TEACHING SIMULATION BASICS THROUGH FLOWCHART SIMULATION
THE EVENT SCHEDULING WORLD VIEW

Guilherme A B Pereira®, Luis M S Dias®, Hugo T C Rocha®

@Departamento de Produgéo e Sistemas, Escola de Engenharia, Universidade do Minho, Portugal

@gui@dps.uminho.pt, Isd@dps.uminho.pt, Hugo.TC.Rocha@azores.gov.pt

ABSTRACT

This paper refers to Event Scheduling World View,
focusing on working explicitly with the foundational
concepts of discrete event simulation, acting as an
automatic generator of simulation programs, thus
eliminating any programming effort and expertise. The
main strategy is to enhance the utilization of flowcharts
in modeling. Therefore, a graphical support tool
(Microsoft Visio) is used to represent how the system
really behaves and will also act as the source for the
automatic generation of Visual Basic (VB) simulation
programs. The software tool VBS (Visio Basic for
Simulations) was created to read Visio flowcharts,
interpret them and generate a VB simulation program.

Keywords: discrete event simulation, event scheduling
world view, automatic generation of simulation
programs, flowchart simulation

1. INTRODUCTION

(Banks 1998) defines simulation as “... the imitation of
the operation of a real-world process or system over
time...” and (Chase et al 2006) “...as a “...computer-
based model used to run experiments on a real
system...” These definitions call for the creation of a
model that represents the behaviour of real processes or
systems under analysis.

In this context, (Carson 2003) argues that a
“...simulation model is a representation of a system or
process ... incorporates time and the changes that occur
over time [and] ... a discrete model is one that changes
only at discrete points in time...”

However, (Schriber and Brunner 2008)
convincingly support that “...A “black box” approach is
often taken in teaching and learning discrete-event
simulation software...”. In fact, as far as discrete event
simulation is concerned, teaching and learning
approaches usually tend to neglect the full
comprehension of simulation basic concepts. Again,
(Schriber and Brunner 2008) state that *“...the
foundation on which the software is based is ignored or
is touched on only briefly ... The modeler therefore
might not be able to think things through when faced
with such needs as developing good approaches for
modeling complex situations”.

Most authors like (Pidd 1992), (Nance 1993),
(Bennet 1995), (Zeigler 1976), (Ziegler et al 2000),

(Brito and Teixeira 2001), (Guasch et al 2002),
(Overstreet and Nance 2004) and (Sargent 2004) would
refer three classical simulation approaches in Discrete
Event Simulation - Event Scheduling World View,
Process World View and Activities World View.

In the research here presented the authors
concentrate their work on Event Scheduling World
View, focusing on helping students construct their
simulation “house”, brick by brick, i.e., working
explicitly with the foundational concepts of discrete
event simulation — events, entities, resources, queues,
randomness, future events schedule, simulation time
advance, etc...

Event Scheduling World View essentially
represents the behaviour of a system over time by
means of defining specific events to occur at discrete
points in time — these events, planned and executed,
would mimic the real system.

Even though with a different approach as shown in
(Dias et al 2008), in this work the authors again use
Event Scheduling concepts, acting as an automatic
generator of simulation programs, thus eliminating any
programming effort and expertise. Previously (Dias et al
2005) have presented a similar procedure, but based in
activity cycle diagrams.

2. EVENT SCHEDULING CONCEPTS

Under Event Scheduling paradigm one would define an
event as an instantaneous action that might change the
state of the system (Guasch et al 2002).

A change in the state of a system would refer to the
state of the resources of that system. Each time a
resource state changes from busy to free or otherwise,
one could say that the state of the system would also
change.

Therefore, every instant in time where the state of
a system might change would be defined as an instant
where a specific event has occurred.

At that time, the tasks involved in that event would
have to be performed.

These tasks would reflect not only the
implementation of the change in the system, as far as
resources, queues and flow of entities are concerned
(representing physical modifications in the real system)
but also logical changes reflecting the planning of future
events, recording statistics for future use and also

Proceedings of the International Conference on Modeling and Applied Simulation, MAS 2009

ISBN 978-84-692-5417-2

generating random variables to model stochastic
behaviour of the real system.

