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ABSTRACT 
The paper describes two heuristics to reduce the number 
of comparisons necessary to reach a certain goal for a 
Markov model for multi-criteria and multi-person 
decision making. The motivation results from a demand 
observed in the early stages of an innovation process. 
Here, many alternatives need to be evaluated by several 
decision makers with respect to several criteria. With 
the implementation of the heuristics the number of 
comparisons necessary could be decreased significant. 
By reducing the evaluation effort necessary to reach a 
given goal, we will make the Markov-chain decision 
making method applicable to real world settings with a 
larger number of alternatives. 

 
Keywords: multi-criteria decision making, reducing the 
number of necessary comparisons, heuristics 

 
1. DESCRIPTION OF THE PROBLEM 
We consider the problem of evaluating alternatives in 
the early stages of an innovation process. In this 
application area, alternatives need to be evaluated by 
several decision makers with respect to different 
criteria. There are possibly many alternatives that need 
to be considered; therefore it is necessary to make the 
evaluation process fast and simple. Consequently we 
address a multi-person and multi-criteria decision 
making problem (MPMCDM). The following example 
describes the intended application.  

The early stages of a stage-gate process (Cooper 
1988) often contain a large number of alternatives. In 
the very first stages all of them are described only with 
a title and a short characterisation. Because of limited 
resources an innovation team must identify only the top 
alternative to bring that forward to the next stage of the 
process.  

Little or no quantifiable information is available 
about the alternatives in the first stages of a stage-gate 
process, therefore it is not possible to rank the 
alternatives based on objective criteria. Instead, only 
subjective impressions are available at this stage, 
enabling decisions of the form “A is better than B” with 
respect to a given criterion. 

In Chelvier et al. (2008a) and Chelvier et al. 
(2008b) we described how to model the evaluation and 

decision process in the given application as well as how 
to build a complete ranking. 
 In this paper we address the large number of 
necessary comparisons. This drawback is a well known 
issue of pairwise comparison-based methods and 
sometimes referred to as the information overload 
problem (Dryer 1990). Our solution is suitable if only 
the top alternative instead of the complete ranking is 
wanted. The following questions need to be addressed: 
How to identify the top alternative without building a 
complete ranking? How to reduce the number of 
necessary pairwise comparisons to reach this goal? 
 
2. BACKGROUND 
2.1. Multi-criteria decision making 
Multi-criteria decision making (MCDM) is a discipline 
aimed at supporting decision makers who are faced with 
the evaluation of many alternatives with respect to 
several criteria (Roy 2000; Hokkanen 1997; Belton and 
Stewart 2002). Depending on which type of result is 
needed, many different MCDM methods are available. 
Thirty available methods are discussed, for example, in 
Guitouni, Martel and Vincke (1998). 

In multi-person decision making (MPDM), more 
than one person is involved in the decision making 
process. Because most MCDM methods assume only 
one decision maker, strategies for mapping several 
opinions onto a single result are needed (Meixner and 
Haas 2002; Vetschera 1991; Eisenführ and Weber 
1994). 

In the decision making method used in this paper, 
the decision makers perform independent partial 
evaluations which are subsequently combined to obtain 
an overall set of evaluations, which form the basis of 
the ranking computation. 

In the field of MCDM many methods have been 
developed for specialised applications. Seven methods 
which can be used in the early stages of an innovation 
process are AHP (the Analytic Hierarchy Process) 
(Saaty 1980), WISDOM (Van Overveld 2003), IPC 
(Incomplete Pairwise Comparisons algorithm) (Harker 
1987), Incomplete AHP (Caklovic and Piskac 2001), 
cost-benefit analysis (CBA) (Chakravarty 1987), 
ELECTRE (Benayoun, Roy and Sussman 1966) and 
MPMCDM with Markov Chains (Chelvier et al. 2008a). 

Proceedings of the International Conference on Modeling and Applied Simulation, MAS 2009
ISBN 978-84-692-5417-2 101



However, two methods are not directly applicable 
to the intended task. ELECTRE deals with soft 
evaluation criteria, but this method needs all pairwise 
comparisons to compute the results. The CBA method 
needs measurable and quantifiable criteria to compute a 
valid result. 

