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ABSTRACT

Evolution of animals with multiple organs or limixs
considered. We report computer-aided modeling and
simulation of evolution in biological systems with
living organisms as the effect of extremum projgsrif
classical statistical entropy of Gibbs-Boltzmanpetyor

its associates, e.g. Tsallig-entropy. A variational
problem searches for the maximum entropy subject to
the geometric constraint of constant thermodynamic
distance in a non-Euclidean space of independent
probabilities p plus possibly other constraints. Tensor
form of dynamics is obtained. Some processes may
terminate rapidly due to instabilities. A gradient
dynamics can be predicted from variational prirespl
for shortest paths and suitable transversality itimms.
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1. INTRODUCTION

Systems capable of increasing their size and/orbeam
of states (growing systems) can exhibit criticahdogor
when their size increases beyond a certain valoe. |
effect, some developmental processes, i.e. bicbgic
evolution, may progress in a relatively undisturiey,
whereas others may terminate rapidly due to strong
instabilites. To  describe  such  phenomena
quantitatively, we present here an extremum priacip
for entropyS of a physical or a biological system with
variable number of states, thus making it posstble
investigate processes of biological development and
evolution. The extremum principle is of the vaibatal
nature and may be formulated as the problem of
maximum S subject to the geometric constraint of the
constant thermodynamic distance in a (generally- non
Euclidean) space of independent probabilifigsplus
possibly other constraints. The dynamics found are
presented in the tensor form. An essential resylfies
that various dynamics, in particular those of gtowt
processes (characterized by the increase in nuwfer
states), are governed by the gradient of the eytioa
Riemannian space.

2. ROLE OF COMPLEXITY AND ENTROPY

In the thermodynamic theory of evolution extrema of
complexity /~ with respect to entropyS provide
important information. There is a multitude of
complexity measures in the literature, all captgrin

some aspects of what we mean when we say a process
is complex. According to Saunders and Ho (1976,
1981) the complexity growth is the most probabfef

in evolving systems. Complexity is a function of
disorderD and order®@, which, in turn, are functions of
the information-theoretic entropy and number of
possible staten. When speaking about the complexity
and related entropy one issue is particularly irtgpdr a
nonequililibrium entropy has to be necessarily agupl
because the difference between the maximum entropy
and the actual system’s entropy governs the
organization in a complex system. Schrodinger (1967
has defined the disord& and orderQ as expotential
functions of non-dimensional quantitieS and -S
respectively, in units oks. Yet, as pointed out by
Landsberg (1984) these notions are inappropriate fo
growing systems. For such systems, Landsberg's
definitions of disordeb and order@ apply

D=S/Sa )

Q=1-D=1-S/Sya o

As S..x depends on the number of states, in
Landsberg's definition both disordBrand order® are
functions of the information entrop$ and number of

states,n, i.e. D=D (S,n)and Q =Q (S, n). One
especially simple form is the complexity

Fn(S) =4DQ = 4(5/ Smax(n))(l_ S/ Smax(n)) (3)

The coefficient 4 in Eq. (3) is introduced to notiza

the quantity/ . The subscriph refers to a complexity
sequence in a system with growing number of states,
The solution to the following equation

dr,(S)/ds=0 (4)

allows one to determine the extremum value of the

information-theoretic entropy,S, which maximizes
complexity /,, (Szwast, Sieniutycz and Shiner 2002).
The maximum attained by the functiofy, =/(S n)
equals the unity. This maximum appears b= 0.5.
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Hence the complexity-maximizing equals to one half
of the maximum entropy (the total randomness)

S=ZSpax(n) (5)

N

Evolution occurs on submanifolds that are surfaces
of constant entropy (Szwast, Sieniutycz and Shiner
2002). Here the generalizegentropy or Tsallis entropy
Sis used in probabilitieg= po, Py, -..-Pn

s=(q—1)‘1[1—2 p‘k‘} ©®
k=1

wherepy is the probability of finding an element in the
statei amongn states possible arixp,=1. Equation (6)
refers to Tsallis statistics (Kaniadakis, Lissia,
Rapisarda, 2002) which generalizes the Boltzmann-
Gibbs statistics by introducing an additional pagten

g, that is called non-extensivity parameter. Theitadd
Boltzmann entropy is regained from (6) in the liroft
g=1. Performing maximization & one can easily show
that for a sole constrairfEp,=1 maximum of entropy
occurs for the total randomness. All probabilitasisfy
then the equalitp,=p, =n"and the maximum entropy is

Siax = (@ -1 L-n*9). @)

In the classical casey (- 1) this formula yields a
well-known resultSya= In(n).