The main strategy of this research work is to
enhance the utilization of flowcharts in modeling, thus
making it a great contribution to automatic generation
of simulation programs, keeping it simple. Therefore, a
graphical support tool is used to represent how the
system really behaves and will also act as the source for
the automatic generation of simulation programs.

Flowcharts are probably the most widely used
graphical syntax in behaviour specification (Gilbreth
and Gilbreth 1921). The first known mathematical
formalization was made by (Nassi and Shneiderman
1973). It can be accepted as a universal visual language,
and it can be easily assumed that every professional, in
some technical work, has already used it.

(Pidd 1992) and (Tocher 1963), even support the
view that when generic programming languages were
replaced by specific purpose simulation languages the
use of paper diagrams remained as a previous step to
programming.

In fact, this paper emphasizes the importance of
this step, by proposing a way for automatically
translating “paper diagrams” (flowcharts) into a
simulation program.

3. EVENT SCHEDULING IMPLEMENTATION
The Event Scheduling simulation philosophy, as
previously mentioned, is based upon the identification
of events that, together, would represent the mimic of
the system under analysis. The identification of each
event is complemented with the definition of the tasks
to be performed each time an event occurs. These tasks,
as far as a discrete simulation approach is concerned,
would include:

1. Managing queues (removing/inserting entities
from/in queues)

2. Managing resources utilization (either seizing
or releasing resources)

3. Recording statistics (for future evaluation of

performance indexes, i.e., average waiting time

in queue, average queue length, average

resource utilization, etc.)

Generating random variables

Managing future events schedule and

simulation time advance

o~

Basic Simulation Facility — BSF (Thesen 1978),
constitutes a way of implementing such a representation
model for the behaviour of a real system over time. BSF
is based on the computer programming concept of
managing files. Moreover a file, as far as a simulation
systems is concerned could represent:

1. the behaviour of a queue, where

e Inserting an entity in a queue would be
represented through the insertion of a record
on that file

e Removing an entity from a queue would be
represented through the removal of a record
from that file

2. the state of a resource, where

e seizing a resource would be represented
through the insertion of a record in that file

o releasing a resource would be represented
through the removal of a record from that file

3. the future events list, where

e planning a future event would be represented
through the insertion of a record in that file

e executing an event would be represented
through the removal of a record from that file

This type of implementation, using an appropriate
data structure to accomplish the above features would
also be useful to record statistics, using the mentioned
files — these tasks would simply involve using some
fields of the records of those files in order to register the
statistical information needed.

BSF includes the following four routines already
developed:

1. INIT - essentially dedicated to the design and
initialization of the data structure that supports
the simulation

2. INSERT - basically dedicated to the insertion
of a record into a file (e.g. the arrival of an
entity to a queue, or seizing a resource or even
the planning of a future event)

3. REMOVE - basically dedicated to the removal
of a record from a file (e.g. the removal of an
entity from a queue, or releasing a resource or
even preparing the execution of a future event)

4. REPORT - essentially dedicated to the
computation of simulation performance
measures

These routines, and the associated philosophy,
could be found (implemented) in various programming
languages (Java, C, VB, Pascal, Excel VBA, etc.).
Nevertheless, it is essential to develop a computer
program, specifically dedicated to the system under
analysis, which would invoke these routines, thus
creating a mimic of the system. The development of this
computer program, together with the correct utilization
of the aforementioned routines, is usually better
described (modeled) by the use of appropriate
flowcharts for each event identified.

Next section presents a software tool based on
flowcharts, built and founded on key issues of the Event

Proceedings of the International Conference on Modeling and Applied Simulation, MAS 2009

ISBN 978-84-692-5417-2

Scheduling philosophy, which automatically generates a
simulation computer program to mimic the real system.