Accordingly, ELECTRE and CBA cannot be the 
preferred methods to evaluate alternatives under the 
given constraints. 

 
2.2. AHP and WISDOM methods 
The Analytic Hierarchy Process is based on a hierarchy 
of evaluation criteria, and uses paired comparisons of 
alternatives with respect to these criteria. Gradations in 
the comparisons are expressed using numerical values. 
The ranking of the alternatives is obtained from an 
eigenvalue computation on a suitably aggregated 
matrix. 

Known drawbacks of the AHP method are the need 
to deal with inconsistent sets of evaluations, the large 
number of pairwise comparisons needed, a complex 
mathematical model which is intransparent to the user 
and questionable rankings resulting from innocuous 
individual comparisons. The incomplete AHP method 
tries to use a smaller number of pairwise comparisons 
without compromising the result. IPC and Incomplete 
AHP are based on AHP and inherit these drawbacks. 

The Weightless Incremental Selection and 
Ordering Method (WISDOM) is also based on paired 
comparisons with gradations. However, in this case, the 
gradations are qualitative, rather than quantitative. The 
evaluation criteria are also weighted using pairwise 
comparisons. An algebra for computations on these 
qualitative relations is then developed for which an 
iterative method is used to compute a ranking. 

WISDOM shares a lot of the positive attributes of 
AHP. However, it also has several advantages over 
AHP. The first is the use of qualitative expressions 
rather than numerical ones for the pairwise comparisons 
and the computations. It is also able to explicitly detect 
evaluation inconsistencies. Its main disadvantage – as 
with AHP – is the lack of a natural extension to multi-
user applications. One such extension, named 
TeamWISDOM, was presented by Weber (2007). 

Our method is similar to both AHP and WISDOM, 
in that it is also based on pairwise comparisons of the 
alternatives with respect to different criteria and that it 
subsequently computes a ranking vector. Like AHP, our 
method also performs an eigenvalue computation on a 
matrix representing the results of the individual 
comparisons. However, in contrast to both methods, our 
approach does not provide for differing weights in the 
pairwise comparisons (although this extension would be 
easy to accommodate), and its overall structure is 
simpler. 

 
2.3. Markov chains 
Discrete-time Markov chains (DTMCs) are well 
researched mathematical models with many 
applications in Science and Engineering. A DTMC is 

described by a stochastic matrix P and a probability 
vector π. The steady-state solution of the DTMC 
contains the probabilities of each of the system states 
and is given by the solution of the linear system of 
equations 

 
π� �  π       (1) 

 
Markov chains are drawn as directed, annotated 

graphs, where the nodes represent the states and the arcs 
the possible state transitions. The weights associated 
with the arcs describe the one-step probabilities for each 
state transition. A state or set of states of a Markov 
chain is called absorbing, if it contains only incoming 
arcs. 

 
We use the Markov chain-based decision making 

method, which was described in (Chelvier et al. 2008a 
and 2008b). Here, pairwise comparisons can be 
combined by weighting these according to the 
importance of the criteria and the decision makers, 
resulting in a discrete-time Markov chain. A random 
walk on this DTMC (Stewart 1994) models the decision 
process, where a longer state sojourn time implies a 
better alternative. The solution of the DTMC resulting 
from all pairwise comparisons then yields a complete 
ranking of all alternatives. 
 
3. NEW IN OUR APPROACH 
The Markov chain-based decision making method 
allows us to compute intermediate rankings during the 
evaluation process. Based on the intermediate rankings, 
we can use heuristics to estimate the effect of another 
comparison on the computed ranking. Comparing the 
effects of the possible comparisons, a heuristic suggests, 
which comparison should be done next, because it is 
expected to lead faster to the desired goal. 