Yet, in an example considered, a multi-organ
animal is a system withn21 probabilities that describe
n pair of legs plus the remaining part of the bdusnce

Smax = (-1 - (2n+*9). ®)

In the classical casey (- 1) this formula yields,
Sna= INn(2n+1). The complexity-maximizing entropy

énequals to one half of these quantities. In thesttas
case ofj=1 one obtains

~

S, =(1/2)In(L+2n). )

Generally, the complexity-maximizing entropy is

- 1 1 = -

Sn = Smax =5 (A=) L-(n+D7, (10)
whereé‘n of Eq. (9) follows in the classical casecsfl.
To work with independenp; we eliminate the last
probability from entropy (6) and normalization
conditionZp;=1. We then obtain &l de entropy function

S=S (o, Prr---Pnt) (11)

and, from Eq. (3), a related complexity

Fn = I:n [S(pO’ plv--pn—l)]- (12)
Using independent probabilities we work with tHddi
entropy. For the evolutions satisfying the maximum
complexity (Saunders and Ho 1976), the entropy

S(p)equals to the complexity-maximizing entroPy

This is consistent with the statement of Saundeds a
Ho (1976) "The only completely reversible changes a

those which are isocomplex”. F& =S (po, P1,--Pn-1), @
subset of probabilitiesp = (pg,pw.--pny) is found
describing the evolution submanifolds by an eqyalit

§( Pos P1ye--Pp-1) = én (13)

and assuring the value (‘fin = (1/2)Snax(n). Within this

manifold, a reversible modification of states isgible.
In other words, in the evolution examples, the sohs

to equality §(p0, P1--Pr) = (L/25nadn) refer to the
submanifolds of evolution, or surfaces on which
modifications (mutations) of organs may occur.

3. EVOLUTIONS OF MULTIPLE ORGANS
WITHOUT MUTATIONS
Following earlier works (Saunders and Ho 1976, 1981
Szwast, Sieniutycz and Shiner 2002; Szwast 1997) we
analyse here thevolution of a multiple-organ or a
multi-limb organism, e.g. trilobite,an animal with many
pair of legs. Although trilobites died out milliolygars
ago, their anatomical structure is known due to the
excavations. For our purposes it is sufficient to
distinguish one pair of legs, of probability, 2= 2p,
from the remaining parts of the organism. The
remaining part has probabilitg,. For a multi-organ
animal withn pairs of legs, the following holds

s=(q-1f- pd - 2np?) (14)
and, in the classical case,
S=-pglInpy —2np;In p;. (15)

They both hold subject to the conditionxgg=1, or
P =@ po)/2n (16)
Whence the entropy in terms of single indepengdgnt

S(po) = (a-1) - pg - (20 (1- po)?) (27)

and its classical limit of=1

S(po) = = Pon Py —(L- Po) IN[A- po)/2n].  (18)
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Each of these entropies must be equal to its
complexity-maximizing counterpart as described by
Eq. (10) and its classical limit (9). By comparifg.
(10) and (17), for an arbitrary we obtain equations for
independent probabilities in termsroénd solegyg

@-1f- pg - @V @- py)?)

(19)

=2(@-1}t- @n+3]

In the case of classical entropy
= PolIn pg =@~ po)In[(1- py)/2n] 20)

=@/ 2In(l+2n)

From these equations probabilitipsand (then)p, can

be calculated in terms of Graphs of these results for
g=1 are presented in the literature (Szwast, Sigcaut
and Shiner 2002; Szwast 1997), where appropriate
results are restricted to points describing theligiom
without modifications or specializations.