4. SOFTWARE TOOL DEVELOPED

The relevancy of creating a simulation software tool
capable of generating a simulation program (VBS -
Visio Basic for Simulations) is based on the following
general principles/premises:

1. event scheduling world view definitely
contributes to a better understanding of the
foundations of simulation, i.e., the basic
concepts of simulation

2. VBS would emphasize the utilization of a
visual approach to deal with the representation
of the real problem through the event
scheduling paradigm

3. VBS would literally enable the automatic
generation of a simulation program (VBA or
Java program) thus with no programming
effort at all

VBS would then use the well known graphical
editor Microsoft Visio for incorporating the event
scheduling flowcharts representing each event. This
task would be accomplished through the creation of
Visio Shapes that would reflect the different tasks
involved in each event identified. Then VBA (Visual
Basic for Applications) would interact with Visio,
interpreting the shapes and tasks associated, as well as
the sequence of shapes to be “executed”. At the end,
this means that the effort to run simulation experiments
through this tool would be equivalent to building event
scheduling flowcharts on a piece of paper.

This was the challenge of the work presented in
this paper.

For this purpose, and according to the ideas
presented in section 3, the software tool would have to
implement the tasks for each event. In fact, through
VBS a flowchart for each event will be created and a
main flowchart will coordinate the execution of each
event flowchart.

For each type of task, the software tool includes
the following Visio Stencils and the corresponding
Visio Shapes:

e For managing queues (Figure 1) — Shape Insert
(inserting an entity in a Queue) and Shape
Remove (removing an entity from a queue).
Additionally there is a shape for queue
declaration.

Parameters: Queue identification

i1 QUEUE X
Lt
[|mNsERT (o= |REMOVE {fm}DECLARE
W

Figure 1: Queue Stencil

e For managing resources utilization (Figure 2) -
Shape Seize (seizing a resource) and Shape
Release (releasing a resource). There is also a
shape for declaring each resource.

Parameters: Resource identification

#]RESOURCE X

tad
[= JserzE [= |RELEASE { -~ }DECLARE

W

Figure 2: Resource Stencil

e For managing future events schedule and
simulation time advance (Figure 3) — Shape
Plan (planning future event to occur, inserting
information on the Future Events List), Shape
Identify (identifying next event to occur,
reading information from the Future Events
List) and Shape Execute (transferring the
execution of the program to the corresponding
flowchart of the next event to be executed).

Parameters: ldentification of next event to
occur and future instant for that event to occur

HEYENT x

s
[rmm]pLan [EXECUTE [IDEMTIFY

w

Figure 3: Event Stencil

e For generating random variables (Figure 4) —
Shape Random, generating a value from a
statistical distribution with the respective
distribution parameters.

Parameters: Statistical Distribution and
corresponding distribution parameters

fsTat x
iy L

{ @5 sRANDOM
b

Figure 4: Statistics Stencil

In Event Scheduling World View there is frequent
need to identify if:

e aresource is free
e aqueue is empty

The tool developed includes a shape for each of the
situations above — see Figure 5. The parameters include,
respectively, the identification of the resource and the
queue.

Proceedings of the International Conference on Modeling and Applied Simulation, MAS 2009

ISBN 978-84-692-5417-2

#] DECIDE x

2 RESOUR... ~> QUELE
) FREE “EEY EMPTY

Figure 5: Decision Stencil

Additionally, every shape needs to be linked to
other shapes. There are also a set of Link shapes for that
purpose — see Figure 6. These include the straight link
between shapes, but also output decision links from
decision shapes — True and False outputs following a
decision point.

FLINKS X
L

—— ARROW —— Fgmw — ?F’;ROW ¢OR
W

Figure 6: Links Stencil

Finally, and for software implementation purposes,
there are also shapes for activating the main program as
well as for activating each event. At the end of each
event — after executing all the tasks for that event, a
Return shape is used to direct program execution back
to the main flowchart. This flowchart, at the end of the
simulation, uses the shape Report to compute some
statistical indicators for evaluating the system
performance — Figure 7 below.

HMAIN X

S Pt
W RETURM ol EVENT (=0 malN [|REPORT
b

Figure 7: Main Stencil

The tool developed (VBS) promotes the interaction
between Visio shapes and VBA (Visual Basic for
Applications), that interprets each shape and
corresponding parameters and generates computer code
accordingly. Figure 8 and Figure 9 show general
screenshots of the VBS application. At the end, a whole
computer program is generated, compiled and executed.