The goal is to evaluate the comparisons with 
biggest impact on the ranking first and the comparisons 
with lower impact on the ranking later. We assume that 
comparisons with high impact assign the right ranking 
position to the alternatives and comparisons with lower 
impact adjust the ranking position value but have little 
effect on the top ranking positions. Consequently, fewer 
comparisons are necessary to determine the top 
alternative. 

 
4. HEURISTICS 
We present two heuristics to estimate the next 
comparison with the highest impact on the intermediate 
ranking: Maximum weight and Euclidean distance. 

 
4.1. Maximum Weight 
The heuristic Maximum weight uses the information 
given by the initialisation of the evaluation. Therefore 
we denote the participants in the decision process by pk 
with k = 1…K and the decision criteria by dl, with 
l = 1…L. We define a matrix A of dimension K×L 
whose coefficients αkl satisfy 0 ≤ αkl ≤ 1 and  
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� �αkl � 1
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Thus the coefficient αkl contains information about 

the level of expertise of Participant pk with respect to 
Criterion dl as well as the degree of importance of 
Criterion dl, where larger values imply greater 
importance. From all open comparisons the heuristic 
chooses the one with the largest combined weight of 
Criterion dl and Evaluator pk.  

Consequently, the comparison order for each 
participant is known by the facilitator at the beginning 
of the evaluation process. 

 
4.2. Euclidean distance 
The Euclidean distance heuristic compares the possible 
effect of all open comparisons, choosing the one that 
can produce the ranking with the largest distance to the 
current ranking. It is, however, still a heuristic, since the 
actual value of the comparison is not known; if 
alternatives A and B are selected to be compared next, 
the evaluator still has the choice to select either one of 
them as superior. We assume that the comparison, 
which results in the maximum Euclidean distance, 
implies the biggest impact on the ranking. 

Compared to the heuristic Maximum weight the 
comparison order is not known at the beginning of the 
evaluation process. Here, after each evaluation we 
estimate the next comparison with a “brute force” 
algorithm for all open comparisons. 

With these heuristics the evaluation process can be 
stopped if the top alternative is identified and is not 
challenged for a number of comparisons. The better the 
heuristic the less pairwise comparisons are necessary.  
 
5. ADVANTAGES IN OUR APPROACH 
The heuristics reduce the number of necessary pairwise 
comparisons to obtain the desired evaluation result in 
the intended application. In that case the named 
information overload problem of the Markov chain-
based decision making method can be reduced. We 
notice that the simpler the evaluation goal the higher the 
possible savings of pairwise comparisons. 

The benefit of this approach is most significant if 
soft evaluation criteria are involved. The method works 
from two alternatives to more than one hundred 
alternatives. The limiting factor is the necessary number 
of pairwise comparisons to reach a certain goal. 
 
6. EXPERIMENTS 
In our intended application it is sufficient to identify the 
top alternative. To study the effect of the heuristics we 
choose a real MCDM problem from industry: In an 
ideation workshop many product ideas for an 
automotive supplier are generated. After the idea 
generation the participants of the workshop identified 
those alternatives with the highest expected benefit for 
the company. After the workshop the best alternative 
should be identified. Therefore the innovation process 

provides evaluation criteria and roles of the decision 
maker. The initial situation is as follows: 

 
• There are five decision makers as participants 

in the decision process: the General Manager, 
the Product Manager, the Marketing Manager, 
the Production Manager and the Sales 
Manager. 

• There are nine new product alternatives as a 
result from the ideation workshop. Each 
alternative is described with a title, a short 
characterization and a list of pros and benefits. 

• We have ten evaluation criteria: fitting to a 
megatrend, market potential, competitive 
situation, degree of innovation, strength of the 
unique selling proposition, potential sales 
volume, research and development costs, profit 
margin, proportion of value-added, proportion 
of strengths and weaknesses. In the following 
process we assume that all criteria are 
independent and we consider no feedback 
between the criteria. 

 
Even though the criteria are not quantifiable with 

the given information, subjective impressions are 
available, enabling decisions of the form “A is better 
than B” with respect to a given criterion. 