4. ORGANISMS WITH MUTATIONS OR
SPECIALIZATIONS OF ORGANSOR LIMBS
Here we analyze the evolution of a multiple-organ
animal with mutations or specializations. An exagnpl

relevant to this case follows the scheme includimg
stage trilobite=> crab. With entropiesS expressed in
terms of independent probabilitieg; (functions

S (Po,---Pn)) One may consider effects of reversible
modifications (mutations) of multiple orgale.g. pair
of legs), for a fixed value ofS,,. In the considered
example, after modification of a pair of legs taws a
crab emerges from a trilobite. Considering the
anatomical structure of the crab, one pair of clasvs
distinguished with probability [®@. When the
modification occurs without change in number ofrpai
of legs and claws, the following equality holds

2p, +2(N=1 py + po =1. (21)

For an organism with one pair of organs modified
(specialized) on the reversibility surface, Eq.)(aBd
(21) are applied in the space of independent
probabilities to describe the equality of the gealieed

entropy S and the complexity-maximizing, . After
comparing the two entropy expressions we obtain

(-1~ pg - 2(n-1) p? - 2pd (po. 1))

1 -1 1- (22)
=1 (q-1)fi- @n+*
2

in the generalized case, and

—PoInpy—2(n=-Yp,Inp,
(23)

1
—2p,(Pos P1) In P (Po. P1) :Em(l"' 2n)

in the classical case. The probability functim(p., po)
used in these equations has the form

pzzga—po—an-nm) (24)

that follows from the conditiorkp;=1 represented by
Eq. (21). Note that (2 is the probability attributed to
the modified organ or limb. The complexity-
maximizing entropies §n23max/z) are those used

earlier, Eq (10). The evolution submanifolds arevno
the family of linespy(py, n). They describe organisms
possessingqi-1 of identical organs (pairs of legs) and
one organ being modified, specialized, or subjected
mutations. A special subset of data refers to asgas
without specialization (Sec.3).

In the evolution literature Williston's law is
frequently quoted (Saunders and Ho 1976, 1981;
Szwast, Sieniutycz and Shiner 2002), which subsumes
the results of observation and comparative analysis
This law states that if an organism possesses roény
the same or similar elements, a tendency appears to
reduce the number of these elements along with the
simultaneous modification (specialization) of these
elements which are saved by the organism. In the
example considered here, the evolution submanifolds
describe organisms possessimg of identical organs
(pairs of legs) and one organ being modified,
specialized, or subjected mutation. Spontaneous
increase of complexity is here a basic feature of
evolution. For biological systems a reasonable oreas
of complexity is the different number of components
they contain, so as to be consistent with well-know
Williston's law which predicts that very similar
components will either merge or specialize. Staying
the ground of the idea of increasing complexitye th
system's organization acts as a force which prevent
loss of components and allows complexity increage b
the integration of new ones. This leads to a ppieci
stating that an organism with more of organs (pairs
of legs) is more susceptible to evolution towards a
increase irthe number of these organs.

Yet, during reversible specialization of organg th
state of an organism can fall into the region of th
catastrophic decrease of number of these orgareseTh
catastrophes constitute the price of specializatidre
likelihood of fallingin the catastrophe region increases
with the number of organs. This explains why
organisms possessing large number of similar organs
ultimately reduce this number, despite the fact thay
are more susceptible to evolutionary increasethia
organ number. This also agrees with the well-known
formulation of Williston's law of evolution (Sauers
and Ho 1976) that subsumes the results of observati
and is confirmed by the excavation experimentghén

Proceedings of the International Conference on Modeling and Applied Simulation, MAS 2009

ISBN 978-84-692-5417-2

125



dynamical description of this problem an extremum
principle provides a quantitative picture of bidlag
development. It shows that a discrete gradient ohycs
(governed by the entropy potential) can be predicte
from variational principles for shortest paths and
suitable transversality conditions.

Figure 1.An original optimization problem for a system
with n states is that of maximum change of entropy or
complexity /~ between a point and the surface of
constant distance from the point.

5. A VARIATIONAL APPROACH TO THE

EVOLUTION DYNAMICS
Working in the dynamical context, (Szwast, Sientaty
and Shiner 2002), we may analyze the evolution of
living organisms as multi-organ or multi-limb sysie
by using the complexity criterion based on a pagént
usually taken as the classical statistical entr¢pfy
Shannon-Boltzmann) and the entropy-based
complexity.