Next section will present an application example,
the corresponding interaction with the software tool and
the computer code (\VVB) generated.

5. APPLICATION EXAMPLE
For a brief explanation of the tool developed, a simple
example is presented.

This example represents a system that incorporates
the arrival of entities. Once in the system, the entities
would require the use of a first resource (Resource_A).
Then, the entity would also require the use of a second
resource (Resource_B). There is a first-in first-out type
of queue associated with each resource. The entity will
then leave the system.

The Event Scheduling philosophy would identify
three events — Entity Arrival Event (Figure 10); End of

Resource_A Utilization (Figure 11); End of Resource_B
Utilization (Figure 12). Figure 13 represents the main
flowchart that integrates and coordinates the behaviour
of each event occurring in the system.

Following each flowchart is the respective code,
automatically generated by VBS, based on each shape
and respective parameters.

VBA, by reading each flowchart, would recognize
each shape and would interpret each parameter of each
shape. Computer code generation would then follow in
accordance.

B FiveStars_rci.vsd [Read-Only] - Microsoft Visio r:._rfﬂ |@
] ple gdit View Jnsert Fgrmat Icols Data Shape Window Help -8 x
3 - i (e L e 100 - 2 3

sz Fiouschan{ Shapes. (Matic = |
1 i .
— oECLARE | | PLAM FUTURE EVENT

Firat Event

<= I arniting QUEUE FOR

B quee o | puan uTuse Event
B pecIston = Last Event o " -

[£
I CLsTomM IBENTIFY NEXT
B Lvent i FVENT

Shape Data - Declar... O x

Nome Aesorce B ps

i y =

Lite: : i I EXECUTE NEXT

o de Atrbutos |0 g9 ~ End S-mula'ﬁ;"/ EVENT 2
W 4 b b| main - Event Amia | € »

Width = 29,5 mm Height = 15 mm Fage 1/4

Figure 8: VBS Screenshot 1

C) e Ed Wew [owt Fomst ok [stn e Widw beb

HE Sk v B-grEneow
Y sA- G- l-f- 2 ASass anll S
> BT L il
Shapes [T 2 LT T TPV TN, FYPR: YT, TP P
B asion Ce — vy
ElMAN Event Arival = Y
MLms | (Start) . N PR
A cecision v ~
B]
X o
=i P /RANDOM VARIABLE 1
PMan future Event |, GENERATGR 1 ggs‘éuiﬁ':"a
qmwnvnam.lf =
—_——— —
== Jsd RN VARIABLEN

£

.......

M 4% Wl nsh | Cvent Arrival | €
Height = 15 mm Brgie = 0 deg Fage 24

' Figure 9: VBS Screenshot 2

For a better understanding of the relation between
each shape and the corresponding computer code, let us
follow the flowchart for Event Arrival (Figure 10): first
shape corresponds to the activation of the respective
flowchart, meaning a call to the routine Sub Arrival.
Then the shape Random generates line code
T=RVG(“EXPO(5)”") — this means that the parameters
of this shape were recognized as having an Exponential
type of distribution with a mean of 5 (minutes). Shape
Plan follows, indicating the planning of a future event —
inserting a record in the future events list — line code
Insert(“FutureEvents”, Time+T, “Arrival’). The entity
that has just arrived in the system will be part of the

Proceedings of the International Conference on Modeling and Applied Simulation, MAS 2009

ISBN 978-84-692-5417-2

corresponding queue - line code Insert . .
(“QUEUE_A",Time). Event Arrival

Then, if Resource A is free (next shape), the (Start)
following actions need to be performed:

* removing entity _from the queue - / RANDOM VARIABLE
e generating duration of Resource_A utilization GENERATOR
° seizing Resource A (Time between arrivals)/
A — —
e planning next event — end of Resource A i
utilization
e end of flowchart PLAN FUTURE EVENT
(Arrival)
The above actions are equivalent to the following
code generated by the application: Jr
_) INSERT ENTITY IN
Table 1: Partial code for Event Arrival QUEUE_A
IT Size(“RESOURCE_A")<Max_A Then v
Remove (*“QUEUE_A"") /,"\\
T=RVG(“normal (4,1)™) (R
Insert(“RESOURCE_A™, Time+T) (ES%UEFEEE— Vi
Insert(“FutureEvents”, Time+T, N o
“End of Resource_A Utilization™) N o

End If i

Having performed these steps, the full code for this EE%VQEU%TJTE'TX

flowchart is shown in Table 2.