In preparation of our experiments we collected all 
comparisons from the decision makers in a personalised 
questionnaire. We asked each participant “You see the 
Alternatives m1 and m2. Which of them is better with 
respect to the given criterion”? Each participant had to 
carry out 360 pairwise comparisons. The number T of 
all pairwise comparisons is given by 

 

� � �
�
�
���	�
�  

 
where M is the number of alternatives and every 
participant makes every possible pairwise comparison 
with respect to every criterion. 

In the next step we use a program to simulate four 
evaluation workshops, each with a different strategy for 
the order of the pairwise comparisons. The four 
workshops are: 

 
1. Random order (reference 1) 
2. Facilitator order (reference 2) 
3. Maximum weight (heuristic) 
4. Euclidean distance (heuristic) 
 
In workshop 1 we use a randomised order of the 

evaluations. We assume that randomisation is 
representative for all workshops with no order strategy. 
Additionally, the program simulates a simultaneous 
treatment of the participants (all at the same time). We 
use the random order strategy as reference for the 
experiments with the heuristics. 

In workshop 2 we use an order strategy with 
minimum cognitive load for the participants. This 
means that the comparisons are ordered first by criteria, 

(2) 

(3) 
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second by alternative 1 and third by alternative
Consequently the evaluation criterion and one 
alternative are changing as few as possible in the 
evaluation process. We assume that this strategy is 
representative for a good facilitated real workshop. 
in workshop 1 the program simulates a simultaneous 
treatment of all participants. 

In workshop 3 and 4 we use the presented 
heuristics to order the pairwise comparisons. We 
assume that the heuristics estimate the next comparison 
with the highest impact on the intermediate ranking.
The evaluation simulated a simultaneous
the participants as well. 

 
7. RESULTS 
The four diagrams show the probability 
DTMC solution vector over 1800 pairwise comparisons, 
the lines also correspond to the ranking vector
alternatives. 

 

Figure 1: Order of Pairwise C
Randomised. 

 

Figure 2: Order of Pairwise Comparisons for Minimum 
Cognitive Load (Facilitators order). 

 

and third by alternative 2. 
he evaluation criterion and one 

alternative are changing as few as possible in the 
We assume that this strategy is 
good facilitated real workshop. As 

workshop 1 the program simulates a simultaneous 

In workshop 3 and 4 we use the presented 
heuristics to order the pairwise comparisons. We 

estimate the next comparison 
with the highest impact on the intermediate ranking. 

simultaneous treatment of 

probability values of the 
DTMC solution vector over 1800 pairwise comparisons, 

ranking vector of the 

 
rwise Comparisons is 

 
er of Pairwise Comparisons for Minimum 

In Figure 1 the order of the pairwise comparisons 
is randomised. The best alternative is identified after 
approx. 350 comparisons. The 
identified after approx. 1530 comparisons. The late 
identification of the second best alternative shows the 
disadvantage of an arbitrary (in this case randomised) 
order of pairwise comparisons: Comparisons with a 
high impact might be done to
when the evaluation process can be terminated even if 
only the top alternative is of interest.

In Figure 2 the best alternative is identified after 
approx. 560 comparisons. The second best alternative is 
identified after approx. 1700 comparisons. The late 
identification of the second best alternative is a 
disadvantage in that strategy, too. Addition
discontinuous progress of the values in the ranking 
vector makes the termination of the evaluation 
very difficult even if only the top alternative is of 
interest. 
 

Figure 3: Order of Pairwise Comparisons is 
with the Heuristic Max Weight

 

Figure 4: Order of Pairwise 
with the Heuristic Euclidean 
 

In Figure 3 the best alternative is identified af
approx. 250 comparisons. The secon
identified after approx. 450

In Figure 1 the order of the pairwise comparisons 
is randomised. The best alternative is identified after 
approx. 350 comparisons. The second best alternative is 
identified after approx. 1530 comparisons. The late 
identification of the second best alternative shows the 
disadvantage of an arbitrary (in this case randomised) 
order of pairwise comparisons: Comparisons with a 

t be done too late. One cannot be sure, 
when the evaluation process can be terminated even if 
only the top alternative is of interest. 