Here, however, in order to penetrate a vaster
spectrum of stability (instability) properties, the
generalized Tsallis entropy is used (in k units) as a
function of independent probabilitigs, py, ...p.. In the
analysis of this sort, classical thermodynamic gtias
do not appear, yet the model used satisfies apragim
principle that, similarly as in thermodynamics, ilep
the maximum of entropy subject to the geometric
constraint of a given thermodynamic distance.

More specifically, an original optimization problem
for a system withn states is that of maximum change of
entropy or entropy-related complexity between a
point and the surface of constant distance fronptiiet
(Fig.1).

Dual forms of this principle can also be considered
where one mimimizes the thermodynamic length
subject to a fixed change of the system’s compfenit
entropy (Fig.2). In the dual problem one searclmes f
minimum length between a point (for a system with
states) and the entropy manifold of the system with
states. In this formulation specific properties tbé
shortest lines variational problems can directly be
applied, (Lyusternik 1983), if one doesn’t wantuse
standard theory of variational calculus (Elsgolé@

B T
1 ~—__[(D,D,) = constant

By

g

Figure 2.Dual optimization problem for a system with
n states is that of minimum length between a paomt a
the surface of constant entropy for the system with
n+1states.

In the variational formulation, an s-dimensional
evolution can be obtained via minimization of the
length functional

P8+l
| a(pgy. py) 1+(dp_L/de)2d Po
Po

(n)+l

| L(pg, py ,dpy/ dpy)dpg

Po

(25)

where independent probabilitigs are constrained to
reside on the constant-entropy manifold satisfyting
constraint d5 =0. (As in our example above we restrict
to the system of two independgmt) The "conformal
coefficient" a(po, p.) takes into account the deviation
from the Euclidean measure of length in the sintples
way possible. Regarding the problem of geodesgslin
see, e.g., (Lyusternik 1983). To handle the coimdtra

d S =0 one introduces the functidf(po, p1)= S- S

whose numerical value equals zero for all states
corresponding tahe complexity-maximizing entropy.
These are states residing on the evolution suboidsif

or "reversible isolines”. The direction coefficienf

tangent to the submanifol(én (Po, p1--) is the derivative
Vy = (dps/dpg),. This derivative can be determined in
terms of the partial derivatives functiorfS,, or F, as

(26)

_ e [a’s‘n(po. pl)}[a‘s*n(po, pl]‘l
d pO

0 pO 0 pl

To predict the location of a point on the submddifo
n+1 when a point on the submanifofdis given, we
considerthe variational problem of the shortest line
between the two points located on the submanifolds

Sn and Sn+1 This corresponds with a minimum of the

length functional (25).

The necessary extremum condition (the Euler
equation) shows that any deviation from the Euclide
metric (measured in terms @j influences, in general,
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shapes of shortest-distance extremals which leaah fr
the submanifolch to the submanifoldh+1. Of course,
upon restrictionto the Euclidean metric and the
Euclidean distancea(=1), extremals are the family of
the straight linegp,;=C;p, +C,. Generalization to non-
flat spaces is given below, bwe shall firstconsiderthe
transversality condition for an arbitrary integrand of
(25) that may be associated with curvilinear spades
extremal which starts from a point on the submaahifo
and terminates on the submanifolel satisfies

oL
A={L-—————(d d o
oL
— o p, =0,
Gdpyapy’ ™

(c.f. Elsgolc 1960), whereyp, and dp, are linked by
condition (22) applied fon+1 rather tham.