Table 2: Code for Event Arrival AANDOM VARIABLR
GENERATOR
Sub Arrival() \ (Resourc_e usage /
T=RVG(“EXPO(5)™) Wduraton) o |

Insert(“FutureEvents”, Time+T, “Arrival’)
Insert(“QUEUE_A”,Time)
IT Size(**RESOURCE_A")<Max_A Then

Remove (“QUEUE_A"") SEIZE RESOURCE_A
T=RVG(“normal (4,1))
Insert(“RESOURCE_A”,Time+T)
Insert(“FutureEvents”, Time+T, i

End of Resource_A Utilization™) PLAN FUTURE EVENT

End If
(End of resource usage
End Sub event)

-y

Figure 10: Entity Arrival Event Flowchart

Proceedings of the International Conference on Modeling and Applied Simulation, MAS 2009
ISBN 978-84-692-5417-2

Start Event End of
Resource Usage
.(Non End Resource)

L

RELEASE
RESOURCE_A
-~ -~
/N RN
“QuEVE A o \ﬁESOURCE_B‘ L
U Evprve FREE? /

N s N Ve
N N
REMOVE ENTITY REMOVE ENTITY
FROM QUEUE_A FROM QUEUE_B
AANDOM VARIABLR KANDOM VARIABLR
GENERATOR GENERATOR

(Resource usage)/ \ (Resource usage /]

_duratio_n)_/ T

St

SEIZE RESOURCE_A SEIZE RESOURCE_B

PLAN FUTURE EVENT PLAN FUTURE EVENT
(End of Resource Usage (End of Resource Usage

Event) Event)
v
INSERT ENTITY IN u
QUEUE_B

Figure 11: End of Resource A Utilization Event
Flowchart

Similar procedures would generate computer code
of Table 3 for event represented in Figure 11.

Table 3: Code for Event End of Resource_A Utilization

Sub End_of Resource_A_Utilization()
Remove (““RESOURCE_A"")
If Size(““QUEUE_A")>0 Then
Remove (*“QUEUE_A"")
T=RVG(“normal (4,1)™)
Insert(“RESOURCE_A",Time+T)
Insert(“FutureEvents”, Time+T,
“End of Resource_A Utilization”)
End If
Insert(“QUEUE_B”,Time)
If Size(““RESOURCE_B")<Max_B Then
Remove (““QUEUE_B")
T=RVG(“normal (18,2)"")
Insert(*“RESOURCE_B”,Time+T)
Insert(“FutureEvents”, Time+T,
“End of Resource_B Utilization”)
End If

End Sub

Start Event End of
Resource Usage
. (End Resource)

T

RELEASE
RESOURCE_B

v
Y
7 N
“QueEueE BN
U ewprve v
N

7
N o

REMOVE ENTITY
FROM QUEUE_B

AANDOM VARIABLR
GENERATOR
\ (Resource usage /]

~ duration) %

T

SEIZE RESOURCE_B

v

PLAN FUTURE EVENT
(End of Resource Usage
Event)

-

Figure 12: End of Resource B Utilization Event
Flowchart

Also for flowchart of Figure 12, the following code
is generated.

