (29) and gik is s-
dimensional Riemannian tensor (Gołąb 1956). The 
consequence of this equation is the tensor form of the 
discrete evolution dynamics with the Onsager-like 
structure, where his symmetry matrix Lik =∆tωgik 
appears  
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as in the classical irreversible thermodynamics. 
Therefore, the evolution processes can be imbed quite 
naturally into a relatively large family of 
thermodynamic processes. 

 
 

6. CONCLUDING REMARKS 
By applying the tensor calculus, one can develop a 
discrete, nonlinear representation of evolution dynamics 
in metric spaces that may be curvilinear. Dynamic 
programming algorithms (Bellman’s equations) can be 
derived and computer-aided simulations of their 
solutions can be performed. Systems governed by 
nonclassical q-entropies may exhibit irregular shape of 
entropy hill and show quantitatively distinct picture of 
instabilities than classical.  

 

 
 
Figure 3. Szwast’s (1997) computer simulation of 
instabilities in evolution systems. Trajectory of increase 
of number of pairs of legs (broken line), manifolds of 
reversible modification (specialization) of one pair of 
legs (lines of S=const) and vertical jumps describing a 
rapid decrease in number of pairs of legs (vertical lines). 

Evolutions of living organisms can be described in 
terms of variational principles for maximum of 
generalized entropy along with suitable transversality 
conditions. General gradient dynamics (in curvilinear 
spaces), that governs the evolution problems, is of 
Onsager’s structure and is consistent with the entropy 
principle of extremality as the driving factor in the 
discrete dynamics of complex and living systems, 
postulated recently (Szwast, Sieniutycz and Shiner 
2002). We have shown that such a principle should be 
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integrated with the evolution theory of biological 
systems. 

Calculations of gradients of entropy or disorder 
versus number of organs, n, performed by Szwast 
(1997) show that these gradients increase with the 
number of multiple organs. This allows one to 
formulate the principle which states that organisms with 
more of organs are more susceptible to evolution 
towards an increase in the number of these organs. Yet, 
during reversible specialization of organs, the state of 
an organism can fall into the region of the catastrophic 
decrease of number of these organs. These catastrophes 
constitute the price of specialization. The calculations 
show, Szwast (1997), that the likelihood of the system’s 
falling in the catastrophe region increases with n. Some 
of the related results are presented in Fig.3. This 
discussion explains why organisms possessing large 
number of identical organs ultimately reduce this 
number, despite the fact that they are more susceptible 
to the evolutionary increase in the organ number, in 
agreement with Williston's law. This law states that if 
an organism possesses many of the same or similar 
elements, a tendency appears to reduce the number of 
these elements along with the simultaneous 
modification (specialization) of these elements which 
are saved by the organism (Saunders and Ho 1976; 
Szwast, Sieniutycz and Shiner 2002; Szwast 1997). 
Entropy-based models, quantifying these critical 
phenomena, are enriched in this paper by inclusion of 
non-classical statistical entropies, e.g. q-entropies of 
Tsallis or Renyi, that may modify magnitudes of 
unstable regions in the space of process probabilities. 
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