For any length-type integrdl Eq. (27) defines the
condition associated with the extremal which starts
from a point on the submanifofdand terminates on the
submanifoldn+1. In view of arbitrary variations qfy
the substitution odp; from Eq. (26) into Eq. (27) yields
the equality u,+1 = -1N..1, where u, is the slope

coefficient of the normal to isolin&,,;. This means

the orthogonality of the dopes u,; and Vp.; in
Euclidean spaces In other words, in the case of an
assumed or imposed Euclidean geometry (the
transversality condition unaffected Hlfie coefficient
a(po, p1)=1) the slope coefficient of the tangent to the
extremal is

(28)

_dp0S5,:u(PyP) /9Sha(Po By
Un+1—( ) - .

d Py op, 0 po

This condition implies thegradient dynamics in flat
spaces, with probabilities changing with time ire th
form

' 0g ,
(ﬂ) =W Sn+1( pO pl) (29)
dt “n+

1 ap,

(i=0,1). The frequency-type coefficientv has the
interpretation of &inetic constant. A related discrete
dynamics of evolution contains the finite differesc
p(n+1)- p(n) instead of the time derivatives.

Next, it may be shown that the gradient dynamics
also holds also in curvilinear spaces. In fact, ittihg
non-flat metrices (i.e. working with situation when
Lagrangian associated with a non-flat metric is
effective) one may show (Ggi# 1956) thatthe tensor
generalization of the continuous mod¢29) is

S (Po:---PJ)

dp _
— ik apk

dr ’ (30)

where 7 = at is a nondimesional time andv is the
frequency coefficient of Eqg. (29) angjy is s
dimensional Riemannian tensor (@wt 1956). The
consequence of this equation is the tensor forthef
discrete evolution dynamics with the Onsager-like
structure, where his symmetry matrix;, =4t
appears

ps(n+1) - py(n) =
0Sna(PorPd |\ 9SnalPo-P)
L

. (31)
9 p, 9 p,

La

as in the classical irreversible thermodynamics.
Therefore, the evolution processes can be imbett qui
naturally into a relatively large family of

thermodynamic processes.

6. CONCLUDING REMARKS

By applying the tensor calculus, one can develop a
discrete, nonlinear representation of evolutionadyits

in metric spaces that may be curvilinear. Dynamic
programming algorithms (Bellman’s equations) can be
derived and computer-aided simulations of their
solutions can be performed. Systems governed by
nonclassicabj-entropies may exhibit irregular shape of
entropy hill and show quantitatively distinct pituof
instabilities than classical.

i

B

Figure 3. Szwast's (1997) computer simulation of
instabilities in evolution systems. Trajectory n€iease
of number of pairs of legs (broken line), manifolofs
reversible modification (specialization) of one rpaf
legs (lines ofS=const) and vertical jumps describing a
rapid decrease in number of pairs of legs (vertioak).
Evolutions of living organisms can be described in
terms of variational principles for maximum of
generalized entropy along with suitable transvéssal
conditions. General gradient dynamics (in curviéine
spaces), that governs the evolution problems, is of
Onsager’s structure and is consistent with theopgtr
principle of extremality as the driving factor imet
discrete dynamics of complex and living systems,
postulated recently (Szwast, Sieniutycz and Shiner
2002). We have shown that such a principle shoeld b
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integrated with the evolution theory of biological
systems.

Calculations of gradients of entropy or disorder
versus number of organs), performed by Szwast
(1997) show that these gradients increase with the
number of multiple organs. This allows one to
formulate the principle which states that organisvita
more of organs are more susceptible to evolution
towards arincrease irthe number of these organs. Yet,
during reversible specialization of organs, theestaf
an organism can fall into the region of the catgstic
decrease of number of these organs. These catastrop
constitute the price of specialization. The caltates
show, Szwast (1997), that the likelihood of thetesyss
falling in the catastrophe region increases wittsome
of the related results are presented in Fig.3. This
discussion explains why organisms possessing large
number of identical organs ultimately reduce this
number, despite the fact that they are more susbtept
to the evolutionary increase ithe organ number, in
agreement with Williston's law. This law statesttha
an organism possesses many of the same or similar
elements, a tendency appears to reduce the nunfiber o
these elements along with the simultaneous
modification (specialization) of these elements chhi
are saved by the organism (Saunders and Ho 1976;
Szwast, Sieniutycz and Shiner 2002; Szwast 1997).
Entropy-based models, quantifying these critical
phenomena, are enriched in this paper by inclusion
non-classical statistical entropies, eggentropies of
Tsallis or Renyi, that may modify magnitudes of
unstable regions in the space of process proliabilit
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