Table 4: Code for Event End of Resource_B Utilization

Sub End_of _Resource_B_Utilization()
Remove (““RESOURCE_B™")
1T Size(*“QUEUE_B)>0 Then
Remove (““QUEUE_B™")
T=RVG(“normal (18,2))
Insert(*“RESOURCE_B”,Time+T)
Insert(“FutureEvents”, Time+T,

“End of Resource_B Utilization™)
End If
End Sub

Proceedings of the International Conference on Modeling and Applied Simulation, MAS 2009

ISBN 978-84-692-5417-2

waiting QUEUE FOR

RESOURCE_A

MASTER I

C——

i. L]
RESOURCE_A

PLAN FUTURE EVENT
First Event

v waiting QUEUE FOR

RESOURCE_B

PLAN FUTURE EVENT
Last Event

RESOURCE_B

IDENTIFY NEXT

\
EVENT J‘

PN
e ~
o7 Event= EXECUTE NEXT
VEnd_ Slmulatlo Wl EVENT
N -
< E -
REPORT

-

Figure 13: Main Flowchart

Finally for flowchart of Figure 13, the code
included in Table 5 is generated.

Table 5: Code for Main Flowchart

Main Program:
INITQO
Max_A=1
Max_B=4
Insert(“FutureEvents”, 0, “Arrival™)
Insert(“FutureEvents”,1000,“End_Simulation”)

DO
Event=Remove(“FutureEvents”)
IT Event == “Arrival” Then Call Arrival
IT Event == “End of Resource_A Utilization”
Then
Call End_of Resource_A Utilization
IT Event == “End of Resource_B Utilization”
Then
Call End_of Resource B_Utilization
UNTIL event == “End_Simulation”

Call Report

This computer program is then ready for compiling
and executing. At the end, the usual performance
indicators are available — average time spent in a queue,
average time spent in the system, average queue length,
average number of resources busy, etc.

6. CONCLUSIONS
The software tool developed shows three particularly
interesting features, namely:

e It is based on simple flowcharts that follow
Event Scheduling Simulation philosophy

e It automatically generates a VB computer
program to perform the mimic of the system
under analysis

e It runs the model directly over the flowcharts,
producing debugging trace files

These features, together, would contribute to

e the generalization and a better understanding
of the use of simulation

o the comprehension of the foundations of
simulation

e the automatic generation of simulation
programs

In brief, it can be argued that the generalization
and better understanding of the use of simulation would
have been accomplished since the tool herein developed
only requires i) expertise on a basic simulation
approach: event scheduling, ii) incorporating simple
flowcharts that define the system and its functioning
rules.

Furthermore, these flowcharts, apart from
providing an understanding of the system’s behaviour,
contribute to the comprehension of fundamental
simulation concepts, such as entities, queues, resources
and also to a very important simulation concept — the
evolution of the state of the system over time.

Finally, these simple flowcharts are translated into
the software tool by means of an automatic generation
of a computer program that performs the mimic of the
system and evaluates the corresponding efficiency
measures. The simulation runs over the events’
flowcharts, step by step, enabling the user to gradually
assimilate concepts while validating his learnings.

REFERENCES

Banks, J., 1998. Handbook of Simulation: Principles,
Methodology, Advances, Applications, and
Practice, John Wiley and Sons, Inc.

Banks, J., 2000. Introduction to Simulation, in
Proceedings of the 2000 Winter Simulation
Conference, eds., J. A. Joines, R. R. Barton, K.
Kang, and P. A. Fishwick, pp. 9-16.

Bennett, B. S., 1995. Simulation Fundamentals,
Prentice Hall, ISBN 0-13-813-262-3

Brito, A. E. S. C. and Teixeira, J. M. F., 2001.
Simulacdo por Computador — Fundamentos e
implementacdo de codigo em C e C++,
Publindistria - EdicGes Técnicas, ISBN 972-
98726-2-7

Proceedings of the International Conference on Modeling and Applied Simulation, MAS 2009

ISBN 978-84-692-5417-2

Carson, J. S., 2003. Introduction to Modeling and
Simulation, Proceedings of the 2003 Winter
Simulation Conference, eds., S. Chick, P. J.
Sanchez, D. Ferrin, and D. J. Morrice, pp. 7-13

Chase, R. B., Jacobs, F. R. and Aquilano, N. J., 2006.
Operations ~ Management for ~ Competitive
Advantage, McGraw-Hill/lrwin.