In Figure 2 the best alternative is identified after 
approx. 560 comparisons. The second best alternative is 
identified after approx. 1700 comparisons. The late 
identification of the second best alternative is a 
disadvantage in that strategy, too. Additionally, the 
discontinuous progress of the values in the ranking 
vector makes the termination of the evaluation process 
very difficult even if only the top alternative is of 

 
Order of Pairwise Comparisons is Computed 

ax Weight. 

 
airwise Comparisons is Computed 

 Distance. 

alternative is identified after 
approx. 250 comparisons. The second best alternative is 

450 comparisons. Later on, 
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ranking position swaps only occur in the lower ranking 
positions. Consequently the heuristic Max weight causes 
a positive effect towards the reduction of necessary 
comparisons in this example. 

In Figure 4 the best alternative is identified after 
approx. 40 comparisons, the second best after approx. 
200 comparisons. The heuristic Euclidean distance 
decreases the necessary comparisons significantly in 
this example. Another advantage of this heuristic is the 
smooth progress of the values in the ranking vector. 
Compared to the heuristic Max weight, trends might be 
more easily detectable. 

In comparison to the reference strategies random 
order and facilitator order we can observe many 
improvements obtained from the heuristics: 

 
1. The heuristic Euclidean distance avoids a 

ranking swap between the best and second best 
alternatives. 

2. The heuristic Euclidean distance avoids the 
late ranking swap between the third best 
alternative and the fourth best alternative. 

3. With the heuristics Max weigth and Euclidean 
distance the best alternative and the second 
best alternative turned out very early. 

4. The heuristic Max weight clearly identifies the 
best alternative and the second best alternative. 
Unfortunately, the progress of the values in the 
ranking vector is slightly discontinuous. 

5. The heuristic Euclidean distance identifies the 
best alternative and the second best alternative 
earlier than heuristic Max weight and much 
earlier than both reference strategies. 

6. The progress of the values with heuristic 
Euclidean distance is very smooth so that 
trends are appreciable.  

7. In contrast to the strategies random order, 
facilitator order and heuristic Max weight the 
values in the ranking vector of heuristic 
Euclidean distance converge continuously to 
the final values. 

8. The strategy random order identifies the best 
idea with less pairwise evaluations than the 
facilitator order. Nevertheless, the strategy 
random order cannot be more than a reference 
because one cannot be sure when the 
evaluation process can be terminated. 

9. With the reference strategy facilitator order 
participants need less rethinking between 
pairwise comparisons (less cognitive load) 
than in the other strategies. Instead they need 
more comparisons to reach a certain evaluation 
goal. The promised benefit is annihilated.  

 
Fortunately, in this example, the brute force 

algorithm to compute intermediate rankings in the 
heuristic Euclidean distance takes not more than one 
second between each comparison. 

 

8. CONCLUSION 
The goal of the paper was to reduce the necessary 
number of pairwise comparisons if only the best 
alternative is needed. We used two heuristics to choose 
the next comparison to be made, in order to identify the 
top alternative as early as possible in the evaluation 
process. 

As the examples show, the presented heuristics 
could reduce the number of necessary comparisons 
significantly. In detail, the Euclidean distance heuristic 
shows better results than the Max Weight heuristic. We 
assume that the use of intermediate results in the 
Euclidean distance heuristic is one reason for the better 
performance. 

In our future work we want to identify more 
heuristics and implement the algorithm in a group 
decision support system. By reducing the evaluation 
effort necessary to reach a given goal, we will make the 
Markov-chain decision making method applicable to 
real world settings with a larger number of alternatives. 

Further work will also include developing a 
method for enforcing irreducibility which retains 
sparsity, the implementation of comparisons of the form 
"much better than", comparing the results with those 
obtained from other methods, determining the 
intersubjectivity of the computed ranking among the 
decision makers and studying the behaviour of the 
method using data from more real-life problems. 

Another question we would answer in further work 
is the definition of a definite stop criterion whereby the 
evaluation process can be terminated. 
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