Dias, Luis M. S., Rodrigues, Antonio J. M. G. and
Pereira, Guilherme A. B., 2005. An Activity
Oriented Visual Modelling Language with
Automatic Translation to Different Paradigms,
Proceedings of the 19th European Conference On
Modelling And Simulation (ECMS 2005), Riga,
Letonia. Ed. Yury Mercuryev et al, pp. 452-461

Dias, Luis M. S., Pereira, Guilherme A. B. and Oliveira,
José A. V., 2008. Event Scheduling Made Easy:
Basic Simulation Facility Revisited, in
Proceedings of the European Modeling and
Simulation Symposium, EMSS 2008, Lamezia, p.
688-692.

Gilbreth F.B. and Gilbreth L.M., 1921. Process Charts -
First Steps in Finding the One Best Way to do
Work. Presented at the Annual Meeting of The
American Society of Mechanical Engineers, New
York, USA.

Guasch, A., Pierra, M., Casanovas, J. and Figueras, J.,
2002. Modelado y Simulacion — Aplicacion a
procesos logisticos de fabricacion y servicios.
Edicions de la Universitat Politécnica de
Catalunya, Barcelona.

Nance, R. E., 1993. A history of discrete event
simulation programming languages, in the Second
ACM SIGPLAN Conference on History of
Programming Languages (Cambridge,
Massachusetts, United States, April 20 - 23).
HOPL-Il. ACM Press, New York, NY, pp 149-
175. DOI=10.1145/154766.155368

Nassi and Shneiderman, 1973. Flowchart techniques for
structured programming, ACM SIGPLAN
Notices, 12.

Overstreet, C. M. and Nance, R. E., 2004.
Characterizations and Relationships of World
Views, in Proceedings of the 2004 Winter
Simulation Conference, ed. R .G. Ingalls, M. D.
Rossetti, J. S. Smith and B. A. Peters, pp 279-287,
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Pidd, M., 1992. Computer Simulation in Management
Science. 3 Ed. John Wiley & Sons, Inc.

Sargent, R. G., 2004. Some recent advances in the
process world view, Winter Simulation
Conference, pp 293-299.

Schriber, T. J. and Brunner, D. T., 2008. Inside discrete-
event simulation softe«ware: how it works and
why it matters, in Proceedings of the 2008 Winter
Simulation Conference, eds. S. J. Mason, R. R.
Hill, L. Ménch, O. Rose, T. Jefferson and J. W.
Fowles.

Thesen, A., 1978. Computer Methods in Operations
Research, New York: Academic Press.

Tocher, K. D., 1963. The Art of Simulation,
UNIBOOKS - English Universities Press.

Zeigler, B. P., 1976. Theory of Modeling and
Simulation, Wiley, New York.

Zeigler, B. P., Herbert, P. and Tag, G. K., 2000. Theory
of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Sys-
tems, 2™ edition, Academic Press.

AUTHORS BIOGRAPHY

Guilherme A B Pereira was born in 1961 in Porto,
Portugal. He graduated in Industrial Engineering and
Management in the University of Minho, Portugal. He
holds an MSc degree in Operational Research and a
PhD degree in Manufacturing and Mechanical
Engineering from the University of Birmingham, UK.
His main research interests are Operational Research
and Simulation.

Luis M S Dias was born in 1970 in Vila Nova de Foz
Coa, Portugal. He graduated in Computer Science and
Systems Engineering in the University of Minho,
Portugal. He holds a PhD degree in Production and
Systems Engineering from the University of Minho,
Portugal. His main research interests are Operational
Research, Simulation and Systems Visual Modeling.

Hugo T C Rocha was born in 1975 in Aveiro, Portugal.
He graduated in Computer Engineering in the
University of Minho, Portugal. During his degree he
developed some research work in simulation. He
currently works in the Center of Informatics for Finance
of the Regional Government of Acgores, Portugal and he
is a professor of Information and Communication
Technologies in the Professional School of Santa Casa
da Misericdrdia dos Acores. His main research interests
are Informatics and Simulation.

Proceedings of the International Conference on Modeling and Applied Simulation, MAS 2009

ISBN 978-84-692-5417-2

